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 2 

Abstract 14 

Polygenic risk scores (PRS) aggregating results from genome-wide association 15 

studies are state of the art to predict the susceptibility to complex traits or diseases. 16 

Novel machine learning algorithms that use large amounts of data promise to find 17 

gene-gene interactions in order to build models with better predictive performance than 18 

PRS. Here, we present a data preprocessing step by using data-mining of contextual 19 

information to reduce the number of features, enabling machine learning algorithms to 20 

identify gene-gene interactions. We applied our approach to the Parkinson’s 21 

Progression Markers Initiative (PPMI) dataset, an observational clinical study of 471 22 

genotyped subjects (368 cases and 152 controls). With an AUC of 0.85 (95% CI = 23 

[0.72; 0.96]), the interaction-based prediction model outperforms the PRS (AUC of 0.58 24 

(95% CI = [0.42; 0.81])). Furthermore, feature importance analysis of the model 25 

provided insights into the mechanism of Parkinson’s Disease. For instance, the model 26 

revealed an interaction of previously described drug target candidate genes TMEM175 27 

and GAPDHP25. These results demonstrate that interaction-based machine learning 28 

models can improve genetic prediction models and might provide an answer to the 29 

missing heritability problem. 30 

 31 

  32 
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 3 

Introduction 33 

The need to understand how to predict phenotypes from genetic data becomes ever-34 

more important for individual’s disease risk prediction, animal and plant breeding as 35 

well as genome editing. Polygenic risk scores (PRS), simple additive models, are state 36 

of the art to investigate the genetic architecture and, more importantly, to predict the 37 

susceptibility of complex traits or diseases. (Wray et al., 2007; Evans et al., 2009; 38 

International Schizophrenia Consortium et al., 2009) For each individual a score is 39 

calculated as a weighted sum of the number of risk allele single nucleotide 40 

polymorphisms (SNP) an individual was tested for. The used weights are regression 41 

coefficients from previous genome-wide association studies (GWAS). 42 

Importantly, PRS models are not optimized for predictive performance. (Chatterjee et 43 

al., 2013; Dudbridge, 2013) There are three reasons for this:  44 

1. Due to the current limited sample size of discovery GWAS datasets (< 1,000,000 45 

individuals), biologically relevant rare variants with small effect sizes cannot be 46 

detected. Additionally, the limited sample sizes of discovery GWAS can lead to biased 47 

PRS models that might not perform well in populations with ancestry different to that 48 

of the discovery dataset. (Reisberg et al., 2017; Duncan et al., 2019) 49 

2. It has been shown that statistically associated SNPs are not automatically good 50 

predictors. (Lo et al., 2015) 51 

3. It has been reported that genetic effects discovered in genome-wide association 52 

studies do not sum to the estimate of the heritability of the trait compared to twin 53 

studies. (Yang et al., 2010) This has been called the missing heritability problem in 54 

GWAS. (Manolio et al., 2009) Beside potentially missing relevant rare variants and 55 

suboptimal SNP selection based on p values, classical PRS models ignore complex 56 

gene-gene interactions, also known as epistasis, of the trait or disease due to their 57 

simple additive structure.  58 
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The concept of epistasis has been described more than 100 years ago. (Bateson and 59 

William, 1906) Statistical epistasis, as observed in genome-wide association studies, 60 

is genetic variance that can be attributed to gene interaction and is defined as a 61 

function of the allele frequencies in a population. Detection of epistasis in discovery 62 

GWAS and modeling its impact is challenging because of linkage disequilibrium (LD), 63 

replication of identified gene-gene interactions in validation datasets, model 64 

complexity, and high dimensionality. (Wei et al., 2014)  65 

Machine learning algorithms that improve automatically through experience and by the 66 

use of data represent an opportunity to find gene-gene interactions in order to build 67 

prediction models with better predictive performance than PRS. Nevertheless, in a 68 

recent study a PRS model outperformed the five machine learning algorithms Naïve 69 

Bayes classifier, regularized regression, random forest, gradient boost, and support 70 

vector machine used to build prediction models for coronary artery diseases status. 71 

