1 Cognitive profile of mild behavioral impairment in Brain Health Registry participants

- 2 F. Kassam¹, H. Chen PhD¹, R.L. Nosheny PhD², A. McGirr MD PhD³, T. Williams⁴, Nicole Ng,
- 3 Monica Camacho, R.S. Mackin PhD², M.W. Weiner MD⁴, Z. Ismail MD^{1,3*}
- 4
- ⁵ ¹ University of Calgary, Hotchkiss Brain Institute.
- ⁶ ² University of California, San Francisco, Department of Psychiatry.
- 7 ³ University of Calgary, Department of Psychiatry
- ⁸ ⁴University of California, San Francisco, Departments of Radiology and Biomedical Imaging,
- 9 Medicine, Psychiatry, and Neurology
- 10 * Corresponding author:
- 11 Zahinoor Ismail
- 12 3280 Hospital Dr. NW Calgary AB
- 13 Canada T2N 4Z6
- 14 403-210-6900
- 15 <u>ismailz@ucalgary.ca</u>
- 16 Word Count: 2733
- 17 18

19 KEYWORDS

- 20 Mild Behavioral Impairment (MBI), Brain Health Registry, Study Partner, Informant Rated
- 21 Scales, Neuropsychological Testing, Mild Cognitive Impairment (MCI), Neuropsychiatric
- 22 Symptoms (NPS)
- 23

24 **RESEARCH IN CONTEXT**

- 25 Systematic review: The authors searched MEDLINE and Google Scholar for studies linking
- 26 Mild Behavioral Impairment (MBI) and cognition in non-demented older adults. Most studies
- 27 have utilized transformed Neuropsychiatric Inventory scores to assess MBI, and relatively few
- 28 using the novel MBI-checklist (MBI-C), with the largest study using self-report. Exploration of

- 29 informant reports of MBI is important due to impaired insight that may accompany
- 30 neuropsychiatric symptoms.
- 31 Interpretation: Older adults with online, informant reported MBI had poorer performance in
- 32 memory and executive function measured using online neuropsychological testing compared to
- 33 those without MBI. These findings are consistent with the current literature and suggest that the
- 34 MBI-C may serve as a marker for poorer cognitive performance.
- 35 **Future directions:** Our data support the role of online testing of cognition and behavior for risk
- 36 assessment. This approach to evaluate behavior and cognition can be explored further, to
- 37 determine if it is a scalable, online approach to detection of neurodegenerative disease.

38

- 40
- 41
- 42

43 Abstract

44

45 **<u>INTRODUCTION</u>**: Dementia assessment includes cognitive and behavioral testing with

46 informant validation. Conventional testing is resource intensive, with uneven access. Online

47 unsupervised assessments could reduce barriers to risk assessment. We interrogated the

48 relationship between informant-rated behavioral changes and neuropsychological test

- 49 performance in older adults in the Brain Health Registry.
- 50

51 **METHODS:** Participants completed online unsupervised cognitive tests, and informants

52 completed the Mild Behavioral Impairment Checklist via a Study Partner portal. Cognitive

53 performance was evaluated in MBI+/- individuals, as was the association between cognitive

- 54 scores and MBI symptom severity.
- 55

56 **<u>RESULTS</u>**: Mean age of the 499 participants was 67, 61% of which were female. MBI+

57 participants had lower working memory and executive function test scores. Lower cognitive test

58 scores associated with greater MBI burden.

- 59
- 60 **<u>DISCUSSION</u>**: Our findings support the feasibility of remote, informant-reported behavioral
- 61 assessment and support its validity by demonstrating a relationship to cognitive test performance
- 62 using online unsupervised assessments for dementia risk assessment.
- 63

65 1. Background

Access to dementia assessments is uneven in North America and across the world. This disparity 66 67 has important clinical repercussions, particularly in regions where specialized resources are 68 limited, and identification is delayed until later manifestations. The development of unsupervised 69 platforms that do not require highly trained administrators may resolve this dual impasse and 70 improve clinical outcomes. Moreover, they may create a low-cost recruitment infrastructure for 71 early intervention trials, where no disease-modifying drug in Alzheimer's disease (AD) has met 72 all primary endpoints^{1,2} in part due to poor recruitment of individuals without overt impairment or who are in the earliest stages of disease^{3,4}. Advances in online services open the possibility of 73 74 assessment portals in any region with an internet connection, for any individual with access to 75 the internet and a computing device. Moreover, cognitive tests have been computerized and can 76 be delivered without an administrator, and with convergent validity with those administered in tertiary cognitive assessment centers⁵⁻⁹. 77

78

79 The addition of behavioral assessments to online platforms may provide additional relevant 80 information. Neuropsychiatric symptoms (NPS) such as agitation, anxiety, apathy, depression, 81 and psychosis are considered core features of dementia and are associated with poorer patient 82 outcomes¹⁰. However, NPS can often precede cognitive symptoms, including in 30% of those who develop AD¹¹. Mild behavioral impairment (MBI) is a pre-dementia neurobehavioral 83 84 syndrome characterized by the *de novo* emergence and persistence of NPS in older adults 85 representing a change from longstanding patterns of behavior¹². MBI is associated with amyloid, tau, and neurodegeneration¹³⁻¹⁹, and a greater risk of incident cognitive decline and dementia²⁰⁻²⁶. 86 87 Incorporating MBI into screening may provide a complementary approach to early detection⁴.

