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Wastewater-Based Epidemic Modelling

1 Abstract26

The COVID-19 pandemic has stimulated wastewater-based surveillance, allowing public
health to track the epidemic by monitoring the concentration of the genetic fingerprints of28

SARS-CoV-2 shed in wastewater by infected individuals. Wastewater-based surveillance
for COVID-19 is still in its infancy. In particular, the quantitative link between clinical30

cases observed through traditional surveillance and the signals from viral concentrations
in wastewater is still developing and hampers interpretation of the data and actionable32

public-health decisions.
We present a modelling framework that includes both SARS-CoV-2 transmission at the34

population level and the fate of SARS-CoV-2 RNA particles in the sewage system after
faecal shedding by infected persons in the population.36

Using our mechanistic representation of the combined clinical/wastewater system, we per-
form exploratory simulations to quantify the effect of surveillance effectiveness, public-38

health interventions and vaccination on the discordance between clinical and wastewater
signals. We also apply our model to surveillance data from three Canadian cities to provide40

wastewater-informed estimates for the actual prevalence, the effective reproduction num-
ber and incidence forecasts. We find that wastewater-based surveillance, paired with this42

model, can complement clinical surveillance by supporting the estimation of key epidemio-
logical metrics and hence better triangulate the state of an epidemic using this alternative44

data source.
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2 Introduction46

Wastewater has been used previously for monitoring of a wide range of behavioural, socio-
economic and biological markers including: medical and illicit drugs [1, 2, 3]; antibiotic48

and antimicrobial resistance [4, 5, 6]; and industrial pollutant chemicals [7, 8]. Spatial
and temporal screening of the wastewater collection system or “sewershed” can provide50

qualitative and quantitative information on the marker of interest within the population
in a given sewer catchment contributing to the wastewater. The wastewater data when52

used as an index of disease burden can be incorporated into a clinical surveillance program
that is purposeful, economical and action-oriented for public health [9]. Wastewater-based54

surveillance (WBS) has also proven to be a low-cost and non-invasive tool for the manage-
ment of infectious disease pathogens such as norovirus [10, 11] and poliovirus [12, 13, 14]56

where viral concentration in wastewater served to supplement clinical surveillance. Since
the start of the COVID-19 pandemic, SARS-CoV-2 RNA has been detected and quantified58

in sewage in many locations worldwide (as of June 2021, 55 countries have pilot programs
for a wastewater surveillance system with 2,287 sampling sites [15]) and was employed60

successfully in correlating the concentration of SARS-CoV-2 in wastewater to clinical cases
reported in the sewershed [16, 17, 18, 19, 20, 21, 22, 23, 24]. In some instances of targeted62

surveillance, the leading wastewater signal (measured as SARS-CoV-2 RNA concentration
in wastewater) compared to the clinical reports provided an early sign for the introduction64

or resurgence of COVID-19 into a community [25, 26, 27, 28] enabling rapid deployment
of public health response and mitigation efforts.66

Despite numerous successes with wastewater-based surveillance during the pandemic, uti-
lizing wastewater surveillance data as a public-health tool for quick response remains chal-68

lenging for some jurisdictions, especially at the municipal level [29, 30]. A major hurdle is
the lack of a quantitative framework to assess and interpret the wastewater data generated70

and to translate that into public health action [31, 32]. The common practice is to use the
detection of SARS-CoV-2 in wastewater as a signal for COVID-19 (re)introduction in a72

community and/or perform trend analysis in parallel with clinical surveillance of COVID-
19. At the time of this manuscript, it is generally not recommended to use SARS-CoV-274

WBS for direct inference of key epidemiological indicators such as prevalence of active
infections [31, 32, 16, 33].76

Public health response guided by SARS-CoV-2 levels in wastewater is currently hindered
by a lack of structured interpretive criteria, which is at present obscured by the inherent78

complexity and variation imparted by diverse sewersheds and their contributing popula-
tions [34, 35, 36]. Sources of data variability includes individual’s shedding dynamics, sam-80

pling frequency of wastewater, non-standardized laboratory methods, sewershed-specific
viral degradation and signal attenuation during its journey from the site of faecal shedding82

(and potentially from urinary or sputum deposit [37, 38]) to the sampling point. Attenu-
ation of RNA signal in wastewater involves several factors, such as dilution in municipal84
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wastewater constituents (e.g., storm water effects in combined sewers and infiltration ef-
fects in both combined and separated sewers), RNA degradation (e.g., due to household86

detergents and industrial wastewaters) and viral degeneration in the harsh wastewater en-
vironment due to temperature, bioactive chemicals, pH, etc. Solids sedimentation and88

resuspension may also play a key role in the transportation and decay of SARS-CoV-2
RNA because of the hydrophobic characteristics of the viral envelope and its strong asso-90

ciations to solids [39, 33]. In addition, concentration methods for detection enhancement
and minimization of inhibitory substances of molecular tests can result in some loss of the92

viral target [40, 41].

Here, we present a modelling framework that attempts to link quantified SARS-CoV-294

levels in wastewater with estimates of infections in the population within the sewershed,
and to support policy decisions. The model incorporates both the viral transmission within96

the population via a standard epidemiological SEIR-like model (“Susceptible - Exposed -
Infectious - Recovered”) [42] and the fate of SARS-CoV-2 in wastewater using a simplified98

hydrological transport framework. To illustrate potential applications, we fit our model to
WBS data and traditional clinical reports gathered from six wastewater treatment plants100

(WWTPs) located in three Canadian cities (Edmonton, Ottawa and Toronto) and provide
wastewater-informed estimates of key epidemiological metrics. We also perform exploratory102

simulations to investigate how the wastewater signal can be mechanistically associated with
clinical surveillance of COVID-19.104

3 Methods

We develop a mathematical model that mechanistically describes both the transmission at106

the population level (“above ground”) and the concentration of SARS-CoV-2 in wastewater
as a result of faecal shedding from the infected individuals (“below ground”).108

3.1 Transmission between individuals

To model SARS-CoV-2 transmission in the population, we use a SEIR-type epidemiolog-110

ical model. The disease progression of individuals is captured through several compart-
ments that reflect their epidemiological states and disease outcomes (Table 1). Individuals112

can be susceptible (S); exposed (infected but not yet infectious, E); symptomatically in-
fected who will later become hospitalized (J) or recovered without hospitalization during114

active COVID-19 (I); asymptomatically infected (A); hospitalized (H); those recovered
and no longer infectious but still shedding virus in faeces (Z); fully recovered and per-116

manently immune but not shedding anymore (R) and deceased (D). We ignore any mi-
gration movements, so at any given time the total population is constant and equal to118

N = S + E + J + I + A + H + Z + R + D. Infection occurs at a time-dependent trans-
mission rate βt between infectious (states I, J or A) and susceptible individuals (S). Once120
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infected, susceptible individuals enter the latent (non-infectious) state (E) for an average
duration of 1/ε days, where no faecal shedding occurs. A proportion α of all infections are122

asymptomatic. A fraction h of symptomatic individuals are hospitalized (H) for an average
duration of 1/` days and for those, the COVID-19-associatied mortality is δ. After their in-124

fectious period ends, patients enter the post-infection shedding state Z where SARS-CoV-2
faecal shedding still occurs for 1/η days on average. The exposed (E), infectious (A, I and126

J) and post-infection shedding (Z) states are modelled with a series of sub-compartments
in order to have their respective sojourn time gamma-distributed [43, 44, 45]. Note that in128

our model, we make the simplifying assumption that hospitalized patients–assumed mostly
bedridden and a small fraction of the shedding population–do not contribute significantly130

to faecal shedding.