(Gola et al., 2020) 72 

Here, we explore the potential of using contextual information obtained via data mining 73 

to strongly reduce the hypothesis space, which, in turn, allows for testing a small set 74 

of complex hypotheses, containing interaction of multiple variants. This approach 75 

organizes data mined from journal articles, pathway libraries, protein co-expression 76 

libraries and drug candidate libraries into a hierarchical graph, which generates 77 

disease-specific hypotheses based on interactions of genetic variants. Each 78 

interaction’s predictive power is determined using the training data set. If an interaction 79 

predicts disease status well, the graph is incentivized to ‘fine-tune’ the hypothesis by 80 

comparing a set of very similar hypotheses. If a hypothesis has little or no predictive 81 

power, the graph is not incentivized to explore it, or similar hypotheses further and will 82 

instead propose hypotheses containing different variants. This learning process is 83 

driven by gradient descent, meaning that it converges when the average performance 84 
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of the new multi-variant hypothesis does not increase. After convergence, the selected 85 

features are used to build prediction models with standard machine learning 86 

algorithms, such as LASSO (least absolute shrinkage and selection operator) 87 

regression (Friedman et al., 2010). An overview of our approach is given in Figure 1.  88 

The Parkinson’s Progression Markers Initiative (PPMI) dataset (Marek et al., 2011, 89 

2018) (https://www.ppmi-info.org) was selected for the comparison as the dataset has 90 

been intensively analyzed and, from there, a broad audience is able to reproduce our 91 

results. 92 

 93 

 94 

Results 95 

GWAS 96 

In a preliminary proof-of-concept step, a genome-wide association (GWA) analysis 97 

was performed. For all 471 subjects in the PPMI database, 368 cases and 152 controls, 98 

subject genotyping information was collected from two complementary genotyping 99 

chips (NeuroX and ImmunoChip). After careful quality control and harmonization, we 100 

merged that information into a single dataset with 369,036 variants and 436 individuals. 101 

The Manhattan plot of the p values resulting from SAIGE analysis is shown in Fig. 2. 102 

Seven single nucleotide polymorphisms (SNPs) showed smaller p values than 10-4 103 

(Table 1). 104 

 105 

Polygenic risk score 106 

For all analyses described in the following, the data was split into training, validation 107 

and test sets. The same sets were used for constructing a polygenic risk score (PRS) 108 

and machine learning prediction models with and without feature selection. To 109 

calculate the PRS, 7 different p value thresholds (0.001, 0.05, 0.1, 0.2, 0.4, 0.5) for the 110 
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subjects in the training, validation and test set were used. The PRS of the subjects in 111 

the training set were then used to train a separate logistic regression classifier for each 112 

p value threshold. The validation data set was used to determine which of these 113 

thresholds produces the best classifier, which was then used to predict the test set. 114 

This classifier is based on the PRS of 57 different SNPs. 115 

The receiver operating characteristics (ROC) curve was used to evaluate the predictive 116 

power of the PRS. The area under the curve (AUC) was 0.58 (95% CI = [0.42; 0.81]) 117 

and the Youden’s index was 0.21 (Tab. 2). 118 

 119 

Deep learning 120 

Deep learning is a machine learning technique based on artificial neural networks with 121 

representation learning that allows a system to automatically discover the 122 

representations needed for feature detection or classification from raw data. Despite 123 

not being widely used in the field of genomics, there is work on applying Deep Learning 124 

to GWAS, such as Romero et al. (Romero et al., 2016). Romero et al. use a Diet 125 

Network, a neural network parameterization, which considerably reduces the number 126 

of free parameters. The model is composed of 3 networks, one basic and two auxiliary 127 

networks. After a basic discriminative network with optional reconstruction path, a 128 

network that predicts the input fat layer parameters, and finally, a network that predicts 129 

the reconstruction fat layer parameters. We applied their approach to the PPMI 130 

dataset. The area under the curve (AUC) of the deep learning model was 0.67 (95% 131 

CI = [0.47; 0.83]) and the Youden index was 0.29 (Tab. 2). Notably, the deep learning 132 

model contains abstract embeddings instead of concrete SNPs as in the PRS. 133 

 134 
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Feature selection and LASSO regression 135 

The hierarchical graph, as well as the training set of the GWAS data were used to 136 

select a set of less than 100 polygenic hypotheses using our approach as described in 137 

the introduction above. The remaining hypotheses were summarized in a term that was 138 

used to train a LASSO regression model on the validation data. (Tibshirani, 1996) This 139 

model, based on 47 SNPs in several different interaction terms, then predicted the test 140 

set. The area under the curve (AUC) for the LASSO model with prior feature selection 141 

was 0.85 (95% CI = [0.72; 0.96]) and the Youden index was 0.61. A LASSO model 142 

without prior feature selection that was built for comparison did not deliver outcomes 143 

that were significantly better than chance (Tab. 2). 144 

Exploring the feature selection based model with its interactive terms, provides insights 145 