88	However, informant information is often required to validate the syndrome, and structured
89	assessment tools suitable for widespread dissemination through unsupervised platforms have
90	only recently been developed. The Mild Behavioral Impairment Checklist (MBI-C) incorporates
91	informant information and is the validated case ascertainment instrument developed specifically
92	to capture MBI in accordance with the criteria developed by the International Society to Advance
93	Alzheimer's Research and Treatment-Alzheimer's Association (ISTAART-AA) ²⁷⁻³⁰ . Translated
94	into over 20 languages, the MBI-C may also allow a broader reach for obtaining online
95	informant reports of behavioral change.
96	
97	The aim of this study was to investigate informant-based MBI in an online unsupervised
98	platform, the Brain Health Registry (BHR), capable of assessing early dementia risk markers ³¹ .
99	We determined the utility of the BHR for converging assessments of cognitive and behavioral
100	symptoms using neuropsychological testing and informant-reported MBI-C. We hypothesized
101	that participants with MBI+ status would have poorer cognitive performance measured by the
102	Lumos test battery. We further hypothesized that individuals with poorer memory, executive
103	function, processing speed, and inhibitory control would have a higher burden of MBI
104	symptoms.
105	
106	2. <u>Methods</u>
107	2.1 Brain Health Registry
108	The BHR ³¹ is an internet-based public registry and cohort that recruits participants using a
109	variety of methods including a website, social media, brochures, and online advertising. All
110	participants are required to give informed consent with an online consent form. Upon completion

111	of the consent form, participants may complete questionnaires regarding personal and family
112	medical history, early childhood history, sleep quality, diet, quality of life scales, psychiatric
113	symptomatology, as well as online cognitive testing via Lumosity ³² , CogState ³³ , or Memtrax ³⁴
114	tests. Additionally, study partners of BHR participants can register on the BHR study partner
115	portal, on which informant-rated measures are completed ³⁵ .
116	
117	2.2 Study Participants
118	Participants were included if: 1) Lumosity cognitive tests were completed; and 2) their informant
119	completed the MBI-C via the BHR study partner portal within a year of the cognitive tests.
120	Participants were excluded if they reported: 1) developmental or learning disorders; 2)
121	neurological conditions such as movement disorders, multiple sclerosis, traumatic brain injury;
122	3) current or past psychiatric diagnoses including schizophrenia, major mood or anxiety
123	disorders, or PTSD.
124	
125	2.3 Study Variables
126	2.3.1 Lumosity online Forward Memory Span
127	The assessment of Forward Memory Span is based on the Corsi block-tapping tasks ³⁶ . The
128	participant is asked to recall the sequence of circles in the same order it was presented. The
129	length of the sequence increases by one every two trials. The session comes to an end when the
130	participant records two incorrect answers at the same span level. This task is used as a measure
131	of visual short-term memory and attention.
132	
133	2.3.2 Lumosity online Reverse Memory Span

The Reverse Memory Span task is a slightly altered version of the original Corsi block-tapping tasks. It is identical to the forward visual memory span assessment, with the exception that the participant is asked to recall the sequence of circles in the reverse order. This reverse task is used as a measure of visual working memory and attention.

138

139 2.3.3 Lumosity online Trail Making Test B

140 In Trail Making Test (TMT) B, blue circles (numbered 1 to 12) and capital letters (A to L) are 141 arranged in 6 possible layouts with non-overlapping spatial locations. The participant must 142 alternate between numbers and letters for this task, clicking in increasing order. When the blue 143 circle is clicked, it turns orange and a straight line appears to connect the circles. The timer for 144 the task begins when the participants clicks the first circle. If the participant records an incorrect 145 click, an X appears on their screen and they are required to go back to the previous circle. For 146 this study, we included the response time and number of errors as measures of processing speed 147 attention and sequencing ability.

148

149 2.3.4 Lumosity online Go/No-Go

In the Go/No-Go assessment, participants are presented with target pictures and distractor stimuli. The target picture is chosen from a set of photos of fruit. Each stimulus appears after a random delay between 1000 and 3000 ms to discourage anticipatory responding. The participant is instructed to respond as quickly as possible within 1500ms. The assessment ends when a participant responds to ten "Go" trials. If the participant submits three incorrect responses (responding to "no-go" or failing to respond to "go"), the participant will restart the task. The

- 156 participant is given feedback on timing and correctness. This assessment is used to measure
- 157 response inhibition and speed of information processing.
- 158
- 159 2.3.5 Mild Behavioral Impairment Checklist

160 The MBI-C is included in the BHR study partner portal and is therefore completed by an

161 informant. The MBI-C is explicit that symptoms are *de novo* in later life, represent a change

162 from longstanding patterns of behavior, and are persistent for at least six months. The MBI-C

163 consists of questions in the five MBI domains of apathy, mood and anxiety, agitation and

164 impulsivity, impaired social cognition, and psychosis, with items geared towards capturing NPS

165 in community dwelling, functionally independent, non-demented older adults. The scale takes

166 ~7-8 minutes to complete, consisting of 34 questions; scoring is from 0-3, representing absent,

167 mild, moderate, and severe changes, with a total score range of $0-102^{28}$.

