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Abstract  34 

The novel coronavirus disease-19 (COVID-19) pandemic caused by SARS-CoV-2 has 35 

ravaged global healthcare with previously unseen levels of morbidity and mortality. To 36 

date, methods to predict the clinical course, which ranges from the asymptomatic carrier 37 

to the critically ill patient in devastating multi-system organ failure, have yet to be 38 

identified. In this study, we performed large-scale integrative multi-omics analyses of 39 

serum obtained from COVID-19 patients with the goal of uncovering novel pathogenic 40 

complexities of this disease and identifying molecular signatures that predict clinical 41 

outcomes. We assembled a novel network of protein-metabolite interactions in COVID-42 

19 patients through targeted metabolomic and proteomic profiling of serum samples in 43 

330 COVID-19 patients compared to 97 non-COVID, hospitalized controls. Our network 44 

identified distinct protein-metabolite cross talk related to immune modulation, energy and 45 

nucleotide metabolism, vascular homeostasis, and collagen catabolism. Additionally, our 46 

data linked multiple proteins and metabolites to clinical indices associated with long-term 47 

mortality and morbidity, such as acute kidney injury. Finally, we developed a novel 48 

composite outcome measure for COVID-19 disease severity and created a clinical 49 

prediction model based on the metabolomics data. The model predicts severe disease 50 

with a concordance index of around 0.69, and furthermore shows high predictive power 51 

of 0.83-0.93 in two previously published, independent datasets.   52 

 53 

Introduction 54 

The novel coronavirus disease 2019 (COVID-19) has a broad spectrum of clinical 55 

features that range from asymptomatic disease to acute respiratory distress syndrome 56 

(ARDS)(1, 2). COVID-19 ARDS can lead to refractory hypoxia, mechanical ventilation, 57 

prolonged intensive care unit (ICU) stay and increased mortality(3). Previous studies have 58 

shown a high incidence of concomitant organ failure in COVID-19, including acute kidney 59 

injury (AKI)(4), acute liver injury(5), thromboembolic events(6, 7) and secondary 60 

infections contributing to a fatal outcome(8).  61 

Massive investigative efforts by multiple scientific groups have used proteomic and 62 

metabolomic approaches to begin to unravel disease mechanisms relevant to SARS-63 
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CoV-2 infection such as inflammation, coagulation, and metabolism(9). However, how 64 

COVID-19 specific protein-metabolite interactions relate to the severity of disease and 65 

clinical outcomes remains poorly understood. Key study limitations have included 66 

relatively small sample sizes, absence of protein-metabolite network analysis and the 67 

focus on dichotomous outcome measures such as death and survival. These limitations 68 

have been difficult to overcome and restrict our understanding of COVID-19 69 

pathogenesis.   70 

Here, we report the largest study to integrate targeted metabolomic and proteomic 71 

analyses of serum samples obtained from hospitalized COVID-19 patients during SARS-72 

CoV-2 infection compared to patients admitted during the same time period with 73 

symptoms related to COVID-19 and negative RT-PCR for SARS-CoV-2 as controls 74 

(Figure 1). Through this work, we uncovered COVID-19-specific metabolite and protein 75 

profiles, identified novel protein-metabolite modules, and defined the molecular 76 

signatures of several clinical indices (CRP, ferritin, platelet count, AKI, and death). 77 

Additionally, we developed the first clinical composite outcome prediction model in 78 

COVID-19, where the input of discrete metabolic profiles significantly improves our clinical 79 

insight into a broad range of outcomes known to plague many survivors of severe COVID-80 

19.  81 

Results 82 

Study cohort and dataset 83 

Our cohort was comprised of 330 patients with confirmed SARS-CoV-2 RT-PCR, and 97 84 

non-COVID-19 controls with negative RT-PCR results who were hospitalized at the 85 

NewYork-Presbyterian Hospital/Weill Cornell Medical Center between March and April 86 

2020. Serum samples were obtained within the first 3 days of admission. The majority of 87 

COVID-19 patients had samples drawn at two or three different time points resulting in a 88 

total of 582 serum samples from the 330 COVID-19 patients, while all 97 controls had 89 

one sample drawn. Metabolomics was measured for all available samples. Proteomics 90 

was measured for fewer samples (n=189), also across different time points for some 91 

patients. Notably, there were only minor time effects across the three days 92 

(Supplementary Figure 1), and the repeated samples were thus treated as replicates 93 
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using a linear mixed effect model, see Methods. A detailed description of the clinical and 94 

demographic characteristics of the cohort can be found in Table 1, Supplementary 95 

Table 1 and Supplementary Table 2. Of note, we excluded samples collected after 96 

intubation because we found that the clinical act of intubation significantly alters a 97 

patient’s metabolic profile (Supplementary Table 3). 98 

Metabolic profiles were assessed for all samples using liquid chromatography coupled 99 

with mass spectrometry (LC/MS). After quality control and data preprocessing, 125 100 

metabolites were available for comparative analysis. Targeted proteomic profiling was 101 

performed on a subset of 227 samples (173 from COVID-19 patients and 54 controls) 102 

using the Olink inflammation, cardiovascular II and cardiovascular III panels, which cover 103 