about the genes associated with the disease. An annotation of all 47 SNPs in our model 146 

can be found in the Supplementary Information. An exciting result from this analysis of 147 

the PPMI dataset is the statistical interaction of variants rs3822019 on chromosome 4 148 

in gene TMEM175, coding for a potassium channel in late endosomes, and 149 

rs17022452 on chromosome 2, close to the coding region of GAPDHP25, 150 

glyceraldehyde-3 phosphate dehydrogenase pseudogene 25. rs3822019 is an intron 151 

variant that has been linked to Parkinson’s Disease. (Nalls et al., 2014) 152 

 153 

 154 

Discussion 155 

We analyzed the PPMI dataset and built predictive models using PLINK for a polygenic 156 

risk score, a diet-net deep learning algorithm for genomic data (Romero et al., 2016), 157 

and LASSO regression with and without the above proposed approach of using 158 

contextual data to reduce the hypothesis space. The PRS model comprises 16,135 159 

SNPs and showed an AUC of 0.56 whereas the deep learning model had an AUC of 160 
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0.52. Notably, the deep learning model consists of abstract embeddings instead of 161 

single SNPs like the PRS. Therefore, identification of disease-associated SNPs and 162 

further insights into the disease mechanism are not possible here. The LASSO 163 

regression model built on interactions containing only 47 SNPs that were discovered 164 

via the use of contextual information outperformed the other predictive models with an 165 

AUC of 0.82. Beyond that, the approach was able to associate new variants with the 166 

disease that would have not shown up under an additive approach such as PRS.  167 

We investigated how the combinations of the relevant genotypes rs3822019_TT 168 

(TMEM175) and rs17022452_GG (GAPDHP25) split the individuals into cases and 169 

controls (Tab. 3). All subjects that are homozygous for rs3822019_TT are affected by 170 

PD. Furthermore, most individuals heterozygous for this variant (rs3822019_TT) or 171 

homozygous for rs17022452_GG are cases (76.4% and 75.0%, respectively). These 172 

results support the relevance of the association between these variants and PD status. 173 

The TMEM175/GAK/DGKQ locus was the third strongest risk locus in a GWA study of 174 

Parkinson’s disease (Krohn et al., 2020) and has been described as a potential drug 175 

target. (Diogo et al., 2018; Jinn et al., 2019) Deficiency in the potassium channel 176 

TMEM175 results in unstable lysosomal pH, which leads to decreased lysosomal 177 

catalytic activity and increased α-synuclein aggregation, among other effects. As a 178 

potassium channel, TMEM175 has a high potential as a druggable target anda 179 

tractable therapeutic strategy has been proposed. (Jinn et al., 2017) 180 

GAPDH has been targeted with the investigational drug Omigapil for prevention of PD, 181 

ALS, congenital muscular dystrophy and myopathy. The drug has been shown to 182 

protect against behavioural abnormalities and neuro-degeneration in animal models of 183 

Parkinson’s disease. However, PD development has been terminated due to lack of 184 

benefit. (Olanow et al., 2006) 185 
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There seem to be various causes of Parkinson’s Disease, yet the pathogenesis of this 186 

disease appears to be converging on common themes—oxidative stress, 187 

mitochondrial dysfunction, and protein aggregation—all of which are tightly linked to 188 

autophagy. (Lynch-Day et al., 2012) Both TMEM175 (Jinn et al., 2019) and 189 

GAPDH(Butera et al., 2019) regulate autophagy. Disturbed expression of autophagy 190 

genes in blood of PD patients. (Lynch-Day et al., 2012) 191 

To summarize, we here present an approach to apply machine learning algorithms to 192 

high-dimensional genomic data using a contextual knowledge based feature selection. 193 

PRS models require a large set of SNPs, which leads to overfitting and limits their use 194 

in clinical practice. We generated more parsimonious models overcoming these 195 

limitations – with only 47, partly interacting SNPs, our model was able to outperform a 196 