168

169 2.4 Statistical Analysis

170 Continuous demographic variables (age and years of education) were analyzed using 171 independent sample t-tests to compare MBI+ and MBI- groups; sex distribution between the two 172 groups was analyzed using chi-square tests. MBI-C was dichotomized based on a validation in 173 primary care non-demented older adults in which scores of >7 differentiated MBI+ from MBIwith a sensitivity of 0.93, specificity of 0.76 and AUC of 0.93³⁷. As exploratory analyses, 174 175 cutpoints of >5 and >6 were also analyzed. Univariate Analysis of Covariance (ANCOVA) was 176 used to compare performance on Lumosity cognitive tests between MBI+ and MBI- groups, 177 covarying for age, sex, education, and neuropsychological and neurobehavioral assessment 178 interval. Skewed data were log-transformed, however the TMT response time variable was

179	analyzed with a negative binomial regression due a skewed distribution with an
180	overrepresentation of zeros. For Go/No-Go errors, ordinal logistic regression was performed
181	because the response variable only had three possible values: 0, 1, and 2.
182	Additionally, negative binomial regressions were fitted to assess Lumosity task
183	prediction of MBI-C total scores. Negative binomial regression is preferred when the data are
184	skewed, as in this sample where the mode on the MBI-C is zero indicating no emergent and
185	persistent NPS. Lumosity task measures as continuous scores were the independent variables in
186	these models. The covariates included were age, sex, education, and neuropsychological and
187	neurobehavioral assessment interval. The p values for Lumosity task measures were calculated
188	using likelihood ratio tests.
189	Statistical analyses were performed using SPSS v26 and R 3.6.2.
190	
190 191	<u>3 Results</u>
	<u>3 Results</u> Participant selection is described in Figure 1. The final sample included 499 participants with a
191	
191 192	Participant selection is described in Figure 1. The final sample included 499 participants with a
191 192 193	Participant selection is described in Figure 1. The final sample included 499 participants with a mean age of 67 (SD 10.4), of which 308/499 were females (61%) (Table 1). The number of
191 192 193 194	Participant selection is described in Figure 1. The final sample included 499 participants with a mean age of 67 (SD 10.4), of which 308/499 were females (61%) (Table 1). The number of MBI+ participants was 31 (6.2%) (Figure 1). A significantly greater number of men were
191 192 193 194 195	Participant selection is described in Figure 1. The final sample included 499 participants with a mean age of 67 (SD 10.4), of which 308/499 were females (61%) (Table 1). The number of MBI+ participants was 31 (6.2%) (Figure 1). A significantly greater number of men were classified as MBI+ (64%, p=0.002). MBI+ participants had significantly poorer forward memory
191 192 193 194 195 196	Participant selection is described in Figure 1. The final sample included 499 participants with a mean age of 67 (SD 10.4), of which 308/499 were females (61%) (Table 1). The number of MBI+ participants was 31 (6.2%) (Figure 1). A significantly greater number of men were classified as MBI+ (64%, p=0.002). MBI+ participants had significantly poorer forward memory span (mean sequence length of 4.68 vs. 5.26, p=0.005; Figure 2a), poorer reverse memory span
191 192 193 194 195 196 197	Participant selection is described in Figure 1. The final sample included 499 participants with a mean age of 67 (SD 10.4), of which 308/499 were females (61%) (Table 1). The number of MBI+ participants was 31 (6.2%) (Figure 1). A significantly greater number of men were classified as MBI+ (64%, p=0.002). MBI+ participants had significantly poorer forward memory span (mean sequence length of 4.68 vs. 5.26, p=0.005; Figure 2a), poorer reverse memory span (3.81 vs. 4.85, p<0.0001; Figure 2b), more TMT errors (4.29 vs. 1.85, p=0.01; Figure 2c), and
191 192 193 194 195 196 197 198	Participant selection is described in Figure 1. The final sample included 499 participants with a mean age of 67 (SD 10.4), of which 308/499 were females (61%) (Table 1). The number of MBI+ participants was 31 (6.2%) (Figure 1). A significantly greater number of men were classified as MBI+ (64%, p=0.002). MBI+ participants had significantly poorer forward memory span (mean sequence length of 4.68 vs. 5.26, p=0.005; Figure 2a), poorer reverse memory span (3.81 vs. 4.85, p<0.0001; Figure 2b), more TMT errors (4.29 vs. 1.85, p=0.01; Figure 2c), and longer TMT completion time (67.67 vs. 45.08 seconds, p<0.0001; Figure 2d). MBI was not

202	span (0.20), f	followed by TMT	response time	(0.20), memory	span (0.13) , and	I TMT accuracy
-----	----------------	-----------------	---------------	----------------	---------------------	----------------

- 203 (0.11). See Tables 2-4 for statistical reporting. Analyses using cutpoints of >5 and >6 for MBI-C
- show very similar results and are included in supplemental tables (Supplemental tables 1-6).
- 205 Negative binomial regressions utilizing Lumosity scores to predict MBI score determined

that worse memory span ($X^2(1, N=499)=6.6, p=0.01$), worse reverse memory span $X^2(1, N=499)=6.6$, p=0.01), p=0.01), worse reverse memory span $X^2(1, N=499)=6.6$, p=0.01), p=0.01),

207 N=498)=5.4, (p= 0.02), more TMT errors ($X^2(1, N=499)=5.8, p=0.02$) and longer TMT response

time ($X^2(1, N=499)=9.6, p=0.002$) were all associated with higher MBI-C total scores. Go/No-

209 Go errors ($X^2(1, N=497)=0.16$, p=0.69) and Go/No-Go response time ($X^2(1, N=497)=0.97$,

- 210 p=0.33) were not associated with MBI-C score (Table 5).
- 211

212 <u>4 Discussion</u>

213 In a sample of 499 participant dyads in BHR, we demonstrated the feasibility of delivering

214 unsupervised online assessments of behavioral and cognitive markers of dementia risk. Utilizing

215 the validated cut off score of >7 on the MBI-C, MBI+ status was associated with significant

216 differences in memory and executive function, measured using memory span, reverse memory

217 span, TMT errors and TMT speed. Further, significant associations were found between poorer

218 objectively measured cognitive performance, in the domains of memory and executive function,

and MBI symptom severity. Effect sizes were small, ranging from 0.11-0.20. The findings do

suggest that a simple informant reported behavioral measure completed via an online portal

221 might be a relevant addition to neuropsychological testing, warranting further study in BHR. In

- 222 other work, MBI+ status has demonstrated significant and meaningful associations with incident
- 223 cognitive decline and dementia across several studies, settings, and populations²⁰⁻²⁶. Thus, while

convergent with tests of memory and executive function, behavioral and cognitive markers ofrisk may be distinct, potentially offering complementary measures of risk.