The transmission dynamics are represented by the system of differential equations 1a-1n132

and illustrated in Figure 1.

Ṡ = −βtS (A+ I + J) /N (1a)

Ė1 = βtS (A+ I + J) /N − nE εE1 (1b)

Ėk = nE ε(Ek−1 − Ek) 2 ≤ k ≤ nE (1c)

Ȧ1 = αεE − nAθA1 (1d)

Ȧk = nAθ(Ak−1 −Ak) 2 ≤ k ≤ nA (1e)

İ1 = (1 − h) (1 − α)εE − nI νI1 (1f)

İk = nI ν(Ik−1 − Ik) 2 ≤ k ≤ nI (1g)

J̇1 = h(1 − α)εE − nJµJ1 (1h)

J̇k = nJµ(Jk−1 − Jk) 2 ≤ k ≤ nJ (1i)

Ḣ = µn
J
Jn

J
− `H (1j)

Ż1 = nI νInI
+ nAθAn

A
− nZ ηZ1 (1k)

Żk = nZ η(Zk−1 − Zk) 2 ≤ k ≤ nZ (1l)

Ṙ = nZ ηZn
Z

+ (1 − δ)`H (1m)

Ḋ = δ `H (1n)

134

where A = ξ
∑n

A
k=1 φkAk, I =

∑n
I
k=1 ψkIk and J =

∑n
J
k=1 ψkJk. We use the dot notation to

symbolize derivation with respect to time (e.g., Ṡ = dS/dt).136
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Figure 1: Diagram of compartmental model. See main text for a description of the epidemiological
states. The notation 1 : n• indicates a modelling using n• sub-compartments to obtain a gamma-
distributed sojourn time in the associated epidemiological state.

The parameters φ and ψ are multiplicative adjustments to the baseline transmission rate
βt to represent the infectious profile during the course of infection. The values for φk and138

ψk were chosen to represent the best estimate of the temporal infectiousness profile given
the different results published (see Appendix, Figure S2). The parameter ξ models the140

relative infectiousness of asymptomatic cases compared to symptomatic ones. The effective
reproduction number of this model is (see Appendix for details on its calculation):142

Rt = βt

(
αξ

1

θ
+ (1− h)(1− α)

1

ν
+ h(1− α)

1

µ

∑n
J
k=1 ψk
nI

)
St
N

(2)

3.2 SARS-CoV-2 viral concentration in wastewater

3.2.1 Deposited Viral Concentration144

The daily concentration of SARS-CoV-2 in wastewater is directly calculated from the total
number of individuals that are actively shedding into the sewage system. SARS-CoV-2146

faecal shedding varies according to the infected individual’s clinical state and disease out-
comes. Depending on the disease progression, infected individuals shed a variable amount148
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of SARS-CoV-2 while they are in the shedding states (A, I, J and Z ). The total concen-
tration of SARS-CoV-2 RNA entering the wastewater at time t is given by150

W ∗(t) = ω ×

( n
J∑

k=1

λkJk(t) +

n
I∑

k=1

λkIk(t) + ξ

n
A∑

k=1

λA
kAk(t) +

n
Z∑

k=1

λZ
kZk(t)

)
(3)

The parameters λk, λ
A
k and λZ

k represent SARS-CoV-2 faecal shedding dynamics per capita
when the infected individual is in the epidemiological states I, J , A and Z respectively.152

Given the current lack of observational data, we used the same parameters λk for all
epidemiological states (i.e., λk = λA

k = λZ
k). Values for the parameters λk were chosen154

to represent mid-range values of the different results published (see Appendix Figure S2).
Note that we assume the same reduction in faecal shedding as in respiratory shedding for156

asymptomatic cases (parameter ξ). The parameter ω implies that our model can only
determine up to a constant the concentration of SARS-CoV-2 in wastewater [14], even if158

the limit of detection of the assay is known. This reflects our current inability to quantify
the various complex processes that affect the concentration, from patients’ shedding to160

the concentration measured in laboratories (e.g., frequency and timing of sampling, RNA
degradation in the sewer system, recovery efficiency of assays).162

3.2.2 RNA transport and sampled viral concentration

We use a simple advection-dispersion-decay model to simulate the fate of SARS-CoV-2164

along its journey in wastewater from the shedding points to the sampling site. This model
is a combination of an exponential viral decay [46] and a τ -day dispersed plug-flow function,166

g(τ), representing all possible hydrodynamic processes (e.g., dilution, sedimentation and
resuspension) that leads to RNA degradation as well as decrease and delay of signal at the168

time of sampling. The dispersed plug-flow g(τ) acts as a transformation function, which
reshapes the initial deposited concentration, W ∗, into a delayed viral distribution over τ170

days as a result of the transit of SARS-CoV-2 in the sewer system. Hence, we defined the
sampled viral concentration at time t as:172

Wsamp(t) =

∫ t

0
W ∗(t− τ) g(τ) e−κτdτ, (4)

where κ is the daily decay rate of SARS-CoV-2 due to the harsh, complex and bioactive
environment of wastewater [46]. The SARS-CoV-2 RNA concentration entering the sewage174

system daily is modelled as a single hydrodynamic pulse per day and the plug-flow func-
tion, g, is obtained by the analytical solution of the axial dispersed plug flow differential176

equation [47]. We then re-parametrize the analytical solution with the mean delay time τ̄
and its standard deviation σ into a Gaussian distribution178

g(τ) =
1√
2πσ

exp

(
−(τ − τ̄)2

2σ2

)
. (5)
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See the Appendix for more details on our advection-dispersion-decay model of the RNA
transport.180

3.2.3 Wastewater reported sample

The sample transportation, laboratory processing time and reporting lags, introduce re-182

porting delays of RNA concentration in wastewater. Hence, we define the reported wastew-
ater concentration as184

W (t) = Wsamp(t− `ww), (6)

where `ww is the reporting lag between wastewater sampling and concentration report
after laboratory analysis. (Note that the reporting delay of the wastewater measurement is186

independent from the delay caused by the transport of RNA particles in the sewer system
as defined in Equation 4).188

3.3 Clinical reported cases

We also model surveillance data derived from laboratory confirmed and clinically diagnosed190

COVID-19 cases, acknowledging that instantaneous identification and complete reporting
after initial infection is not possible. We assume that a fraction ρ of symptomatic incidence192

is reported with a lag of a `clinical days from the time of infection. If i(t) is the total incidence
at time t, we define the number of clinical cases reported at time t as:194

C(t) = ρ (1− α) i(t− `clinical), (7)

3.4 Wastewater and clinical surveillance data

We apply our modelling framework to data sets from six wastewater sampling sites located196

in three Canadian cities: Edmonton (Alberta), Ottawa (Ontario) and Toronto (Ontario).
Sampling sites are the following municipal WWTPs (abbreviation / approximate popula-198

tion served): Gold Bar in Edmonton (EGB / 900,000); Robert O. Pickard Environmental
Centre in Ottawa (OTW / 1,000,000 [48]); Toronto Ashbridges Bay (TAB / 1,603,700 [49]);200

Toronto Humber (THU / 685,000 [50]); Toronto Highland Creek (THC / 533,000 [51]); and
Toronto North Toronto (TNT / 252,530 [52]).202

3.4.1 Data collection

Wastewater samples were collected approximately two (Edmonton and Toronto) to seven204