PRS model based on 57 SNPs for Parkinson’s Disease. Analysis of feature importance 197 

of our model identified a gene-gene interaction of TMEM175 and GAPDHP25. 198 

TMEM175 has been described as a potential drug target and further information on its 199 

mechanism of action could be invaluable. A recently discovered interaction with 200 

pseudogene GAPDHP25 could provide helpful insights. In conclusion, applying 201 

machine learning algorithms to feature-selected genomic data leads to interaction-202 

based models with better predictive performance than PRS as well as paves the way 203 

to generate new insights into disease mechanisms. 204 

 205 

 206 

Methods 207 

Parkinson’s progression marker initiative dataset  208 

The Parkinson’s progression marker initiative (PPMI) dataset (https://www.ppmi-209 

info.org) contains 471 subjects, 368 cases and 152 controls, for each subject 210 

genotyping information from two complementary chips (NeuroX and ImmunoChip) was 211 
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collected. (Marek et al., 2011) After careful quality control and harmonization (e.g. 212 

genome build, strand alignment) as described in the literature (Marees et al., 2018) we 213 

merged that information into a single dataset with 380,939 variants in total. An 214 

additional set of quality control steps were performed on variants and individuals that 215 

aimed to remove biases that could affect the downstream analysis.  216 

In more detail, in a first stage SNPs and individuals were filtered based on their 217 

missingness in the dataset. This ensures that SNPs are excluded that have a high 218 

proportion of subjects where genotyping information was unavailable or of poor quality. 219 

Similarly, individuals where a large proportion of SNPs could not be measured were 220 

excluded. This step was achieved by setting a threshold of 0.02 (i.e. >2%; 6,084 221 

variants and 22 people were removed). SNP filtering was performed before individuals 222 

were filtered. 223 

With high missing rates filtered, all variants not on autosomal chromosomes were 224 

removed (5,731 variants were removed). This was followed by the identification and 225 

removal of variants that deviate from the Hardy-Weinberg equilibrium. These variants 226 

were identified in a two-stage process whereby we first applied a threshold of 1e-6 227 

exclusively to controls, followed by a threshold of 1e-10 applied to all samples (0 and 228 

202 variants were removed). This is a common indicator of genotyping errors. 229 

Next, individuals were filtered based on their heterozygosity rates which can indicate 230 

sample contamination. Individuals that deviate by more than 3 standard deviations 231 

from the mean of the rate from all samples (13 individuals were removed) were filtered 232 

out. To assess the heterozygosity rate per sample, the variants that were in linkage 233 

disequilibrium with each other were first extracted, scanning the genome at a window 234 

size of 50 variants, step size of 5 and a pairwise correlation threshold of 0.2. 235 
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Finally, related individuals were removed, which was achieved through the assessment 236 

of their respective identity by descent coefficients (IBD) that were calculated. Only one 237 

individual in a related pair would be kept (0 individuals were removed).  238 

The final quality-controlled dataset contained 369,036 variants and 436 individuals 239 

passing the various filters.  240 

 241 

GWAS 242 

In a preliminary proof-of-concept step, a genome-wide association (GWA) analysis 243 

was performed with the R package SAIGE (Zhou et al., 2018) to test individual variants 244 

for their association with Parkinson’s Disease. 245 

 246 

Polygenic risk score 247 

The data (n = 436) was then split into training (n = 367), validation (n = 33) and test 248 

sets (n = 36). The same sets were used for constructing a polygenic risk score (PRS) 249 

and machine learning prediction models with and without feature selection. To 250 

calculate the PRS, different p value thresholds for the subjects in the training, validation 251 

and test set were used. The PRS was constructed by using PLINK(Purcell et al., 2007) 252 

following the guidelines provided by Choi et al. (Choi et al., 2020) and the 253 

accompanying tutorial (https://choishingwan.github.io/PRS-Tutorial/plink/.) The 254 

clumping cut-off of r2 was 0.1. The p-value threshold was 0.05 for the subjects in the 255 

training, validation, and test sets. The PRS of the subjects in the training set were then 256 

used to train a separate logistic regression classifier using the glm function in R 257 

(www.R-project.org) for each p value threshold. The validation data set was used to 258 

determine which of these thresholds produces the best classifier, which was then used 259 

to predict the test set. 260 

 261 
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Deep learning 262 

The deep learning prediction model was built using a Diet Network according to the 263 

procedure described by Romero et al.. (Romero et al., 2016) The official code can be 264 

found here: https://github.com/adri-romsor/DietNetworks. 265 

 266 

Feature selection 267 

A knowledge graph containing contextual information mined from public databases 268 

such as e.g. dbSNP, ClinVar, OMIM, Reactome, STRING database proposes 100 269 

SNPs and SNP-SNP interactions. The proposed SNPs and SNP-SNP interactions are 270 

evaluated in the training data by drop one model comparison procedure using the glm 271 

function in R (www.R-project.org). (Klinger et al.) A gradient descent algorithm directs 272 

the search across the graph based on whether proposed hypotheses are correlated 273 