226

227 Our data indicate that the BHR is an effective platform to conduct remote assessments of 228 cognitive functioning with convergence of behavioral and cognitive tests. Poorer performance on 229 unsupervised online neuropsychological testing has been associated with self-report MCI and 230 AD⁸. Online participant testing is an efficient and reliable tool for neuropsychological testing, 231 which can identify performance decrements in executive dysfunction and memory³². Similarly, 232 online informant reports such as those collected in the BHR study partner portal are valuable and 233 informative. Online study-partner reported cognitive decline is comparable to data collected in 234 clinic, is associated with objectively defined participant cognition³⁵, and is associated with 235 amyloid, clinical diagnosis of dementia due to AD, and in-clinic cognitive screening test scores⁵. 236 In our study, online informant-reported behavioral symptoms associated with differences in 237 memory and executive function collected via the participant portal. This harmonized utilization 238 of participant and study partner portals is effective and can allow continuation of research 239 activities even during trying times such as the recent pandemic, where consistent in person visits 240 between clinicians and patients were not feasible. Although the COVID-19 pandemic has 241 highlighted the need for alternative infrastructure to allow continued care, the tools that have 242 been developed may permit the assessment of older adults who for physical, social, or cognitive 243 reasons could not previously access care. This approach also allows outreach to areas less 244 accessible to academic centers.

245

246 The cognitive domain differences detected with the MBI-C include memory and executive 247 function, which are relevant and important for AD risk³⁸. Early decline in memory and executive 248 function has been shown to be associated with the preclinical disease process, thus, early 249 detection of reductions in cognitive functioning may be useful in identifying populations at 250 risk^{39,40}. Both memory and executive function are important endpoints in AD trials⁴¹. 251 Longitudinal cohorts have demonstrated that an acceleration of decline in memory performance 252 occurs 3-4 years before a diagnosis of MCI and 7 years before a diagnosis of AD, while for 253 executive function an accelerated decline occurs 2-3 years before AD diagnosis^{42,43}. The finding 254 of small but significant associations between MBI and poorer memory and executive function performance is consistent with the evolving description of the cognitive profile of MBI⁴⁴⁻⁴⁶. 255 256 These findings are consistent with a previous study using the UK online PROTECT study portal 257 in which self-reported MBI, measured with the MBI-C, was associated with faster decline in 258 attention and working memory at one year in older adults with normal cognition²⁰. A subsequent 259 analysis of cognitively normal PROTECT participants, with a median follow up time of 3 years, 260 demonstrated an association between baseline informant-reported MBI+ status and decline in measures of working memory and fluid intelligence²⁶. In an overlapping sample, AD genetic risk 261 262 was determined using polygenic risk scores. AD genetic risk was associated with worse 263 cognition in the informant-reported MBI+ group but not in the MBI- group. The strongest association was in those with more severe MBI, aged $\geq 65^{47}$. These convergent findings support 264 265 leveraging online cognitive and behavioral measures to explore dementia risk. In a recent study 266 of National Alzheimer Coordinating Center data, the combination of informant-reported MBI 267 and subjective cognitive decline (SCD) had a greater risk of incident cognitive and functional 268 decline at three years compared to either MBI or SCD alone²⁴. Further, in a subsequent study,

those with SCD and MBI together had a shorter median time to incident MCI compared to those with SCD in the absence of MBI⁴⁸. Taken together the results suggest that individuals with subtle neuropsychological test score differences and MBI together may be at higher risk for cognitive and functional decline.

273

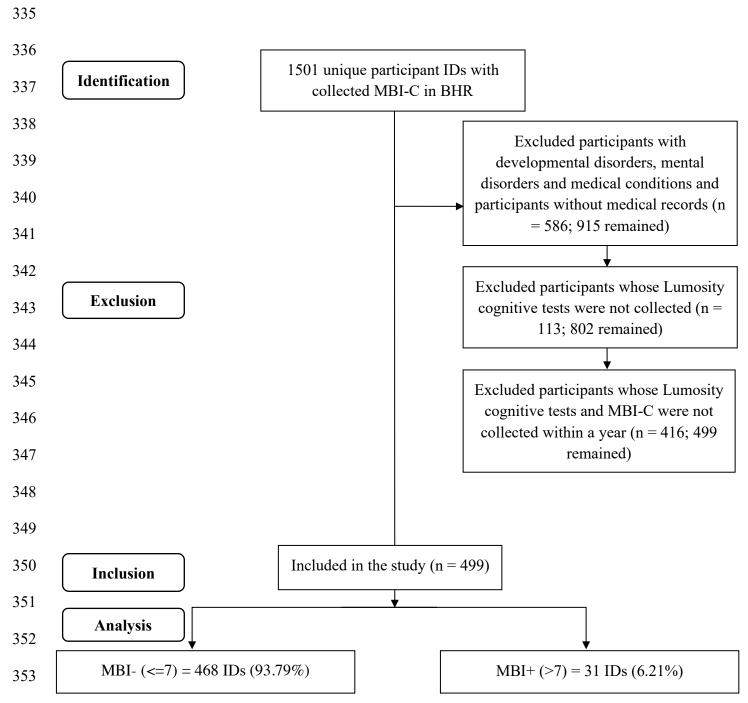
As the case ascertainment instrument developed to measure MBI in accordance with the
ISTAART-AA MBI criteria, the MBI-C was designed to: 1) operationalize the MBI concept; 2)
measure a selected list of NPS which may help identify preclinical or prodromal dementia; and
predict risk of several dementias²⁸. This instrument has been validated in an online cohort of
cognitively normal older adults²⁷, a primary care sample with SCD²⁹ or MCI⁴⁹, and a cognitive
neurology clinic population with SCD and MCI⁵⁰.