(Ottawa) times a week. The sampling location was at the influent of the wastewater
treatment plant of each city. Wastewater samples were collected before de-gritting in206

Toronto, and after for Edmonton and Ottawa.
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Wastewater samples from Edmonton and Toronto were shipped to the National Micro-208

biology Laboratory in Winnipeg, Manitoba, where SARS-CoV-2 RNA concentration was
measured. RNA from wastewater samples was purified using two methods. Prior to Febru-210

ary 12th 2021, 15 mL of clarified supernatant (after 4000 × g centrifugation for 20 min
at 4◦C), was concentrated using an ultracentrifugal filter device (4000 × g for 35 min at212

4◦C) (Amicon Ultra-15, 10 kDa MWCO, Millipore-Sigma, St. Louis, MO, U.S.A). Total
RNA was extracted from the resultant concentrate (∼200 µL) using the MagNA Pure 96214

DNA and Viral NA Large Volume Kit (Roche Diagnostics, Laval, QC) using the Plasma
External Lysis 4.0 protocol as per manufacturer instructions. After February 12th 2021,216

the pellet resultant from clarifying (4000g for 20 minutes at 4◦C) 30 mL of wastewater
was resuspended in 700 µL Qiagen Buffer RLT (Qiagen, Germantown, MD) containing 1%218

2-mercaptoethanol. To this, 200 µL of 0.5 mm zirconia-silica beads (Biospec, Bartlesville,
OK) were added and the sample was processed with a Bead Mill 24 Homogenizer (Fisher220

Scientific, Ottawa, ON) using 4 × 30s pulses at 6 m/s, then clarified by centrifugation
(12000 × g, 3 min) and the resultant lysate used for RNA extraction using the MagNA222

Pure 96 instrument as described above. Viral RNA was quantified using RTq-PCR with
the US-CDC N1 and N2 primers.224

For Ottawa, daily 24-hour composite primary sludge samples, consisting of four discrete
samples collected at 6 hour intervals and subsequently mixed, were collected and trans-226

ported on ice to the University of Ottawa, where samples were analyzed within 24 hours
of reception. Samples were concentrated by centrifugation at 10,000g for 45 minutes and228

RNA was extracted from a 250 mg portion of the resulting pellet using a modified ver-
sion of the Qiagen RNeasy PowerMicrobiome kit [28]. Quantification was performed using230

singleplex probe-based RTq-PCR for the N1 and N2 gene regions of the virus.

For Edmonton and Toronto, the SARS-CoV-2 concentrations in wastewater were normal-232

ized by the total solid suspension (TSS) measured on the day the sample was collected
at the treatment plant. For Ottawa, they were normalized with the concentration of the234

Pepper mild mottle virus measured in the sample. For all cities, the reported viral con-
centration used in the model (W ) was the average normalized concentration across all236

technical replicates for both the N1 and N2 genes.

We obtained clinical cases and hospital admissions (except for Toronto) for the catchment238

area of each of the six wastewater treatment plants. Hence, we were able to link clinical
and wastewater surveillances. The data sets for the three cities are plotted in Figure 2240

Seroprevalence values at the city and province level were obtained from Canadian Blood
Services (CBS) [53]. The wastewater and clinical surveillance data used in this study are242

available in Supplementary File S1.
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Figure 2: Data sets used in this study for Edmonton, Ottawa and Toronto. Each horizontal panel is
a city and colors represent the type of data (reported cases, hospital admissions and SARS-CoV-2
RNA concentration in wastewater). All curves were normalized to 1 (dividing by their respective
maximum value) to plot them in one single panel to facilitate visual comparison. All data sets used
in this study are available in Supplementary File S1.
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3.4.2 Fit to data244

We use an Approximate Bayesian Computation (ABC) algorithm [54] to fit the unknown
or unobserved model parameters to the available data. For each ABC prior iteration, the246

error function is defined as a weighted trajectory matching

ei = wC(C − Cobs)
2 + wH(H −Hobs)

2 + wW (W −Wobs)
2 (8)

We use 50, 000 prior ABC iterations and retain the 100 smallest errors to generate posterior248

distributions (acceptance ratio 2 × 10−3). The parameters fitted are the time-dependent
transmission rate βt, ω, the hospitalization rate h and the mean transit time τ̄ . More250

details about the fitting procedure is given in Appendix.

We define three types of fitting-to-data procedures. “Clinical” when wC = wH = 1 and252

wW = 0, to use data from clinical sources only ; “WW” when wW = 1 and wH = wC = 0,
to use wastewater data only; and finally “Combined” by choosing the weights wC , wH and254

wW such that the contribution of each error term (in Equation 8) are, on average, approx-
imately equal. The “Combined” fitting procedure aims to have approximately the same256

contribution from clinical and wastewater data sources (despite the different observation
frequencies).258

3.4.3 Inference of unobserved epidemiological quantities

For a given location, once the model is fitted data, we can infer unobserved quantities of260

epidemiological importance by generating epidemic trajectories from the posterior samples.
The posterior prevalence distribution (at each time point) is defined by simply adding the262

populations from the compartments representing active infection, that is

prev(t) = E +

n
A∑

i=1

Ai +

n
I∑

i=1

Ii +

n
J∑

i=1

Ji +H (9)

The posterior cumulative incidence is obtained by summing Equation 1a until time t264

cuminc(t) = −
t∑
i=1

Ṡi (10)

The fitted model can also provide an estimate of the effective reproduction number from
the different data sources (e.g., clinical and/or wastewater) using Equation 2.266

3.5 Simulations

3.5.1 Detection timing differential268

In order to explore wastewater-based surveillance as a leading indicator of infection in
the community, the time when SARS-CoV-2 is first reported from wastewater is noted270
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dww and defined as W (t = dww) = LOD where LOD is the limit of detection of the lab-
oratory method. In addition, the time dclinical when COVID-19 is first reported is defined as272

C(t = dclinical) = 1. Finally, we define the reported detection differential ∆ = dww − dclinical.
As a result, the wastewater signal can be classified as a leading indicator over traditional274

clinical surveillance when ∆ < 0. We assess how the reported detection differential ∆ can
be impacted by varying model parameters that would typically differ from one community-276

sewer system to another. We select only three combinations of parameters (among many)
to illustrate how ∆ can be affected, and most importantly how its sign can change indi-278

cating its transition between a leading and lagging indicator. We consider two levels of
COVID-19 reporting, with ρ = 30% to reflect a relatively inefficient clinical surveillance280

system in the population, and ρ = 70% that represents a more efficient one.

3.5.2 Impact of vaccination282

Although the model presented here does not explicitly have a vaccination process, a mech-
anism using the existing framework can be implemented to mimic the main effects of an284

infection-permissive vaccine (as this is the case for the COVID-19 vaccines currently avail-
able). We model a simple scenario that rolls out an infection permissive vaccine by gradu-286

ally decreasing the transmission rate (β) by 70% over 50 days and increasing the proportion
of asymptomatic infection (α) from 30% to 90%. This reflects the growing protection of288

the population from severe outcomes of COVID-19 as well as decrease in transmissions as
the vaccine is administered. To assess the differential impact of vaccination on clinical and290

wastewater observations, we consider the ratio of the level of SARS-CoV-2 in wastewater
over the reported clinical cases, W (t)/C(t).292

4 Results

We present our results in two sections. First, we apply our modelling framework to wastew-294

ater and clinical surveillance data from six sampling sites located in three Canadian cities
(Edmonton, Ottawa and Toronto) and infer epidemiological parameters such as prevalence,296

effective reproduction number and incidence forecast. The second section is based on ex-
ploratory simulations (not fitted to data of a specific location) that highlight important298

mechanistic aspects between clinical and wastewater surveillances.