266 unique protein biomarkers. These panels were selected since it has previously been 104 

shown that inflammation and cardiovascular pathways are essential during COVID-19 105 

pathogenesis(10). 106 

 107 

Metabolomic and proteomic changes associated with COVID-19  108 

Differential metabolomic analysis identified significant changes in abundance of 70 out of 109 

the 125 analyzed metabolites between COVID-19 and controls at a false discovery rate 110 

(FDR) of 0.05 (Figure 2A). The top three differentially expressed metabolites were 111 

involved in amino acid metabolism: N-acetyl-L-aspartic acid (p-value = 9.19E-18), N-112 

acetyl-aspartyl-glutamic acid (p-value = 5.30E-15), and argininosuccinic acid (p-value = 113 

6.35E-12) (Figure 2B). KEGG pathway mapping of the differentially expressed 114 

metabolites revealed an involvement of various metabolic pathways (Figure 2C). These 115 

pathways included arginine and proline metabolism, glycine and serine metabolism, 116 

alanine metabolism, methionine metabolism, sphingolipid metabolism, gluconeogenesis, 117 

and the TCA cycle pathway, demonstrating involvement of the broader categories of 118 

amino acid, lipid and energy metabolism in COVID-19 pathogenesis. Our results  confirm 119 

prior reports that reported altered phenylalanine and tryptophan metabolism in severe 120 

COVID-19 patients compared to non-COVID-19 patients(11-13). Additionally, our data 121 

has shown that multiple metabolites involved in sphingolipid metabolism are significantly 122 
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increased in COVID-19 patients, pointing towards other potential targets for COVID-19 123 

treatment(14). 124 

Comparative proteomic analysis identified significant changes in the expression of 48 out 125 

of the 266 analyzed proteins between COVID-19 and controls at an FDR of 0.05 126 

(Figure 2D). The top three differentially expressed proteins were C-X-C motif chemokine 127 

ligand 10 (CXCL10) (p-value = 5.09E-13), galectin 9 (Gal-9) (p-value = 5.49E-10), and 128 

monocyte chemoattractant protein 3 (MCP-3) (p-value = 2.85E-09) (Figure 2E).  KEGG 129 

pathway mapping revealed that these proteins participated in various protein pathways 130 

(Figure 2F), including the interleukin 17 (IL-17), tumoral necrosis factor (TNF) and JAK-131 

STAT signaling pathways. Detailed results of the differential analysis and pathway 132 

mappings can be found in Supplementary Table 4. Of note, the utility of the JAK inhibitors 133 

baricitinib or ruxolitinib has already been demonstrated in a clinical trial for selected 134 

patients with severe or critical COVID-19 patients(15, 16). Based on our data, clinical 135 

trials further targeting IL-17 and TNF signaling in COVID-19 may lead to additional 136 

therapeutic approaches for treating COVID-19. 137 

Global principal component analysis (PCA) on the metabolomics and proteomics data 138 

revealed no clear separation of COVID-19 and control groups (Supplementary Figure 2). 139 

This is an effect that we have commonly observed in previous studies of blood data(17-140 

22), where omics profiles only separated groups in a specific (single molecules and 141 

pathways) rather than a global fashion. 142 

 143 

Protein-metabolite networks identify potential mediators of COVID-19 pathology   144 

To obtain further mechanistic insight into the biology of COVID-19, we developed a 145 

comprehensive, data-driven network for the integrative analysis of our multi-omics 146 

dataset. We first generated a Gaussian graphical model (GGM) of correlated metabolites 147 

and proteins from our COVID-19 cohort (Supplementary Data 1). GGMs are correlation-148 

based network models that we have previously demonstrated to accurately reconstruct 149 

biological pathways from blood-based omics data(23-25). A minimum spanning tree-150 

based algorithm was then used to identify a focused subnetwork that connects the most 151 
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significantly correlated metabolites and proteins from the original network (Figure 3). The 152 

subnetwork included 13 proteins from the Olink inflammatory panel, 32 proteins from the 153 

Olink cardiovascular panels II and III, and 70 metabolites. From this subnetwork, we 154 

selected 4 network modules to query the interplay between metabolism, inflammation, 155 

and vascular dysfunction in COVID-19 patients.  156 

Inflammation-related network modules. Module 1. Our network identified 157 

hexanoylcarnitine as a key metabolite associated with inflammatory cytokines in COVID-158 

19 illness. The module contained IFN-gamma, CXCL10 and CXCL11 that were all 159 

upregulated in COVID-19 and associated with hexanoylcarnitine. IFN-gamma, CXCL10 160 

and CXCL11 are proinflammatory cytokines which regulate T cell immunity(26), while 161 

hexanoylcarnitine is a medium-chain fatty acid conjugate that plays a critical role in 162 

energy metabolism and mitochondrial fatty acid β-oxidation (Figure 3)(27). Levels of other 163 

carnitine species (L-carnitine and caprylic acid) were also elevated in COVID-19 patients, 164 

suggesting a role for inflammation, dysregulated fatty acid β-oxidation and mitochondrial 165 

dysfunction in COVID-19 pathogenesis(12, 28-31). 166 

Module 2. In a second inflammation-related module, cytosine was another key metabolite 167 

linked with inflammatory cytokines during COVID-19. The module consisted of a group of 168 

macrophage-derived cytokines, including MCP-2, MCP-3 and GRN, which were all 169 

upregulated in COVID-19 and positively associated with cytosine (Figure 3). This finding 170 

is consistent with the hyperinflammatory state of COVID-19 infection in which cytokine 171 

storm is often observed(32). Cytosine, a pyrimidine-class nucleotide that is an essential 172 

metabolite for cell proliferation and survival, is commonly upregulated in the host 173 

response during viral infection and is furthermore an important mediator of viral 174 

replication(33). Prior reports have shown cytosine levels to be elevated in COVID-19 175 

patients(34), which was corroborated in our own cohort. Taken together, cytosine may be 176 

a key metabolite linking viral replication to SARS-CoV-2 induced inflammation. 177 