with the disease status or not and corrects accordingly the SNP and SNP-SNP 274 

interactions list until all members of the list show strong correlation with the disease 275 

status.  276 

 277 

LASSO regression 278 

LASSO regression models were computed by using the glmnet package 279 

(https://glmnet.stanford.edu/index.html for R (www.R-project.org) and its function 280 

cv.glmnet. (Friedman et al., 2010) 281 

 282 
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Figures and Tables 384 

Figure 1385 

 386 

Fig. 1. Our feature selection consists of two complementary modules that are in 387 

feedback with each other. The contextual module uses information mined from the 388 

scientific literature, pathway libraries and protein co-expression data and an evaluation 389 

module that estimates predictive power of a feature based on that contextual 390 

information. The selected features can be used to build prediction models with 391 

standard machine learning algorithms.  392 

  393 
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Figure 2 394 

 395 

Fig. 2. Manhattan plot of negative decadic logarithm of p values for SNPs as 396 

determined by SAIGE analysis. Variants identified by our biotx.ai model are highlighted 397 

in red and green if they increase or decrease disease risk, respectively. Variants 398 

highlighted in orange occur in both protective and risk-enhancing groups of SNPs, 399 

depending on their genotype. Most of these biologically meaningful variants would 400 

have been missed by using a simple p value cutoff. 401 
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Figure 3 403 

 404 

Fig. 3. Receiver operating characteristic (ROC) curves of feature selected machine 405 

learning model (left) and polygenic risk score (right). The AUC of the feature selected 406 

model with 0.85 (95% CI = [0.72; 0.96]) is better than the AUC of the PRS with 0.56 407 

(95% CI = [0.42; 0.81]).  408 

 409 

 410 

411 
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Figure 4 412 

 413 
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Fig. 4. Coefficients determined by our biotx.ai model for SNPs and groups of SNPs. 414 

Negative values (green) indicate protective (combinations of) variants, positive values 415 

(red) mark risk variants. The respective genotypes of each variant are indicated by 416 

one-letter codes of the bases, where the first letter corresponds to the reference allele, 417 

and the second corresponds to the observed, alternative allele. 418 
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Table 1 439 

Tab 1. PPMI GWAS results identified 7 SNPs with a p value < 10-4. Positions and rs 440 

IDs according to Human Genome Reference hg19 (GRCh37). 441 

Ch
r 

Pos SNP ID rs ID Genic Context p value 

1 173266578 imm_1_17
1533201 

rs4916319 TNFSF4 (upstream) 0.000083 

2 209087335 exm22611
59 

rs4675743  0.000046 

5 156376703 exm49891
7 

rs6873053 TIMD4 (downstream) 0.000092 

6 133716974 rs212805 rs212805 EYA4 0.000074 

17 25895033 imm_17_2
2919160 

rs4795747  0.000015 

18 5479093 rs7238186 rs7238186 EPB41L3 (downstream) 0.000007 

19 57909872 exm15132
84 

rs4801478 ZNF548 0.000040 

 442 

 443 

 444 
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 448 
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 450 

 451 

 452 
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Table 2 454 

Tab. 2. Performance comparison of all models.  455 

Method AUC 
[95% CI] 

Accuracy Sensitivity Specificity Youden’
s Index 

PRS 0.56  
[0.42; 0.81] 

0.60 0.62 0.56 0.21 

Deep learning 0.67  
[0.47; 0.83] 

0.60 0.42 0.88 0.29 

LASSO w/ 
feature selection 

0.85  
[0.72; 0.96] 

0.81 0.81 0.80 0.61 

LASSO w/o 
feature selection 

0.51 
[0.39; 0.63] 

0.62 0.87 0.09 0.12 
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Table 3 473 

Tab. 3. PD cases and controls among bearers of the respective genotype combinations 474 

of the identified variants rs3822019 and rs17022452. 475 

Genotype combination cases controls 

rs3822019_TT / rs17022452_GG 0 0 

rs3822019_TT / rs17022452_GA 6 / 100% 0 

rs3822019_TC / rs17022452_GG 2 / 50% 2 / 50% 

rs3822019_TT / - 7 / 100% 0 

- / rs17022452_GG 7 / 87.5% 1 / 12.5% 

rs3822019_TC / rs17022452_GA 27 / 87.1% 4 / 12.9% 

rs3822019_TC / - 68 / 73.9% 24 / 26.1% 

- / rs17022452_GA 66 / 75% 22 / 25% 

- / - 113 / 56.5% 87 / 43.5% 

 476 
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