4.1 Application to Canadian surveillance data300

In this section, we compare the inferences made on key epidemiological variables by fitting
the model to different data sources. Our goal is to assess the added-value of the wastewater-302

based data stream. Hence, in the following, we present inferences by fitting the model to
different data sources available (“Clinical”, “WW” and “Combined”) and comparing the304

outcomes.
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4.1.1 Prevalence estimates306

Figure 3 shows, for selected locations, the SARS-CoV-2 prevalence estimated by sampling
the posterior distributions fitted to the various data sources “Clinical”, “WW” and “Com-308

bined” and the evaluation of Equation 9. The right-most panel also displays estimates of
cumulative incidence (Equation 10) compared to available SARS-CoV-2 seroprevalence lev-310

els estimated from surveys by the Canadian Blood Services performed on banks of blood
donors in Edmonton, Ottawa and Toronto [53]. Note that our model was not fitted to312

seroprevalence data and this comparison acts as a crude check that prevalence estimates
from the model are approximately consistent with other independent data sources. For all314

locations, as expected, wastewater-only prevalence estimates are close to the clinical-only
ones when the levels of SARS-CoV-2 in wastewater mimic the COVID-19 trends in the316

population (Figure 2). For example, the prevalence estimated from wastewater-only and
clinical-only are comparable for the December 2020 wave in Edmonton and April 2021 wave318

in Ottawa. However, when the clinical and wastewater signals are discordant, prevalence
estimates can be significantly different. For example, wastewater-based prevalence esti-320

mates in January 2021 for Toronto Highland Creek (THC) do not show the peak seen from
clinical observations. On the other hand, this January peak was captured in Toronto Ash-322

bridges Bay (TAB)–another part of the city–and the subsequent March-May 2021 wave in
Toronto Highland Creek (THC) was identified by both wastewater and clinical surveillance.324

Finally, we note that, because of the larger variability of SARS-CoV-2 WBS and/or their
lower sampling frequency as compared to daily clinical surveillance, credible intervals of our326

wastewater-only inferences are generally larger than the clinical-only ones (Figure 3).

4.1.2 Effective reproduction number328

The effective reproduction number (Rt) is a key epidemiological parameter that has gained
recognition and application during the COVID-19 pandemic [55, 56]. Using the same ap-330

proach as for prevalence estimates, we inferred Rt from epidemic trajectories generated
from posterior distributions fitted to the three different data sources (i.e., “Clinical”,332

“WW” and “Combined”) and Equation 2. For comparison, we also calculate Rt using
the popular R package EpiEstim (version 2.2) [57] from the reported clinical cases as334

a separate approach. Results shown in Figure 4 exhibit the same behaviour as for the
prevalence estimates, that is, mean estimates of Rt are similar when trends of clinical336

and wastewater surveillance are comparable. Despite being based on a different modelling
framework, estimates from EpiEstim are consistent with clinical-only estimates from our338

model. Finally, like for prevalence inferences, Rt estimates from wastewater-only data
(Figure 4, blue solid line) tend to have broader uncertainty interval compared to Rt from340

clinical-only data.
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Figure 3: SARS-CoV-2 prevalence estimates. Each quadrant block represents a location. The top-
left panel of each quadrant block (panels A,D,G,J) shows the estimates of SARS-CoV-2 prevalence
time series. Each colour represents the different data sources used to fit the model (dark red:
“Clinical”, pink: “Combined”, blue: “WW”) . The lines show the mean estimate of prevalence.
The shaded ribbon indicates the 95% CrI for the estimate fitted on the “Combined” data set (CrIs
for other data sources are omitted for clarity). The bottom-left panel of each quadrant block (panels
B,E,H,K) represents the width of the 95% CrI for the estimates fitted on the different data sets
(using the same colour code as the panel for prevalence). The right-most panel of each quadrant block
(panels C,F,I,L) compares the cumulative incidence estimated by the model fitted on the “Combined”
data set to seroprevalence levels reported by the Canadian Blood Services for each city (grey point
indicates the mean, the vertical grey bars show the 95% confidence intervals).
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Figure 4: Effective reproduction number. Each panel represents a wastewater treatment plant. Solid
lines represent the mean of effective reproduction number estimated with different methods (model
presented here and, in grey, EpiEstim) and data sources (colour-coded). The ribbon indicates the
95% credible interval for the “Clinical” data source. Note that wastewater data are available from
early October 2020 for Edmonton and Toronto. The Rt curves were spline-smoothed, see Appendix
for details.
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Figure 5: Forecast examples for Edmonton (left panel), Toronto/Highland Creek (middle panel) and
Ottawa (right panel). Filled points represent past data of reported clinical cases. Circles represent
reported clinical cases not yet observed at the time of forecast. Colour represents the type of data the
model was fitted to (blue, wastewater only; red, clinical data only). Dashed coloured lines indicate
the fitted mean for reported cases. The thick solid line shows the 1-month-ahead mean forecast, and
the shaded areas their respective 95%CrI.

4.1.3 Forecasts342

Another key advancement in our modelling framework is to generate forecasts based on
clinical, hospital (if available) and wastewater data.344

In Figure 5 we show three 1-month-ahead forecasting examples for Edmonton, Toronto
Highland Creek and Ottawa using either wastewater data only, or clinical data only. The346

Edmonton example (Figure 5, left panel) shows forecasts made as of April 1st, 2021. In
this case, the forecasts are relatively similar because both the clinical reports and the348

wastewater signals are comparable and the model fits were similar using either wastewater
or clinical data. The Toronto Highland Creek example forecasts as of November 30th,350

2020 (Figure 5, middle panel). For this location, the wastewater signal and clinical reports
are discordant from December 2020 to February 2021. During this period the wastewater352

concentration is low and approximately flat whereas the clinical reports indicate a new
wave of infections. As a result, the model fitted on these two data sources interprets the354

epidemic differently for this period and hence provides contrasting forecasts. The forecast
for Ottawa as of December 15th, 2020 (Figure 5, right panel) illustrates the case when356

the wastewater forecast is more accurate than the one based on clinical surveillance only.
At that time, the wastewater signal in Ottawa has picked up a resurgence earlier than358

clinical surveillance. This resurgence is then captured by the model fit and hence the
wastewater-based forecast correctly projects the resurgence.360
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4.2 Simulations

In this section, we report results from simulations that provide general insights in inter-362

preting WBS.

4.2.1 Leading signal and reported detection differential364

We vary the LOD of the wastewater assay across a broad, but realistic, range [58] and
calculate ∆, the detection time difference, for each simulation for a given value of LOD366

and the clinical reporting rate ρ. Because SARS-CoV-2 RNA concentration in wastewater
can only be determined up to a constant in our model, the LOD values chosen here are368

rescaled to the parameters used to run our simulations and cannot be directly interpreted
as RNA copies per ml, the traditional unit for LOD. Panel A in Figure 6 shows that,370

depending on the LOD of the laboratory assay, the wastewater concentration of SARS-
CoV-2 RNA can either be a leading (∆ < 0 for assays with low LODs) or a trailing372

indicator of cases (re)introduction when compared to reported clinical cases. This is the
case whether the clinical surveillance system in the population is efficient or not (coloured374

curves, Figure 6A).