Vascular-related network modules. Module 3. While COVID-19 presents itself mainly as 178 

a respiratory disease, autopsy reports have additionally described significant vascular 179 

injury due to endothelial cell damage, microcirculatory thrombi, and impaired cellular 180 

junction integrity(35). Our network uncovered the coordination of MERTK, RAGE and 181 
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thrombomodulin (TM) with the metabolite 4-hydroxyproline in COVID-19 (Figure 3). 182 

MERTK, RAGE and TM are proteins key to maintaining features of endothelial 183 

homeostasis, and hydroxyproline is a major component of collagen(36). MERTK, a 184 

member of the TAM family of receptor tyrosine kinases (RTKs), and RAGE, a pro-185 

coagulant and inflammatory molecule were upregulated, while TM was downregulated, 186 

suggesting induction of a pro-coagulant and inflammatory vascular state in COVID-19. 187 

Notably, the coordination of these proteins centered around alterations in levels of 188 

hydroxyproline, where downregulation of TM directly correlated with hydroxyproline 189 

levels. A link between TM and hydroxyproline has been described, where administration 190 

of TM had anti-fibrotic effects on lung and kidney murine models(37). Taken together, 191 

these data link the pro-coagulant and fibrotic state of COVID-19 through thrombomodulin 192 

and hydroxyproline. 193 

Module 4. In a second vascular-related module, we found that cathepsin D (CTSD), a 194 

lysosomal protease known to disrupt endothelial cell junctions and increase 195 

vasopermeability, was associated with a group of glycolytic metabolites including 196 

D-glucose, glycerol-3-phosphate, and lactic acid(38). Notably, increased vascular 197 

permeability and glycolysis are known features of a pro-angiogenic state(39). While 198 

dysregulated angiogenesis occurs in COVID-19 patients(40), how these events are 199 

coordinated remains poorly understood. Here, we report the concomitant up-regulation of 200 

cathepsin D and intermediate products of glycolysis (D-glucose and lactic acid) in our 201 

COVID-19 cohort, which position this enzyme as a potential driver of the COVID-19 202 

phenotype.  Of note, elevated plasma activity of cathepsin D has been found in patients 203 

with type 2 diabetes, suggested a link between abnormal vasculature and the 204 

dysregulated glucose metabolism seen in our higher risk diabetic COVID-19 patients(41). 205 

Taken together these data suggest that the disruption of vascular and glucometabolic 206 

homeostasis in COVID-19 is mediated by cathepsin D. 207 

 208 

Serum metabolites and proteins associate with clinical indices in COVID-19 209 

Serum metabolites and proteins within the COVID-19 patient group were assessed for 210 

correlation with relevant clinical indices including: i) demographics (sex, age, BMI), ii) 211 
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concurrent comorbidity (hypertension, pre-existing kidney disease, diabetes mellitus 212 

[DM], severity of illness [SOFA]), iii) laboratory markers of inflammation (C-reactive 213 

protein [CRP], d-dimer, lymphocyte count, platelet count, ferritin), and iv) future clinical 214 

events (ARDS, death) (Figure 4A and 4D). Pre-existing kidney disease was found to 215 

associate with the highest number of both metabolites and proteins. Other clinical 216 

parameters including ARDS, death, BMI, gender, age, SOFA score, hypertension, DM, 217 

and d-dimer levels were associated with numerous metabolites but only few proteins. 218 

Conversely, platelet count and ferritin level were associated with a large number of 219 

proteins but relatively few metabolites. Detailed association results are provided in 220 

Supplementary Tables 5 and 6. 221 

Hierarchical clustering of clinical indices by their correlation with metabolites revealed two 222 

broad clusters: one predominantly related to laboratory markers of inflammation, and a 223 

second largely related to non-laboratory indices (Figure 4B). Volcano plots of three 224 

representative indices (death, pre-existing kidney disease and CRP) are shown in 225 

Figure 4C. Seventy-five metabolites were significantly associated with death, 96 with pre-226 

existing kidney disease and 37 with CRP level. 69 metabolites were associated with both 227 

death and kidney disease and 20 were associated with death, kidney disease and CRP 228 

levels. Key metabolites associated with each of the three selected clinical indices are 229 

depicted in Figure 4C. Remarkably, hexanoylcarnitine and cytosine, which we earlier 230 

showed to be upregulated in COVID-19, were among the 20 metabolites associated with 231 

all three of these clinical indices. This finding supports the potential utility of 232 

hexanoylcarnitine and cytosine not only as biomarkers for COVID-19 but also as 233 

predictors of disease severity. 234 

Clustering of clinical indices according to their correlation with proteins also revealed two 235 

broad clusters (Figure 4E) that were notably similar to the metabolite-derived clusters, 236 

except that age and kidney disease clustered together with laboratory markers of 237 

inflammation. Volcano plots of three representative indices (death, ferritin level and 238 

platelet count) are depicted in Figure 4F. Seventeen proteins correlated with death, 26 239 

with platelet count and 29 with ferritin. Six proteins were associated with both death and 240 

ferritin level, 9 with death and platelet count, and 5 (ANGPT1, PDGF subunit A, PDGF 241 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2022. ; https://doi.org/10.1101/2021.07.19.21260776doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.19.21260776
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

subunit B, LAP TGF-beta-1, CXCL5) with death, ferritin level and platelet count 242 