280

281 However, limitations in our study may affect interpretation and generalizability. These 282 limitations include high education levels and restriction to participants and study-partners who 283 can successfully complete tasks online³⁵. Since the BHR is an online self-report database, the 284 lack of a clinical diagnosis within the sample group is a potential source of error. BHR 285 participants may have undiagnosed and/or unreported neurodegenerative disease or psychiatric 286 disorders, which may be associated with greater MBI score. While online cognitive testing has been validated^{8,33}, further research is needed, given the lack of supervision or control for test 287 288 environment, external factors, distractors, or cues. Further, we were not able to control for 289 important disease related factors such as severity and time since symptom onset. Although MBI 290 was associated with statistically significant differences in Lumosity neuropsychological test 291 scores, effect sizes were small, and the clinical significance of these differences is difficult to

interpret in the largely cognitively healthy population enrolled in BHR. Our data are promising
but not conclusive, and further research is required. Whether these small differences in cognitive
test scores represent greater risk for incident cognitive decline and dementia can be addressed in
the future using longitudinal data and a cohort that includes participants with cognitive
impairment.

In summary, in this BHR study combining self- and informant-rated measures, we observed the convergence of behavioral risk markers for dementia and cognitive differences, reflected by neuropsychological tests incorporating memory and executive function. The findings lend additional support to online unsupervised administration of cognitive and neuropsychiatric measures, as a low-cost approach to improve access to neurocognitive assessments, potentially identifying at-risk older adults.


304

305 Acknowledgements

Data used in this study were collected using the BHR, which is funded by the NIH, Alzheimer's
Association, Alzheimer's Drug Discovery Foundation, California Department of Public Health,
Connie and Kevin Shanahan, The Drew Foundation, General Electric, Global Alzheimer's
Platform Foundation, Larry L. Hillbolm Foundation, The Ray and Dagmar Dolby Family Fund,
The Rosenberg Alzheimer's Project and Patient-Centered Outcomes Research Institute.
FK, HC, AW, TW have no interests to declare. ZI is funded by the Canadian Institutes of Health
Research, and has received consulting fees/honoraria from Otsuka/Lundbeck, outside the

314 submitted work. His institution has received funds from Acadia, Biogen, Roche, and Sunovion,

315	also outside the submitted work. RLN is a co-investigator for the BHR. RSM has received grant
316	funding from the National Institute of Mental Health and has received research support from
317	Johnson & Johnson. MWW receives support for his work from the following: National Institute
318	of Health, Department of Defense, Patient-Centered Outcomes Research Institute, California
319	Department of Public Health, University of Michigan, Siemens, Biogen, Larry L. Hillbolm
320	Foundation, Alzheimer's Association, The State of California, Johnson & Johnson, Kevin and
321	Connie Shanahan, GE, Vrije Universiteit Medical Center Amsterdam, Australian Catholic
322	University, The Stroke Foundation and the Veterans Administration. He has served on the
323	Advisory Boards for Eli Lilly, Cerecin/Accera, Roche, Alzheon, Inc., and BHR.
324	
325	HIGHLIGHTS
326	• Online portals for older adults and study partners can be used for dementia risk
327	assessment
328	• This approach is useful when in-person assessments are not feasible (physical, social,
329	cognitive or health systems-realted (e.g., the COVID-19 pandemic))
330	• The relationship between mild behavioral impairment (MBI) and cognition in older
331	adults was explored
332	• MBI was associated with small magnitude, but significantly poorer performance in
333	memory and executive function, and may serve as a complementary measure of risk
334	

361 Table 1. Summary statistics for demographics

<i>Cutpoint of MBI-C > 7</i>				
	MBI+ (n=31)	MBI- (n=468)	Test Statistic	р
Average Age	69.52	67.11	<i>t</i> (497)=1 .25	.213
Average Estimated Years of Education	17.58	17.14	<i>t</i> (497)=1 .13	.260
Number of Females	11	297		
Percentage of Female	35.48%	63.46%	χ ² =9.63	.002

364 Table 2. Summary statistics for Lumosity tasks (ANCOVA)

						Partial η ²	
Cognitive Measures	Mean (MBI+)	Mean (MBI-)	F	df within	df between	(effect size)	P Value
<i>Cutpoint of MBI-C > 7</i>							
Memory Span	4.68	5.26	8.11	1	493	0.016 (0.13)	0.0046
Reverse Memory Span	3.81	4.85	20.06	1	492	0.039 (0.20)	< 0.0001
Trailmaking Errors	4.29	1.85	6.81	1	493	0.014 (0.11)	0.0093
Trailmaking Response Time (log transformed)	67.67	45.08	19.40	1	493	0.038 (0.20)	< 0.0001
Go/No-Go Errors	0.71	0.64	0.04	1	491	0.000 (0.01)	0.8386
Go/No-Go Response Time	496.42	473.87	1.98	1	491	0.004 (0.06)	0.1604