We also vary the decay rate of RNA SARS-CoV-2 in wastewater within a broad realistic376

range [46, 59, 60], as well as the transit time of SARS-CoV-2 between the shedding and
sampling sites. Figure 6B shows that , here again, the relative timing of (re)introduction378

detection by WBS compared to clinical surveillance can be affected by both the harshness
of the wastewater (represented by the decay rate) and the transit time of SARS-CoV-2 in380

the sewer system. We note, as expected, that with a fast transit time (illustrated by a 1-
day travel time in the left-most panel of Figure 6) the decay rate will not have a significant382

impact on ∆ clinical surveillance (efficient, ρ = 70%, or not, ρ = 30%), but as the transit
time increases to 3 days (an upper bound considering strong sediment and recirculation384

effects) the effect of RNA decay becomes more important (increasing slope for the 1-day
and 3-day transit times, Figure 6B).386

4.2.2 Assessing public health intervention effectiveness

The ability to use wastewater signal to detect intervention effectiveness can also be explored388

using model simulations in order to explore if a public health intervention is more clearly
observable in wastewater concentration measurements or in clinical reports. To do this,390

we choose to model an intervention such that the transmission rate β, constant until
the intervention time, decreases linearly to a lower value β/3 during a period of time of392

Tinterv and remains constant afterwards (this aims to crudely simulate a lockdown). We
consider the relative difference between the observed peak and 7 days later for COVID-394

19 by clinical surveillance, scl(t) = C(t + 7)/C(t) − 1 and the level of SARS-CoV-2 in
wastewater, sww = W (t + 7)/W (t) − 1. The more negative the slope, the clearer the396
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Figure 6: Simulations were run varying selected parameters to show their impact on the reported
detection time differential (∆). Panel A: effect of the limit of detection of the quantification assay
performed on wastewater. Values below the 0-intercept horizontal dashed line indicate a leading
signal from wastewater concentrations than from clinical reports. Panel B: effect of the SARS-
CoV-2 RNA decay rate in wastewater for different transit times between the shedding and sampling
site. The colour of the curves represents the proportion of clinical cases reported (ρ) out of the total
symptomatic incidence.

signal.

Using our baseline parameters (Table 2), we simulate an intervention that reduces the398

contact rate to a third of its pre-intervention value at different time of the simulations,
ranging from 20 to 90 days after the introduction of the index case. Figure 7 shows400

that, overall, the effect of an intervention that significantly reduces transmission yields a
larger relative decrease in number of COVID-19 cases than the level of SARS-CoV-2 in402

wastewater because the post-peak slope from clinical surveillance (scl) is consistently more
negative than the one from WBS (sww). The difference is more pronounced as the change404

in transmission is more sudden (Tinterv small). Hence, given the observation noise typically
encountered, we expect that the effect of a sudden change in transmission rate would be406

more clearly observable from clinical surveillance than from WBS.

4.2.3 Differential impact of vaccination408

In Figure 8 shows how W (t)/C(t), the ratio of reported wastewater concentration over
reported cases, increases following vaccination with a infection-permissive vaccine. Indeed,410

while an infection-permissive vaccine does reduce transmission, it still allows for infections
to occur (mostly asymptomatic) and in particular, faecal shedding. Hence, a smaller pro-412

portion of infections are reported (because most of them are asymptomatic) but faecal
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Figure 7: Detectability of a sharp transmission reduction. Panel A: example of how the post-peak
relative changes are calculated. The colour-coded dashed lines represent the time series of reported
clinical cases and SARS-CoV-2 RNA concentration in wastewater. The shaded area indicates when
the transmission rate linearly decreases to a third of its baseline value (here, Tinterv = 10 days).
The segment illustrates the relative change between the peak value and 7 days later (sww and scl).
Panel B: the horizontal axis represents the time (since the start of the epidemic) when starts the
intervention that reduces transmission to a third of its value. The vertical axis represents the post-
peak relative changes from clinical reports (scl, red lines) or wastewater (sww, blue lines). Each
panel indicates a different value (3, 10 and 20 days) for Tinterv, the time it takes to reduces the
transmission rate to a third of its initial value.
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shedding is less affected by this reporting bias and level of SARS-CoV-2 in wastewater414

decreases less steadily than COVID-19 surveillance. In this simulation, the approximately
constant ratio before the start of vaccination (Figure 8B) indicates that reports from clin-416

ical or wastewater data sources provide a similar picture of the epidemic for that period.
However, once vaccination is implemented, the increasing ratio highlights a discordance418

between the two data sources.

5 Discussion420

Surveillance through detection and quantification of targeted pathogens in wastewater has
been a noteworthy tool for public health across the world [61, 16, 18, 10, 11, 12, 13, 14].422

While pathogen surveillance in wastewater is not new, the scale and urgency of scientific
development for WBS are witnessed during the unprecedented COVID-19 pandemic. Be-424

cause of the novelty of SARS-CoV-2-related WBS and the lack of quantitative tools for
analysis, the interpretation of levels SARS-CoV-2 in wastewater and their translation into426

actionable public health measures is still challenging [31, 32, 16, 33].

Here, we have provided a modelling framework to improve the understanding of the mech-428

anisms at play between the viral transmission in the population and viral concentration
shed in wastewater. This model can also provide estimates of key unobserved epidemiolog-430

ical parameters. We demonstrated the applicability of our model by fitting it to data from
three Canadian cities and made wastewater-informed inferences of important epidemio-432

logical metrics (prevalence, effective reproduction number and forecasted incidence). Our
estimates for cumulative incidence were approximately in line with seroprevalence levels434

from cohorts of blood donors independently observed in the three cities.

Importantly, we observed that estimates based on wastewater-only data usually provide a436

similar picture of the epidemic trajectory (Figure 3) but discordant signals can occur and
lead to drastically different interpretations. This was the case, for example, in January438

2021 in Toronto Highland Creek where the wastewater signal did not indicate a resurgence
of infections, despite the wave observed from the reported clinical cases. We believe this440

muted peak in wastewater signal was not caused by a laboratory issue, but rather from
undetermined events in this particular sewershed at that specific time that need to be442

further investigated.

Similarly, the effective reproduction numbers inferred from wastewater data only are consis-444

tent with more traditional methods, such as using clinical reports with the popular software
EpiEstim (Figure 4). The fact that wastewater data can potentially act as a substitute446

for clinical surveillance (albeit with more uncertainty) to provide critical epidemiological
metrics is encouraging, although more realistically, it will likely act as a complementary448

data source. The ability to estimate epidemiological metrics using wastewater surveillance
represents a step forward in demonstrating the use of wastewater data for actionable pub-450
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Figure 8: Infection-permissive vaccination. Panel A shows the trajectories of reported clinical
cases and SARS-CoV-2 concentration in wastewater under a scenario using an infection-permissive
vaccine (“Vaccination”), or not (“Baseline”). In the vaccination scenario, the reported clinical cases
decrease more rapidly than the lavel of SARS-CoV-2 in wastewater because sub-clinical infections
tend to be less reported whereas faecal shedding continues. Panel B highlights this difference showing
W (t)/C(t), the ratio of reported wastewater concentration over reported cases, for the baseline / no-
vaccination (pink) and the vaccination (green) scenarios. The ratio is normalized to have a starting
value at 1 to make it easier to quantify the increase visually. The vertical dotted line indicates when
vaccination starts (at time 70).
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lic health metrics, if they are available to public health in a timely manner. In addition,
the ability to triangulate the state of an epidemic using alternative data sources helps en-452

sure additional confidence in the estimation of relevant parameters or forecasting. Indeed,
the COVID-19 pandemic has consumed public-health resources at levels that are probably454

not sustainable for long-term surveillance of this pathogen. However, the current wastew-
ater surveillance performed in many communities can probably be continued as long as456

necessary given its relative low cost [9].