(Figure 4F). ANGPT1, PDGF subunit A and PDGF subunit B are markers of endothelial 243 

injury and platelet dysfunction while LAP, TGF-beta-1 and CXCL5 are markers of 244 

inflammation. The fact that these proteins correlated with known clinical indices of 245 

COVID-19 mortality and morbidity corroborates the importance of vascular injury and 246 

inflammation in COVID-19 pathogenesis, which we observed in our network analysis 247 

above. 248 

 249 

Metabolomics signature predicts clinical outcomes in COVID-19.    250 

We devised a novel hierarchical composite outcome measure for COVID-19 severity 251 

which incorporates a series of clinical events, ranked in order of severity, that characterize 252 

both acute COVID-19 and some of the sequelae of COVID-19 seen in post-acute COVID-253 

19 syndrome (PACS)(42): in-hospital mortality, mechanical ventilation (MV) at discharge, 254 

kidney replacement therapy (KRT) at discharge, prolonged organ failure support 255 

(mechanical ventilation and/or kidney replacement therapy for more than 2 weeks), 256 

supplemental oxygen requirement, acute kidney injury and length of hospital stay 257 

(Figure 5A,). Our measure represents each patient on a continuous spectrum of severity 258 

to provide more information than a dichotomous classification such as mortality. Details 259 

on the design of this score and patient numbers in each group can be found in 260 

Supplementary Figure 3. 261 

A machine learning algorithm based on an ordinal response mixed effect model with 262 

LASSO regularization was used to generate our prediction model of the composite 263 

outcome measure using serum metabolic profiles and baseline patient demographics 264 

(age, sex and BMI) as combined inputs (Figure 5B). Proteins were not included in the 265 

model, since our study had around three times more metabolomics samples than 266 

proteomics samples. The final model included 32 metabolites and achieved an average 267 

concordance-index of d=0.69 (SE=0.017, 95% CI of [0.65, 0.72]), which is equivalent to 268 

a receiver operating characteristics area under the curve (ROC-AUC) on a binary 269 

outcome. This was a significant improvement (p-value = 3E-5) over a baseline model 270 

containing only age, sex, and BMI, which had a performance of d=0.59 (SD=0.02, 95% 271 
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CI of [0.56, 0.64]). The 32 metabolites in the final model included 14 amino acids, 6 272 

nucleotides, 6 lipids and 2 metabolites related to energy metabolism (Figure 5C). 273 

Interestingly, our metabolite-based model showed improvement over the baseline model 274 

not only for predicting the composite outcome, but also for predicting some of its individual 275 

components (i.e., intubation, AKI, supplemental oxygen requirement, and length of 276 

hospital stay, Figure 5D). 277 

We assessed the tradeoff between the number of metabolites incorporated into the model 278 

and the model’s prediction performance across a range of included metabolites. Our 279 

analysis revealed that most of the predictive power (d ~ 0.68) was already achieved with 280 

the first six metabolites (cis-aconitic acid, hydrocinnamic acid, pantothenic acid, 281 

7-methylguanosine, citrulline, methionine sulfoxide), after which prediction performance 282 

did not significantly improve (Supplementary Figure 4). This finding suggests that a 283 

targeted assay of six metabolites could predict disease severity with this accuracy, 284 

although independent validation in other datasets remains to be established. 285 

As a validation step, we tested the performance of our reduced six-metabolite model on 286 

blood metabolomics data from two previously published studies by Su et al.(43) and Shen 287 

et al.(44) (Figure 5E). The Su study reported COVID-19 severity using a WHO-based 288 

score with 7 ordinal levels from mild to severe. Our model achieved a concordance index 289 

of d=0.83, again outperforming a model that just consisted of age, sex, and BMI 290 

(Figure 5E, left). The Shen study differentiated two groups of COVID-19 patients, mild 291 

and severe. That study also developed a prediction model, and we extracted their patient 292 

prediction scores from the paper to be able to calculate a concordance index for 293 

comparison. The models were tested on two test cohorts, called ‘C2’ and ‘C3’ from the 294 

original publication (Figure 5E, right). Our 6-metabolite model consistently outperformed 295 

both the score from Shen et al. as well as the baseline model with age, sex, and BMI. 296 

Notably, overall concordance scores in the Shen dataset were substantially higher than 297 

in our own dataset, both as reported in the original paper as well as in the validation of 298 

our own model on their data. We believe this effect occurs due to the complex nature of 299 

our composite outcome score as opposed to a simple yes vs. no classification of severity, 300 

the small sample size in Shen et al., and the reporting of an unvalidated training set AUC 301 
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of 0.95 in their study. Overall, this analysis demonstrates that the model replicates in 302 

independent datasets with varying definitions of severity, and that our model provides 303 

slightly better results compared to the previously reported prediction model.  304 