372 Table 3. Summary statistics for using MBI-C status (Cutpoint of 7) to predict Trail Making

373 Errors (Negative Binomial Regression)

Outcome	Beta ¹	95% CI	X^2	<i>p</i> value
Trail Making Errors	137.5%	+13.1% to +484.0%	5.312	0.0212
1 - 001 1		1 1 22	•	14 3 6 4 1

¹Beta coefficients represent the estimate percent difference in Trail Making errors associated
 with

376 status

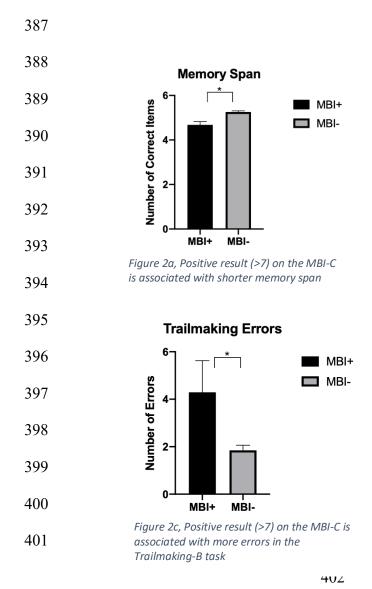
377

Table 4. Summary statistics for using MBI-C status (Cutpoint of 7) to predict Go/No-Go Errors (Ordinal Logistic Regression)

Outcome	Odds Ratio	95% CI	<i>p</i> value
GoNoGo Errors	1.058	0.517 to 2.121	0.875

380

Table 5. Summary statistics for Lumosity tasks predicting MBI-C total score


Predictor	Beta	95% CI	X^2	<i>p</i> value
Memory Span	-26.2%	-41.8% to -7.1%	6.6513	0.0099
Reverse Memory Span	-15.7%	-27.7% to -2.6%	5.3765	0.0204
Trail Making Errors	5.3%	+0.9% to +11.2%	5.8059	0.0160
Trail Making Response Time	0.0012%	+0.0004% to +0.0023%	9.6268	0.0019
GoNoGo Errors	-6.2%	-31.0% to +29.0%	0.1594	0.6897
GoNoGo Response Time	0.1%	-0.2% to +0.5%	0.9678	0.3252

³⁸²¹Beta coefficients represent the estimate percent difference in total MBI-C score given one unit

383 change in Lumosity task measure.

384

385

GoNoGo Errors

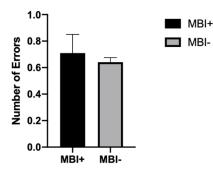


Figure 2e, Positive result (>7) on the MBI-C is not associated with the number of errors on a GoNoGo task Reverse Memory Span

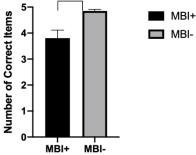


Figure 2b, Positive result (>7) on the MBI-C is associated with shorter reverse memory span

Trailmaking Response Time

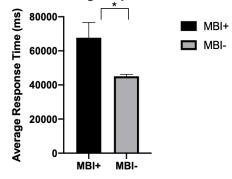


Figure 2d, Positive result (>7) on the MBI-C is associated with longer response time in Trailmaking-B task

GoNoGo Response Time

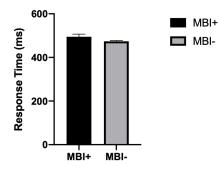


Figure 2f, Positive result (>7) on the MBI-C is not associated with the response time on a GoNoGo task