Our modelling framework provides a more principled alternative to simpler smoothing tech-458

niques (e.g., moving averages, polynomial interpolations) that have been used to support
the interpretation of WBS [28]. However, we note that less complex modelling options460

are possible if the focus is on specific epidemiological metrics ([62, 63]). We also note
recent efforts to use machine learning techniques and artificial neural network that incor-462

porate WBS [64]. While those methods are promising, they cannot–by design–explain the
epidemiological mechanisms at play.464

Our model enables in silico experiments on the epidemic/wastewater system to identify
key parameters and processes that can play an important role for the epidemiological inter-466

pretation. We showed, using simulations, that the relative timing of the wastewater signal
(whether it is leading or not) compared to traditional clinical surveillance is actually influ-468

enced by the characteristics of both systems (Figure 6). On the one hand, the laboratory
analysis of wastewater samples may not detect the presence of SARS-CoV-2 because, for470

example, its limit of detection is too high, or prevalence of infection in the community is
very small, or the viral RNA has degraded before reaching the sampling site. Shipment472

time of wastewater samples can also be significant (e.g., several days) for remote sampling
locations without any laboratory capacity. On the other hand, the delay in clinical cases474

reports is usually caused by the incubation period and the reporting time of an infection
by the health system (turnaround time for contact tracing and/or laboratory results of in-476

dividuals’ swab) or availability of testing. Some communities would typically have a longer
lag for clinical reporting than for wastewater surveillance [20, 22, 28, 24], while others may478

have the opposite (for example when a very effective contact tracing system is in place
[65] or rapid testing is implemented). Moreover, a community may experience both situa-480

tions, that is a period when clinical surveillance is extremely efficient at detecting cases so
rapidly that it leads wastewater surveillance while, at other times, it can lag (for example482

when incidence is high, overwhelming contact-tracing and clinical testing capacities). The
model presented here allows to quantify how various factors can impacts the relative timing484

between clinical and wastewater surveillances.

It can be tempting to monitor the effect of public health interventions using changes in the486

levels of SARS-CoV-2 in wastewater given its non-invasive nature. Indeed, WBS should
be less affected by sampling bias than clinical surveillance (for example the latter may488

miss most of the subclinical infections). However, our simulations showed that wastewater
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surveillance may be inferior to clinical surveillance to identify sharp declines in transmis-490

sion, as typically seen after a lockdown is implemented (Figure 7). The long period of
faecal shedding creates a lag in comparison to the sudden drop of incidence caused by the492

public health intervention, inhibiting a prompt signal in wastewater. This effect is visible
on the Canadian data sets presented here (Figure 2).494

We also highlight the potential for an infection-permissive vaccine to generate discordant
signals between wastewater and clinical surveillances (Figure 8). Indeed, vaccination im-496

plies a larger proportion of asymptomatic infections which are less likely to be detected by
clinical surveillance, but still picked up in wastewater because of continued faecal shedding.498

Note that we use our model to highlight this potential effect, whereas detecting it in real
data is probably challenging without studies purposely designed to detect this.500

Here, we used a mixed approach regarding the normalization of the levels of SARS-CoV-
2 in wastewater, with Ottawa using PMMV-normalization versus TSS-normalization for502

Toronto and Edmonton. It is likely that some normalization is necessary to discount the
variations of the total faecal mass shedded and viral degradation, but it is still not clear504

which normalization is the most appropriate for a given sewershed. We note that we
considered separately each WWTP in Toronto to provide examples of application at the506

sub-municipal level.

Our modelling approach has several weaknesses. We did not precisely model the transport508

and fate of SARS-CoV-2 in municipal sewer systems. The lack of data about flow dynamics
and particles binding of SARS-CoV-2 in wastewater hampered a more detailed approach.510

Hence, we took a simple approach to model the below-ground component and assumed the
flow dynamic followed a low-dispersion plug flow model with a plausible fixed decay rate512

[46] and varied the mean transit time (from shedding to sampling sites) within a range of
possible values. As more research focuses on the fate of SARS-CoV-2 in wastewater, the514

transport module of our model can be enhanced.
The comparison with observed seroprevalence level must be done with caution, because we516

do not model seroreversion (patients who were infected but subsequently test seronegative
because of loss of immunity or antibodies falling to undetectable levels). Our model does518

not model vaccination explicitly. We made this choice to keep the first version of our
model relatively simple. However, we believe that we can appropriately approximate the520

effects of infection-permissive vaccination by reducing the transmission rate and increasing
the proportion of asymptomatic infections. As the proportion of vaccinated individuals522

increases, modelling an explicit vaccination process is necessary. We note that for the
Canadian cities studied here, the vaccination coverage was either null or low during the524

study period.
We model SARS-CoV-2 as a single-strain pathogen which is an oversimplification of reality,526

given the numerous variants circulating in Canada since late 2020 [66]. However, it is not
clear how (or if) multi-variants modelling would affect our results, given that the difference528

of viral shedding (respiratory and faecal) between variants is still not fully understood
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[67, 68].530

Because of ordinary differential equations, this model is not well adapted to either small
communities or very low prevalence settings. While its epidemiological structure (Figure 1)532

would still be valid for such environments, a more advanced statistical modelling would be
preferable to handle low incidence counts and observation uncertainty [69, 70].534

A further limitation of our model is the use of a scaling coefficient for the amount of SARS-
CoV-2 shedded in the wastewater by the infected population (parameter ω in Equation 3).536

This scaling coefficient embeds all the uncertainties associated with sampling strategy and
laboratory analysis, such as assay recovery efficiency, limit of detection, and total faecal538

mass normalization. Most of those processes are currently poorly known for SARS-CoV-2
and, as long as more observational data is not available, will constrain modelling (note540

that this limitation has already been identified for polio models [14]). An ultimate goal
of wastewater surveillance may be to measure all the components of the scaling coefficient542

(here, ω) in order to estimate infection prevalence in a community directly from viral
concentration readings.544

To conclude, the model presented here–built upon previous similar approach for other
pathogens [71, 14, 72]–is a first step to better understand the mechanistic relationships546

between the COVID-19 epidemic spreading in a community and the SARS-CoV-2 RNA
concentration in wastewater caused by faecal shedding of infected individuals (and poten-548

tially from urinary or sputum shedding). Future developments should explicitly incorporate
vaccination and multiple variants/strains given the ability of new assays to detect variants550

from wastewater samples [73, 74, 75]. This model can be the basis of quantitative tools
to support public health decision making that embraces wastewater-based epidemiology.552

Beyond the SARS-CoV-2/COVID-19 pandemic, WBS coupled with the type of model pre-
sented here could be leveraged and applied to other transmissible pathogens where urinary554

or faecal shedding occurs, such as other respiratory diseases (e.g., influenza, respiratory
syncytial virus, adenovirus) and some enteric diseases (e.g., norovirus, rotavirus, shigel-556

losis).
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9 Tables

Table 1: Description of the model’s compartments and parameters for the SARS-CoV-2 RNA
transmission and disease outcome.