 305 

Conclusion  306 

The novel coronavirus has ravaged the global healthcare system due to its high 307 

transmissibility and unpredictable clinical course that often affects multiple organ 308 

systems. Moreover, the long-term consequences of COVID-19 infection remain poorly 309 

understood. A full understanding of the pathogenesis of COVID-19 will require an 310 

unraveling of the mechanisms of inflammation, immune dysfunction, endothelial cell injury 311 

and dysregulated coagulation that underlie this disease.  312 

In our study, we used an integrative proteomic-metabolomic analysis to identify global 313 

molecular signatures specific to the acute illness of COVID-19, while many prior 314 

metabolomic and proteomic studies have not assessed the interplay between proteins 315 

and metabolites. Our analyses establish associations of specific inflammation and 316 

vascular injury-related proteins with various metabolites during COVID-19, which appear 317 

to link inflammation with mitochondria-dependent energy metabolism and viral replication, 318 

as well as coagulation with fibrogenesis and glycolysis. 319 

Our discovered network modules not only provide a better understanding of disease 320 

pathogenesis, but also facilitate novel potential therapeutic targets for COVID-19. The 321 

modules identified various proteins and metabolites involved in inflammatory and vascular 322 

injury processes, such as MMP 12, Cathepsin D and RAGE which, to the best of our 323 

knowledge, have not yet been studied as targets for therapeutic intervention in COVID-19. 324 

Of note, our modules contained IL-6, which is already a mainstay of treatment for severe 325 

disease(50), and several other molecules such as carnitine, niacinamide and IFN-gamma 326 

which others have been studying in the context of COVID-19 therapies(51-53). 327 

There is increasing evidence that evaluating symptoms and multiple clinical outcomes 328 

during acute disease is crucial in determining the risk of long COVID-19(54). To the best 329 

of our knowledge, we are the first group to develop a composite outcome measure in 330 
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COVID-19 using multiple clinical indices in a prediction model that assesses not only 331 

COVID-19 disease severity but also the sequelae of COVID-19 that characterize post-332 

acute COVID-19 syndrome (PACS). Compared to dichotomous outcome measures such 333 

as death and survival, our composite outcome score reflects a broader, more holistic 334 

assessment of COVID-19 morbidity in the hospital setting. Moreover, we were able to 335 

validate the model in two independent studies, thereby demonstrating its generalizability 336 

and translational potential. 337 

Several key strengths underlie our study cohort. As opposed to the use of healthy controls 338 

reported in other COVID-19 studies(9, 20, 43, 44, 55), our use of non-COVID patient 339 

samples, in the same hospital during the same period between March and April 2020, 340 

allowed us to investigate the interactions highly relevant to COVID-19 pathogenesis and 341 

clinical course. Additionally, we analyzed a relatively larger cohort compared to other 342 

studies, with hundreds of samples available for both metabolomic and proteomic analysis.  343 

Our study has several limitations. As alterations in proteome and metabolome were 344 

analyzed in sera but not in lung tissues or bronchoalveolar lavage fluid, our results may 345 

not reflect what occurs at tissue-specific cellular levels. Furthermore, based on the current 346 

study design and methodology, the correlative relationships we report between 347 

metabolomic, and proteomic alterations and SARS-CoV-2 outcomes should be 348 

interpreted as purely correlative rather than causal in nature. Additional studies are 349 

required to define the mechanistic roles of individual molecules highlighted in this paper. 350 

Finally, as our study was only a single center investigation, our results will need to be 351 

validated in other cohorts. 352 

In conclusion, our investigation has sought to not only define the metabolomic and 353 

proteomic signatures of COVID-19, but also to explore interactions between metabolites 354 

and proteins that can serve as a roadmap for future mechanistic studies. We have 355 

furthermore proposed a novel clinical composite outcome score that can be used in a 356 

clinical prediction model for COVID-19. Ultimately, a better understanding of the 357 

pathophysiology of COVID-19 at the molecular level may lead to short-term and long-358 

term targeted therapies. 359 
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 360 

Methods 361 

Cohort description 362 

This is a single-center prospective analysis of one cohort comparing hospitalized COVID-363 

19 patients and non-COVID-19 controls. Our cohort was comprised of 330 patients with 364 

confirmed SARS-CoV-2 RT-PCR, and 97 non-COVID-19 controls with negative RT-PCR 365 

results who were hospitalized at the NewYork-Presbyterian Hospital/Weill Cornell 366 

Medical Center between March and April 2020. This study has been approved by the 367 

Weill Cornell Medicine (WCM) IRB with protocol #19-10020914. Remnant serum samples 368 

were matched with selected patients after which patients were deidentified.  Controls 369 

were randomly selected patients admitted to the hospital with symptoms suspicious for 370 

COVID-19, but with negative SARS-CoV-2 RT-PCR. Seventy nine percent of control 371 

group patients had shortness of breath, fever, cough or chest pain which are commonly 372 

seen in COVID-19. Children (less than 18 years old) and pregnant women (confirmed by 373 

a positive beta-HCG test and/or medical records) were excluded.  374 

 375 

Sample handling 376 

Standard practices for serum collection and storage at the NewYork-Presbyterian/Weill 377 

Cornell Medical College include collecting venous blood into a serum-separating tube 378 