410	Refere	nces:
411	1.	Marsden G, Mestre-Ferrandiz J. Dementia: The R&D Landscape. 2015.
412	2.	Cummings J, Reiber C, Kumar P. The price of progress: Funding and financing
413		Alzheimer's disease drug development. Alzheimer's & Dementia: Translational Research
414		& Clinical Interventions. 2018;4:330-343.
415	3.	Gauthier S, Albert M, Fox N, et al. Why has therapy development for dementia failed in
416		the last two decades? Alzheimers & Dementia. 2016;12(1):60-64.
417	4.	Mortby ME, Black SE, Gauthier S, et al. Dementia clinical trial implications of Mild
418		Behavioral Impairment. Int Psychogeriatr. 2018;30(2):171-175.
419	5.	Nosheny RL, Camacho MR, Jin C, et al. Validation of online functional measures in
420		cognitively impaired older adults. <i>Alzheimer's & Dementia</i> . 2020;16(10):1426-1437.
421	6.	Brooker H, Williams G, Hampshire A, et al. FLAME: A computerized
422		neuropsychological composite for trials in early dementia. Alzheimers Dement (Amst).
423		2020;12(1):e12098.
424	7.	Papp KV, Rentz DM, Maruff P, et al. The computerized cognitive composite (c3) in a4,
425		an alzheimer's disease secondary prevention trial. The journal of prevention of
426		<i>Alzheimer's disease.</i> 2021;8(1):59-67.
427	8.	Mackin RS, Insel PS, Truran D, et al. Unsupervised online neuropsychological test
428		performance for individuals with mild cognitive impairment and dementia: results from
429		the Brain Health Registry. Alzheimers Dement (Amst). 2018;10:573-582.
430	9.	Perin S, Buckley RF, Pase MP, et al. Unsupervised assessment of cognition in the
431		Healthy Brain Project: Implications for web-based registries of individuals at risk for
432		Alzheimer's disease. Alzheimer's & Dementia: Translational Research & Clinical
433		Interventions. 2020;6(1):e12043.
434	10.	Lanctôt KL, Amatniek J, Ancoli-Israel S, et al. Neuropsychiatric signs and symptoms of
435		Alzheimer's disease: New treatment paradigms. Alzheimer's & Dementia: Translational
436		Research & Clinical Interventions. 2017;3:440-449.
437	11.	Wise EA, Rosenberg PB, Lyketsos CG, Leoutsakos J-M. Time course of
438		neuropsychiatric symptoms and cognitive diagnosis in National Alzheimer's
439		Coordinating Centers volunteers. Alzheimers Dement (Amst). 2019;11:333-339.
440	12.	Ismail Z, Smith EE, Geda Y, et al. Neuropsychiatric symptoms as early manifestations of
441		emergent dementia: provisional diagnostic criteria for mild behavioral impairment.
442		Alzheimer's & Dementia. 2016;12(2):195-202.
443	13.	Andrews SJ, Ismail Z, Anstey KJ, Mortby M. Association of Alzheimer's genetic loci
444		with mild behavioral impairment. Am J Med Genet B Neuropsychiatr Genet.
445		2018;177(8):727-735.
446	14.	Creese B, Brooker H, Aarsland D, Corbett A, Ballard C, Ismail Z. Genetic risk for
447		Alzheimer disease, cognition and Mild Behavioral Impairment in healthy older adults.
448		Alzheimer's & Dementia: DADM. 2021; in press:2020.2005.2013.20100800.
449	15.	Johansson M, Stomrud E, Insel P, et al. Mild Behavioral Impairment and its relation to
450		tau pathology in preclinical Alzheimer's disease. <i>Transl Psychiatry</i> . 2021;11(76).
451	16.	Lussier FZ, Pascoal TA, Chamoun M, et al. Mild behavioral impairment is associated
452		with β -amyloid but not tau or neurodegeneration in cognitively intact elderly individuals.
453		Alzheimer's & Dementia. 2020;16:192-199.
454	17.	Naude J, Gill S, Hu S, et al. Plasma Neurofilament Light: a marker of cognitive decline in
455		Mild Behavioural Impairment. J Alzheimers Dis. 2020;76(3):1017-1027.

456	18.	Gill S, Wang M, Mouches P, et al. Neural Correlates of the Impulse Dyscontrol Domain
457		of Mild Behavioral Impairment. Int J Geriatr Psychiatry. 2021; in press.
458	19.	Matuskova V, Ismail Z, Nikolai T, et al. Mild behavioral impairment is associated with
459		atrophy of entorhinal cortex and hippocampus in a memory clinic cohort. Frontiers in
460		Aging Neuroscience. 2021;13:236.
461	20.	Creese B, Brooker H, Ismail Z, et al. Mild Behavioral Impairment as a Marker of
462		Cognitive Decline in Cognitively Normal Older Adults. The American Journal of
463		Geriatric Psychiatry. 2019;27(8):823-834.
464	21.	Gill S, Mouches P, Hu S, et al. Using Machine Learning to Predict Dementia from
465		Neuropsychiatric Symptom and Neuroimaging Data. J Alzheimers Dis. 2020;75(1):277-
466		288.
467	22.	Matsuoka T, Ismail Z, Narumoto J. Prevalence of mild behavioral impairment and risk of
468		dementia in a psychiatric outpatient clinic. J Alzheimers Dis. 2019;70(2):505-513.
469	23.	Taragano FE, Allegri RF, Heisecke SL, et al. Risk of Conversion to Dementia in a Mild
470		Behavioral Impairment Group Compared to a Psychiatric Group and to a Mild Cognitive
471		Impairment Group. J Alzheimers Dis. 2018;62:227-238.
472	24.	Ismail Z, McGirr A, Gill S, Hu S, Forkert ND, Smith EE. Mild Behavioral Impairment
473		and Subjective Cognitive Decline predict Cognitive and Functional Decline. J Alzheimers
474		Dis. 2021;80:459-469.
475	25.	Tsunoda K, Yamashita T, Osakada Y, et al. Positive baseline behavioral and
476		psychological symptoms of dementia predict a subsequent cognitive impairment in
477		cognitively normal population. <i>Neurology and Clinical Neuroscience</i> . 2021.
478	26.	Wolfova K, Creese B, Aarsland D, et al. Sex differences in the association of mild
479		behavioral impairment with cognitive aging. medRxiv. 2021.
480	27.	Creese B, Griffiths A, Brooker H, et al. Profile of mild behavioral impairment and factor
481		structure of the mild behavioral impairment checklist in cognitively normal older adults.
482		Int Psychogeriatr. 2020;32(6):705-717.
483	28.	Ismail Z, Aguera-Ortiz L, Brodaty H, et al. The Mild Behavioral Impairment Checklist
484		(MBI-C): A Rating Scale for Neuropsychiatric Symptoms in Pre- Dementia Populations.
485		Journal of Alzheimers Disease. 2017;56(3):929-938.
486	29.	Mallo SC, Ismail Z, Pereiro AX, et al. Assessing mild behavioral impairment with the
487		mild behavioral impairment checklist in people with subjective cognitive decline. Int
488		<i>Psychogeriatr.</i> 2019;31(2):231-239.
489	30.	Saari T, Smith EE, Ismail Z. Network analysis of impulse dyscontrol in mild cognitive
490		impairment and subjective cognitive decline. Int Psychogeriatr. 2021:1-10.
491	31.	Weiner MW, Nosheny R, Camacho M, et al. The Brain Health Registry: An internet-
492		based platform for recruitment, assessment, and longitudinal monitoring of participants
493		for neuroscience studies. Alzheimer's & Dementia. 2018;14(8):1063-1076.
494	32.	Morrison GE, Simone CM, Ng NF, Hardy JL. Reliability and validity of the
495		NeuroCognitive Performance Test, a web-based neuropsychological assessment. Front
496		<i>Psychol.</i> 2015;6:1652.
497	33.	Lim YY, Pietrzak RH, Bourgeat P, et al. Relationships between performance on the
498		Cogstate Brief Battery, neurodegeneration, and $A\beta$ accumulation in cognitively normal
499		older adults and adults with MCI. Arch Clin Neuropsychol. 2015;30(1):49-58.
500	34.	Ashford JW, Gere E, Bayley PJ. Measuring memory in large group settings using a
501		continuous recognition test. J Alzheimers Dis. 2011;27(4):885-895.