Symbole Definition
S susceptibles
E exposed susceptibles but not infectious
Ak asymptomatic infectious cases in kth subcompartment
Ik symptomatic infectious cases in kth subcompartment
Jk symptomatic infectious cases in kth subcompartment who later admits to hospital
Zk non-infectious cases but fecal shedding SARS-CoV-2 RNA in kth subcompartment
H hospitalized patients
R recovered cases
D deceased cases
βI,k transmission rate in kth subcompartment among symptomatics (per contact)
βA,k transmission rate in kth subcompartment among asymptomatics (per contact)
1/ε ave. latency time (days)
1/νk ave. duration in kth subcompartment among symptomatics (days)
1/µk ave. duration in kth subcompartment among symptomatics goes to hospital (days)
1/θk ave. duration in kth subcompartment among asymptomatics (days)
1/ηk ave. duration in kth subcompartment of shedding after infectiousness (days)
1/` ave. length of stay in a hospital (days)
n

I
total number of subcompartments in I state

n
J

total number of subcompartments in J state
n

A
total number of subcompartments in A state

n
Z

total number of subcompartments in Z state
α proportion of exposed cases that are asymptomatic
h proportion of symptomatic cases that need hospital admission
δ proportion of deceased individuals among hospitalized patients
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Table 2: Description of fixed parameters used in this model and their sources

symbol description value unit source

ξ relative infectiousness of asymptomatic compared to symptomatic
states

0.8 none [76, 77, 78, 79, 80, 81]

1/ε Latent mean duration 2 day [45, 44]
1/ν Infectiousness duration for symptomatic individual 12 day [82, 83, 84, 85]
1/µ Infectiousness duration for symptomatic individual before admis-

sion to hospital
8 day [86, 44]

1/θ Infectiousness duration for asymptomatic individual 10 day [82, 83, 84, 85]
1/η fecal sheding duration after infectious period 24 day [87]
1/` Length of hospital stay 10 day assumed
α asymptomatic proportion 0.316 none [88, 89, 90]
δ proportion of death from hospitalized 0.19 none Report of Cana-

dian Institute for
Health Information
https://wwwcihica/en/covid-
19-hospitalization-and-
emergency-department-
statistics

`ww reporting lag between sampling date and reporting date in days 2 day assumed
κ decay rate of RNA in ww 0.18 none [46]
τ mean transit time between shedding and sampling sites (in days) 1 day assumed
σ std dev transit time between shedding and sampling sites (in days) 0.3 day assumed
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Figure S1: Illustration of the piecewise linear function to model the transmission rate βt. The break
dates b1, b2, . . . are chosen manually by visual inspection of the time series of interest, and the values
β(bi) are fitted with an ABC algorithm.

A-1 Fitting procedure

To fit the model to the clinical and/or wastewater surveillance data, we model the transmis-902

sion rate, βt as a piecewise linear function. We parsimoniously choose the times b1, b2, . . .
(“break times”) defining each segment by visual inspection of the time series (i.e., incidence904

of new COVID-19 cases and/or hospitalizations for clinical surveillance; SARS-CoV-2 con-
centration for wastewater surveillance). Those times should correspond to changes in the906

transmission dynamics. The value of the transmission rate at a break date, β(bi) is fit-
ted using an Approximate Bayesian Computation (ABC). We chose not to fit the break908

times bi because the fitting algorithm would require a computation time that would not be
practical. See Figure S1.910

The mean transit time τ̄ and the scaling factor ω are also fitted to data. For those parame-
ters, the goal is primarily to allow for uncertainty rather than infer a posterior distribution912

as they are essentially not identifiable. Finally, the hospitalization rate is also fitted to the
hospitalization data, when available.914
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Over the study period (from early March 2020 to June 1st, 2021), we have about a dozen
break times bi for each city to reflect the various interventions (e.g., lockdowns) or behaviour916

(e.g., change in contact rate when schools re-opened in September 2020). Hence, the
parameter space to explore by the ABC algorithm is relatively large. To avoid unpractical918

computational times, we defined relative strong priors on all parameters, that is normal
distributions with a mean close to the expected value (explored manually) and a relatively920

broad standard deviation (corresponding approximately to a coefficient of variation of
0.5). The normal distribution was censored to positive values. The outputs of the fitting922

procedure for all locations are shown in supplementary file File S2.

A-2 Relative infectiousness924

In Equation 1a, the force of infection from symptomatic cases is β
∑n

I
k=1 ψkIk. For conve-

nience, the ψk are chosen such that926

n
I∑

k=1

ψk = nI . (A.1)

Hence, when the infectiousness profile is constant (λk = 1, for k = 1, . . . , nI ), the force of
infection is β

∑n
I
k=1 Ik. Using this normalization allows to keep a single baseline param-928

eter β. Only the relative values of the ψk affect the infectiousness profile. Similarly for
asymptomatic infections, the parameters φk are chosen such that

∑n
A
k=1 φk = nA .930

We assume the infectious period for symptomatic infections is 12 days on average [91,
92, 85, 82] and divide this period into nI = 6 sub-compartments I1, . . . , I6 where infected932

individuals will stay, on average, 2 days in each of them. Note that with this representation,
the duration of infectiousness has an Erlang distribution [93] with shape nI (and mean934

12 days). The parameter ψk represents the relative infectiousness of sub-compartment
Ik. We assume infectiousness, that is the probability of transmission given contact, is936

proportional to the log viral load measured from respiratory samples in clinical studies
[83, 84] and choose ψ̃ = (3, 6, 5, 4, 3, 2) and then normalize according to Equation A.1 with938

ψk = nI ψ̃k/
∑

k ψ̃k.

Similarly, we assume a shorter infectious period for asymptomatic infections of 10 days on940

average [94, 91], divided into nA = 5 sub-compartments with an average stay of 2 days
each.942

A-3 Respiratory and faecal Viral kinetics

Our model explicitly accounts for the temporal profile of respiratory shedding via the multi-944

ple sub-compartments for the infectious states (A, I and J) combined with the parameters
φ and ψ. Similarly, it explicitly accounts for the faecal shedding kinetics via the shedding946

states (A, I, J and Z) and the parameters λ.

saved on 2021-07-19 15:54:19-04:00 37 / 43

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.19.21260773doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.19.21260773
http://creativecommons.org/licenses/by-nd/4.0/


Wastewater-Based Epidemic Modelling

0

2

4

6

8

0 10 20 30 40
Days from symptom onset

Lo
g 

vi
ra

l l
oa

d source

Bellon

Benefield

Jang

Neant

This study

SARS−COV−2 kinetics − Respiratory

2

4

6

0 10 20 30
Days from symptom onset

Lo
g 

vi
ra

l l
oa

d source

Benefield

Hoffmann

Miura

This study

SARS−COV−2 kinetics − Faecal

Figure S2: SARS-CoV-2 viral kinetics. The values used in our model are represented by the black
curve and the green curves show estimates from the literature. The full reference of each study can
be found in the bibliography: Benefield [95], Bellon [96], Jang [83], Neant [84], Hoffmann [87],
Miura [97].

We parameterize our model such that the SARS-CoV-2 viral kinetics reflect with levels948

reported in the literature. The black line with points in Figure S2 shows the values used
for respiratory (top panel) and faecal (bottom panel) shedding, and how they compare to950

observational studies.