(SST), and serum is obtained by centrifuging at 1,500g for 7 minutes as soon as possible 379 

with a maximum time limit of 2 hours from the time of collection. The specimens are 380 

typically stored at 4°C for 1 to 5 days before coded/de-identified and then transferred into 381 

a -80°C freezer. Samples were thawed and inactivated in different ways: for the 382 

metabolomic analysis, x3 sample volume of HPLC grade ethanol were added; for the 383 

proteomic analysis, the samples were heat-inactivated in a water bath of 56°C for 15 384 

minutes. After these processes, the samples were stored again at -80°C until the analyses 385 

were performed.  386 

 387 

Data Collection 388 

Data were obtained from the Weill Cornell Medicine COVID Institutional Data Repository 389 

(COVID-IDR), which is a high-quality registry of COVID-19 patients at NewYork-390 
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Presbyterian - Cornell with laboratory confirmed SARS-CoV-2 RT-PCR. The COVID-IDR 391 

houses both manually and automatically extracted Electronic Health Record (EHR) data. 392 

Demographics, comorbidities, and important dates of patients’ hospital course 393 

(admission, intubation, extubation, discharge, death) were extracted by a team of medical 394 

professionals and stored in the COVID-IDR. Laboratory tests, ventilation parameters, vital 395 

signs, and respiratory variables were additionally available via automated extraction 396 

through the Weill Cornell-Critical Care Database for Advanced Research (WC-CEDAR) 397 

within the COVID-IDR. WC-CEDAR(56) is a critical care database originally designed to 398 

automatically extract, transform, and store EHR data on Intensive Care Unit (ICU) 399 

patients; it was expanded to include all hospitalized patients during New York City’s 400 

COVID-19 surge. Data not available within WC-CEDAR were manually extracted and 401 

recorded in REDCap. 402 

 403 

Metabolomic profiling  404 

Targeted Metabolite profiling was performed according to a method described in a 405 

previous publication (57). For metabolite extraction, 80 μL of pre-chilled methanol (-80 °C) 406 

was added to 20 μL of serum. The sample was vortexed for 1 min and then incubated at 407 

-80 °C for 2 hours before it was centrifuged at 20,000 g for 15 min at 4 °C to remove the 408 

pellet. The supernatant was transferred to a new Eppendorf tube and dried completely 409 

with a Speedvac for 30 min (with heat off). The dried sample was redissolved in HPLC 410 

grade water before it was applied to the hydrophilic interaction chromatography LC-MS. 411 

The sample injection order was randomized. 412 

Metabolites were measured on a Q Exactive Orbitrap mass spectrometer (Thermo 413 

Scientific), which was coupled to a Vanquish UPLC system (Thermo Scientific) via an Ion 414 

Max ion source with a HESI II probe (Thermo Scientific). A Sequant ZIC-pHILIC column 415 

(2.1 mm i.d. × 150 mm, particle size of 5 µm, Millipore Sigma) was used for separation of 416 

metabolites. A 2.1 × 20 mm guard column with the same packing material was used for 417 

protection of the analytical column. Flow rate was set at 150 μL/min. Buffers consisted of 418 

100% acetonitrile for mobile phase A, and 0.1% NH4OH/20 mM CH3COONH4 in water for 419 

mobile phase B. The chromatographic gradient ran from 85% to 30% A in 20 min followed 420 

by a wash with 30% A and re-equilibration at 85% A. The column temperature was set to 421 
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30 °C and the autosampler temperature was set to 4 °C. The Q Exactive was operated in 422 

full scan, polarity-switching mode with the following parameters: the spray voltage 3.0 kV, 423 

the heated capillary temperature 300 °C, the HESI probe temperature 350 °C, the sheath 424 

gas flow 40 units, the auxiliary gas flow 15 units. MS data acquisition was performed in 425 

the m/z range of 70–1,000, with 70,000 resolution (at 200 m/z). The AGC target was 426 

3,000,000 and the maximum injection time was 100 ms. The MS data was processed 427 

using XCalibur 4.1 (Thermo Scientific) to extract the metabolite signal intensity for relative 428 

quantitation. Metabolites were identified using an in-house library established using 429 

chemical standards. Identification required exact mass (within 5ppm) and standard 430 

retention times. As a quality control, a mixture of standard compounds was injected 431 

thirteen times throughout the LC-MS data acquisition process for monitoring of the 432 

stability of LC retention time, the MS mass accuracy and the signal intensity. The median 433 

coefficient of variation for metabolite quantitation based on the quality control sample was 434 

0.061. The data from the serum samples showed that both retention time and mass 435 

accuracy were highly stable throughout the experiment (Supplementary Figure 5). 436 

Proteomic profiling   437 

Proteomics analysis was performed using the Olink platform (Uppsala, Sweden) at the 438 

Proteomics Core of Weill Cornell Medicine-Qatar, according to manufacturer's 439 

instructions. We used the Inflammation, Cardiovascular II and Cardiovascular III panels. 440 