502	35.	Nosheny RL, Camacho MR, Insel PS, et al. Online study partner-reported cognitive
503		decline in the Brain Health Registry. Alzheimer's & Dementia: Translational Research &
504		Clinical Interventions. 2018;4:565-574.
505	36.	Milner B. Interhemispheric differences in the localization of psychological processes in
506		man. Br Med Bull. 1971.
507	37.	Mallo SC, Pereiro AX, Ismail Z, et al. Mild Behavioral Impairment Checklist (MBI-C):
508		A Preliminary Validation Study. Alzheimers Dement. 2018;14(7 supplement).
509	38.	Wilson RS, Leurgans SE, Boyle PA, Bennett DA. Cognitive decline in prodromal
510		Alzheimer disease and mild cognitive impairment. Arch Neurol. 2011;68(3):351-356.
511	39.	Nagata T, Shinagawa S, Ochiai Y, et al. Association between executive dysfunction and
512	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	hippocampal volume in Alzheimer's disease. <i>Int Psychogeriatr.</i> 2011;23(5):764-771.
513	40.	Almkvist O, Basun H, Bäckman L, et al. Mild cognitive impairment—an early stage of
514	10.	Alzheimer's disease? In: Alzheimer's Disease—From Basic Research to Clinical
515		Applications. Springer; 1998:21-29.
516	41.	Vellas B, Andrieu S, Sampaio C, Coley N, Wilcock G. Endpoints for trials in Alzheimer's
517	11.	disease: a European task force consensus. <i>The Lancet Neurology</i> . 2008;7(5):436-450.
518	42.	Mistridis P, Krumm S, Monsch AU, Berres M, Taylor KI. The 12 years preceding mild
519	72.	cognitive impairment due to Alzheimer's disease: the temporal emergence of cognitive
520		decline. J Alzheimers Dis. 2015;48(4):1095-1107.
520	43.	Grober E, Hall CB, Lipton RB, Zonderman AB, Resnick SM, Kawas C. Memory
522	ч.Э.	impairment, executive dysfunction, and intellectual decline in preclinical Alzheimer's
523		disease. J Int Neuropsychol Soc. 2008;14(2):266-278.
525	44.	Rouse HJ, Small BJ, Schinka JA, Loewenstein DA, Duara R, Potter H. Mild behavioral
525	44.	impairment as a predictor of cognitive functioning in older adults. <i>Int Psychogeriatr.</i>
526		2020:1-9.
520 527	45.	Yoon E, Ismail Z, Hanganu A, et al. Mild Behavioral Impairment is linked to worse
528	45.	cognition and brain atrophy in Parkinson's disease. <i>Neurology</i> . 2019;93(8):e766-e777.
528 529	46.	
530	40.	Wong F, Ng KP, Yatawara C, Low A, Ismail Z, Kandiah N. Characterising mild
530 531		behavioural impairment in Asian mild cognitive impairment and cognitively normal individuals: Neuropsychiatry and behavioral neurology: Neuropsychiatric symptoms in
		MCI and dementia. <i>Alzheimer's & Dementia</i> . 2020;16:e045059.
532 533	17	
	47.	Creese B, Arathimos R, Brooker H, et al. Genetic risk for Alzheimer's disease, cognition,
534 525		and mild behavioral impairment in healthy older adults. <i>Alzheimers Dement (Amst)</i> .
535	10	2021;13(1):e12164.
536	48.	Nathan S, Gill S, Ismail Z. APOE ɛ4 status in pre-dementia risk states, mild behavioural
537		impairment and subjective cognitive decline, and the risk of incident cognitive decline.
538	40	Paper presented at: 2020 Alzheimer's Association International Conference2020.
539	49.	Mallo SC, Ismail Z, Pereiro AX, et al. Assessing mild behavioral impairment with the
540		Mild behavioral impairment-checklist in people with mild cognitive impairment. J
541	50	<i>Alzheimers Dis.</i> 2018;66(1):83-95.
542	50.	Hu S, Patten SB, Fick G, Smith EE, Ismail Z. VALIDATION OF THE MILD
543		BEHAVIORAL IMPAIRMENT CHECKLIST (MBI-C) IN A CLINIC-BASED
544		SAMPLE. <i>Alzheimer's & Dementia: The Journal of the Alzheimer's Association.</i>
545		2019;15(7):P365.
546		