A-4 Effective reproduction number952

As a first step, we establish the basic reproduction number, R0, for the model defined by
equations 1a-1n. To derive R0, we follow the methodology presented in [42].954

Asymptomatic individuals are infectious for an average duration of 1/θ, and the ratio of
their infectiousness compared to all the other infectious states (I and J) is ξ. Asymptomatic956

incidence is a proportion α of the overall incidence. Hence, the contribution to the basic
reproduction number from the asymptomatically infected individuals is958

RA0 = βαξ/θ (A.2)

Infectious individuals that are symptomatic and that will recover without hospitalization
(I) are infectious for an average duration of 1/ν. Their proportion of the overall incidence960

is calculated by simply stating they are not hospitalized (1 − h) and not asymptomatic
(1−α), hence the proportion is (1−h)(1−α). The contribution to the basic reproduction962

number from the symptomatically infected individuals that will not require hospitalization
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is964

RI0 = β(1− h)(1− α)/ν (A.3)

For the symptomatically infected persons that will require hospitalization (J), the same
logic applies to the I sub-group, except that we need to take into account their relative966

infectiousness compared to I, which is
∑n

J
k=1 ψk/

∑n
I
k=1 ψk. Note that the denominator is

simply nI thanks to the normalization defined in Equation A.1. The subgroup in state968

J are hospitalized (h) and not asymptomatic (1 − α) so their contribution to the basic
reproduction number is970

RJ0 =

∑n
J
k=1 ψk
nI

βh(1− α)/µ (A.4)

We obtain the (overall) basic reproduction number by summing the respective contributions
from all infectious epidemiological states972

R0 = RA0 +RI0 +RJ0 (A.5)

Finally, the effective reproduction number Rt is simply defined as Rt = St
NR0 which gives

Equation 2 in the main text.974

A-5 Fate and RNA transport in wastewater

Upon fecal deposition into the wastewater, viral RNA undergoes various hydrodynamic pro-976

cesses and degrades during its journey from the shedding point to the sampling site [16, 33].
This degradation mainly comes from RNA dilution in municipal wastewater constitutes978

(e.g., hygiene products, household detergents, industrial wastewater and storm waters)
and RNA decay resulting from harsh wastewater environment (e.g., temperature, bioac-980

tive chemicals, solids, pH, etc.). As a common practice, complex hydraulic models simulate
the in-fluid transportation of the water contaminants (endemic viruses and fecal microor-982

ganisms) via solving a set of physics-based differential equations describing the flow and
transport mechanisms [98, 99, 100, 101, 102, 103, 104].984

These hydrodynamical models are advection and dispersion mechanisms, which describe
the microorganisms’ transportation by the flow velocity along the longitudinal axis and986

its diluting process into the surrounding fluid [103]. Once a mass concentration enters
the stream, it gradually disperses due to many physical factors such as dissolving pro-988

cess, velocity profile, turbulent mixing, molecular diffusion, etc. [105]. Moreover, sediment
association plays a significant role in the transport models. Several studies indicated at-990

tachments of microorganisms to sediments and the impact of this associations on their
delayed transportation [104, 102, 100]. Due to solid mass and subsequent gravitational992

pull, sediment’s velocity differs from the flow velocity and results in solid settlement at the
bottom of the stream. These microorganism-attached sediments, later, re-suspend during994

overflow periods, induced by heavy rainfall and industrial discharges, and act as a reservoir
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Figure S3: Impact of advection-dispersion-decay model (Eq. A.8). sampled RNA concentration
(Wsamp) may have different viral distribution compared to deposited density (W ∗) due to delayed
viral genetic materials resulting from hydrodynamical phenomenon in sewer system.

and increase in-stream microorganism’s concentration irrespective of new input from the996

shedding source [106, 107]. Enveloped viruses, such as SARS-CoV-2, dissolve less in water
and tends to attach to solids as a result of their hydrophobic envelope [39, 33], and there-998

fore, settlement/resuspension may play a key role in transportation of the SARS-CoV-2
genetic materials in wastewater.1000

Here, we used a simple advection-dispersion-decay model to simulate the fate of SARS-
CoV-2 RNA along their journey from shedding points to the sampling site. We assumed the1002

deposited RNA concentration in the sewage system is a one-time pulse input per day and
described the transfer process by a dispersed plug-flow model. As the plug concentration of1004

viral RNA enters into the flow with velocity u, it gradually disperses along the longitudinal
axis (flow direction) with dispersion coefficient D (m2/s) within the sewage pathway. The1006

length from the shedding location to the sampling site is L. The total RNA mass arrives
at the sampling point gradually over time, such that the daily pulse input concentration1008

is delayed. Assuming a small deviation from plug flow (D/uL ≤ 0.01), we can use the
analytical solution of the 1-dimensional axial dispersed plug flow differential equation [47,1010

105] as a transfer function for viral RNA in wastewater. For low diffusion limit, the transfer
function is approximately symmetrical and defined by a Gaussian distribution g(τ), which1012

represents the fraction of the deposited concentration at the sampling site τ days after its
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introduction to the sewage system1014

g(τ) =

√
u3

4πDL
exp

(
−(L− uτ)2

4DL/u

)
. (A.6)

Defining the mean transit time τ̄ = L/u and its standard deviation σ =
√

2DL/u3, we can
re-parametrize Equation A.6 based on the first two moments of the transit time:1016

g(τ) =
1√
2πσ

exp

(
−(τ − τ̄)2

2σ2

)
, (A.7)

In addition to delay, the genetic materials of SARS-CoV-2 degrades exponentially at a
daily rate κ due to the complex environment of wastewater [46]. As a result, W (t), the1018

sampled concentration at time t, is a combination of both delayed viral materials and
degradation1020

Wsamp(t) =

∫ t

0
W ∗(t− τ) g(τ) e−κτdτ, (A.8)

where W ∗ is the initial daily deposited concentration.

A-6 Rt posterior estimates1022

The effective reproduction number Rt is estimated by fitting the model to different data
sources (see main text). We also estimate Rt using the R library EpiEstim [57] on reported1024

cases.

The function βt is modelled as piecewise-linear. As a result, Rt from Eq. 2 is also a1026

piecewise linear function. We interpolated Rt with a polynomial curve (by smooth spline
function in R) for Figure 4. For validity purpose, we compared the interpolated and the1028

piecewise linear function Rt and checked the smoothed and actual curves are similar. See
Figure S5.1030
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Figure S4: Panel A: Effective reproduction number inferred from model, utilizing different data
sources, for all WWTP’s locations. Rt inferred by fitted model to clinical reported cases (clin),
RNA wastewater concentration (ww), and both clinical reported cases and viral load in wastewater
(combined clinww). Panel B: Associated 95% credible interval widths.

saved on 2021-07-19 15:54:19-04:00 42 / 43

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 25, 2021. ; https://doi.org/10.1101/2021.07.19.21260773doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.19.21260773
http://creativecommons.org/licenses/by-nd/4.0/


Wastewater-Based Epidemic Modelling

EGB OTW TAB THU

clin
clinw

w
w

w

Aug '20 Dec '20 Apr '21 Aug '20 Dec '20 Apr '21 Aug '20 Dec '20 Apr '21 Aug '20 Dec '20 Apr '21

0

1

2

3

0

1

2

3

0

1

2

3

4

E
ffe

ct
iv

e 
re

pr
od

uc
tio

n 
nu

m
be

r

spl.smooth No Yes

Figure S5: The effective reproduction number and its 95% credible interval plotted for different
sources (clin, ww and combined clinww) of fitting in wastewater sampling locations; Edmonton
(EGB), Ottawa (OTW), Toronto Ashbridges Bay (TAB) and Toronto Humber (THU). Colours
represent Rt obtained from model and Eq. 2 (pink) and its interpolated smoothed spline (green).
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