High throughput real-time PCR of reporter DNA lined to protein specific antibodies was 441 

performed on a 96-well integrated fluidic circuits chip (Fluidigm, San Francisco, CA). Each 442 

sample was spiked with quality controls to monitor the incubation, extension, and 443 

detection steps of the assay. Additionally, samples representing external, negative, and 444 

inter-plate controls were included in each analysis run. From raw data, real time PCR 445 

cycle threshold (Ct) values were extracted using Fluidigm reverse transcription 446 

polymerase chain reaction (RT-PCR) analysis software at a quality threshold of 0.5 and 447 

linear baseline correction. Ct values were further processed using the Olink NPX manager 448 

software (Olink, Uppsala, Sweden). Here, log2-transformed Ct values from each sample 449 

and analyte were normalized based on spiked-in extension controls and scale-inverted to 450 

obtain Normalized log2-scaled Protein Expression (NPX) values. NPX values were 451 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2022. ; https://doi.org/10.1101/2021.07.19.21260776doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.19.21260776
http://creativecommons.org/licenses/by/4.0/


   
 

   
 

adjusted based on the median of inter plate controls (IPC) for each protein and intensity 452 

median scaled between all samples and plates.  453 

Each metabolite and protein was annotated with pathways from the Kyoto Encyclopedia 454 

of Genes and Genomes (KEGG) database(59). 455 

 456 

Data preprocessing  457 

Children, pregnant women, and samples after intubation were excluded from all analyses. 458 

The metabolomics data was measured in three different batches. For each batch, data 459 

was preprocessed by filtering out samples with more than 50% missing values, followed 460 

by filtering out metabolites with more than 25% missing values, probabilistic quotient 461 

normalization(60), and log2 transformation. Two extreme outlier metabolites were 462 

manually removed (phosphorylcholine and adenosine monophosphate). The next step 463 

was to merge the different batches into a joint dataset. Batch 3 contained only control 464 

patients and could thus not be simply added by batch correction. To avoid issues created 465 

by this imbalanced experimental design, batches 2 and 3 contained an overlapping set of 466 

samples which were used for an anchor-based normalization by dividing each metabolite 467 

in batch 3 by the mean fold change of the overlapping samples. The anchor samples from 468 

batch 3 were then deleted and the batches combined using median-based batch 469 

correction(61). Overall, this procedure eliminates batch effects and allows for a batch that 470 

only contains control samples. Missing values were then imputed using the k-nearest 471 

neighbor approach(61). 472 

Proteomics data preprocessing included the same steps of filtering, quotient 473 

normalization, logging, and missing value imputation with identical parameters as for the 474 

metabolomics data. Ten proteins were measured as duplicates on the Olink platform, so 475 

their expression values were averaged. 476 
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 477 

Statistical analysis 478 

Differential expression of metabolites and proteins for both the COVID-19 vs. control 479 

analysis as well as the clinical parameter analysis within the COVID-19 cohort was 480 

assessed using the following linear mixed effect model:  481 

met_prot ~ outcome + time + (1|patient), 482 

where met_prot is each individual metabolite or protein, outcome is either COVID-19 483 

yes/no or the value of a clinical parameter, time is the day of sample taking as a factor, 484 

and (1|patient) is a random effect per patient to account for repeated measurements. 485 

P-values are reported for the significance of the outcome term. 486 

Data preprocessing and statistical analysis was performed using the “maplet” toolbox for 487 

R(62) (https://github.com/krumsieklab/maplet). 488 

 489 

Network construction 490 

The dataset was first reduced to the samples that overlap between metabolomics and 491 

proteomics (n=227), and corrected for age, sex, BMI, and COVID-19 status (yes/no). A 492 

Gaussian Graphical Model (GGM) based network was then constructed using the 493 

GeneNet algorithm(63) and drawing an edge for all partial correlations with an FDR 494 

smaller than 0.2. In a second step, this network was condensed to highlight the 495 

connections between molecules that were significantly different between COVID-19 and 496 

controls. To this end, a shortest-path distance matrix between all molecules was 497 

constructed and subset to the significant molecules. A minimum spanning tree(64) of this 498 

matrix was then constructed to visualize a simplified network. 499 

 500 

Composite Outcome 501 

A detailed description of the construction of the composite outcome along with patient 502 

numbers in each group can be found in Supplementary Figure 3. 503 
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Regularized linear mixed effect ordinal regression model 504 

A new regression model was developed to deal with an ordinal outcome, repeated 505 

measurements, and feature selection with regularization.  Repeated measurements are 506 

handled as a random effect, while age, sex, BMI, and metabolites are treated as fixed 507 

effects. The metabolites are penalized using an L1 LASSO-type regularization to obtain a 508 

sparse solution. The model is fitted using an mixed-effect ordinal regression model with 509 

complementary log-log link function(65), using maximum likelihood (ML) estimation as 510 

proposed by Ripatti and Pamgren(66). An optimal LASSO penalty parameter was 511 

estimated through an iterative algorithm for maximizing the Laplace approximation of the 512 

integrated model likelihood. This approach was adapted from Therneau(67), which was 513 

originally developed for mixed effect Cox models. To obtain an unbiased estimate of the 514 

model performance, leave-one-out-cross-validation across the entire dataset was 515 

performed. The added value of metabolomics data over baseline clinical data was 516 

assessed by comparing the final model with a model only consisting of age, sex, and BMI.  517 

 518 

Validation datasets  519 

Metabolomics data were downloaded from Su et al.(43) (n=121) and Shen et al. (44) ( 520 

containing two validation sets, n=10 and n=19). The Su dataset contained all six 521 

metabolites from our reduced model as well as age, sex and BMI as baseline parameters. 522 

The Shen study also covered age, sex and BMI, and the first test dataset (“C2”) contained 523 

all six metabolites. The second test dataset (“C3”) was measured using a targeted assay 524 

of only 7 metabolites and 22 proteins, and the metabolites did not overlap with our model 525 

metabolites. Thus, we had to follow a more complex procedure for validation. We first 526 

applied our risk score in their training cohort, which contained all metabolites. In the 527 

training cohort, this score was then regressed on the available measurements in C3, i.e. 528 

modeling ‘score ~ metabolite1 + … + metabolite7 + protein1 + …+ protein22’. The 529 

coefficients from this model were then used in C3 to derive a surrogate severity score, 530 

which we evaluated in Figure 5.  531 

 532 

 533 

Data Availability 534 
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The data used in this study can be downloaded at 535 

https://doi.org/10.6084/m9.figshare.19115972.v1. 536 

 537 

Code Availability 538 

Code to reproduce all the statistical results presented in this paper is available at 539 

https://github.com/krumsieklab/covid-omics. 540 
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 714 

Figure Legends 715 

Fig. 1. Study outline. Study population composed by COVID-19 patients and controls. 716 

Serum samples obtained from clinically indicated specimens during the first 72 hours of 717 

admission. Metadata obtained from electronic medical records. We obtained 718 

metabolomic and proteomic profile, after which we integrated our findings into a single 719 

network describing the associations between differentially expressed proteins and 720 

metabolites in COVID-19. We then correlated the metabolites and proteins 721 

with baseline characteristics, laboratory parameters and clinical events. Finally, we 722 

developed a novel metabolite-based prediction model for a composite outcome measure 723 

comprised of key clinical parameters including death, mechanical ventilation, initiation of 724 

dialysis, supplemental oxygen requirement, development of acute kidney injury, and 725 

length of hospital stay. 726 

 727 

Fig. 2. Metabolomics and Proteomics changes associated with COVID-19. 728 

A, Volcano plot showing differentially expressed metabolites between COVID-19 patients 729 

and controls at an adjusted p-value <0.05. In red, upregulated metabolites in COVID-19 730 

patients. In blue, upregulated metabolites in the control group. B, Top 3 differentially 731 

expressed metabolites in COVID-19 patients vs. controls based on adjusted p-732 

values. Y axis shows log2 fold changes in relation to the mean of the control group. 733 

C, Number of significantly regulated molecules in KEGG pathways, top 15 734 

shown. D, Volcano plot showing the differentially expressed proteins between COVID-19 735 

patients and controls at an adjusted p-value <0.05. E, Top 3 differentially expressed 736 

proteins in COVID-19 patients vs. controls based on adjusted p-values. Y axis shows log2 737 
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fold changes in relation to the mean of the control group. F, Number of significantly 738 

regulated molecules in KEGG pathways, top 15 shown.   739 

 740 

Fig. 3. Protein-metabolite networks in COVID-19.  Gaussian graphical model (GGM) 741 

representing the significant partial correlations between all the measured metabolites and 742 

proteins, generated by a minimum spanning tree (MST) based reduction combined with 743 

a shortest paths-based approach. The network includes all differentially expressed 744 

metabolites and proteins between COVID-19 patients and controls. Squares indicate 745 

proteins and green circles indicate metabolites. Inflammatory proteins are colored in 746 

purple, while vascular injury proteins are colored in red. Shadows represent molecule 747 

modules.   748 

 749 

Fig. 4. Associations of molecules with clinical indices in COVID-19. A, Lollipop 750 

plot representing the number of altered metabolites for each analyzed parameter 751 

(*Diabetes mellitus, **C-reactive protein, ***Acute respiratory distress syndrome, 752 

represented by whether patients were intubated). B, Heatmap indicating the number 753 

of differentially expressed metabolites associated with each clinical parameter and its 754 

significance. We included 4 clinical parameter categories: demographics, comorbidities, 755 

clinical events, and laboratory parameters. C, Volcano plot showing detailed metabolic 756 

changes correlated to death, kidney disease and C-reactive protein. D, Lollipop plot 757 

representing the number of altered proteins for each analyzed parameter. E, Heatmap 758 

indicating the number of differentially expressed proteins on each clinical parameter and 759 

its significance, using the same 4 categories described above. Proteins are marked 760 

according to Olink panels. F, Volcano plot showing detailed protein changes correlated 761 

to death, platelet count and ferritin levels.   762 

 763 

Fig. 5. Metabolomics signature predicts clinical outcomes of COVID-19. A, Scheme 764 

of the hierarchical composite outcome ranging from in-hospital mortality to length of 765 

hospital stay and disposition (MV: Mechanical ventilation, KRT: Kidney replacement 766 

therapy). B, Dot plot comparing the predictive performance (Concordance index) of a 767 

baseline model using age, sex, and BMI and a model including baseline plus 768 
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metabolites. The results show that the prediction accuracy improves when adding 769 

metabolites to the model. C, Bar plot showing the main altered metabolic groups included 770 

in the composite outcome score. D, Dot plots showing individual outcome analysis, 771 

comparing the baseline model and baseline plus metabolites added. Metabolites 772 

improve the prediction accuracy of ARDS, AKI, supplemental oxygen requirement and 773 

prolonged hospitalization. E, Replication analysis of our model in two independent 774 

datasets by Su et al.(43) and Shen et al.(44). This analysis was performed on the reduced 775 

6-metabolite model. The Shen et al. study developed their own model, which is plotted in 776 

black.(44) 777 
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