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Abstract 14

Background As of July 2021, more than 180,000,000 cases of COVID-19 have been 15

reported across the world, with more than 4 million deaths. Mathematical modelling 16

and forecasting efforts have been widely used to inform policy-making and to create 17

situational awareness. 18

Methods and Findings From 8th March to 29th November 2020, we produced 19

weekly estimates of SARS-CoV-2 transmissibility and forecasts of deaths due to COVID- 20

19 for countries with evidence of sustained transmission. The estimates and forecasts 21

were based on an ensemble model comprising of three models that were calibrated using 22

only the reported number of COVID-19 cases and deaths in each country. We also 23

developed a novel heuristic to combine weekly estimates of transmissibility and potential 24

changes in population immunity due to infection to produce forecasts over a 4-week 25

horizon. We evaluated the robustness of the forecasts using relative error, coverage 26

probability, and comparisons with null models. 27
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Conclusions During the 39-week period covered by this study, we produced short- 28

and medium-term forecasts for 81 countries. Both the short- and medium-term forecasts 29

captured well the epidemic trajectory across different waves of COVID-19 infections with 30

small relative errors over the forecast horizon. The model was well calibrated with 56.3% 31

and 45.6% of the observations lying in the 50% Credible Interval in 1-week and 4-week 32

ahead forecasts respectively. We could accurately characterise the overall phase of the 33

epidemic up to 4-weeks ahead in 84.9% of country-days. The medium-term forecasts 34

can be used in conjunction with the short-term forecasts of COVID-19 mortality as a 35

useful planning tool as countries continue to relax stringent public health measures that 36

were implemented to contain the pandemic. 37

Introduction 38

As of July 2021, more than 4 million deaths have been attributed to COVID-19 with 39

over 180 million cases reported globally [1]. The scale of the current pandemic has 40

led to a widespread adoption of data-driven public health responses across the globe. 41

Epidemiological quantities such as the reproduction number and the herd immunity 42

threshold have become a part of the public discourse, used by governments to plan 43

their response and by the media to aid public understanding of the health emergency. 44

Outbreak analysis and real-time modelling, including short-term forecasts of future 45

incidence, have been used to inform decision making and response efforts in several 46

past public health challenges including the West African Ebola epidemic and seasonal 47

influenza [2–11]. In the current pandemic, mathematical models have helped public 48

health officials better understand the evolving epidemiology of SARS–CoV-2 [12–14] and 49

the potential impact of implementing or releasing interventions. Short-term forecasts of 50

key indicators such as mortality, hospitalisation, and hospital occupancy have played a 51

similarly important role [15–20], contributing to planning public health interventions 52

and allocation of crucial resources [21–25]. At the same time, the unprecedented level 53

of public interest has placed epidemiological modelling under intense media scrutiny. 54

While model validation against observed data is part of a typical analysis pipeline, in 55

light of the prominent role mathematical models have had in policy planning during 56

the COVID-19 pandemic, retrospective assessment of modelling outputs against later 57
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empirical data is critical to assess their validity. 58

With the aim of improving situational awareness during the ongoing pandemic, since 59

the 8th March 2020 we have been reporting weekly estimates of transmissibility of 60

SARS-CoV-2 and forecasts of the daily incidence of deaths associated with COVID-19 61

for countries with evidence of sustained transmission [26]. We have developed three 62

models that are calibrated using the latest reported incidence of COVID-19 cases and 63

deaths in each country that we combine into an ensemble model. 64

All models make implicit or explicit assumptions about the data-generating process 65

being modelled. In addition to the uncertainty associated with the model outputs, 66

there is inherent structural uncertainty about the models themselves as each model 67

makes different assumptions about transmission in attempting to approximate the true 68

underlying processes. Ensemble models, which combine outputs from different models, 69

are a powerful way of incorporating the uncertainty from a range of models [27,28]. They 70

are used widely in diverse fields such as weather forecasting, economics, ecology and are 71

increasingly being used in infectious disease forecasting. Ensemble models can produce 72

more robust forecasts than individual models [28–31]. The estimates of transmissibility 73

and short-term forecasts presented here are based on a novel ensemble model that was 74

calibrated across multiple waves of the pandemic. 75

Forecasts are typically produced under the assumption that the trend in growth 76

remain the same over the forecast horizon. This is a plausible assumption for the 1-week 77

forecast horizon that we used for our short-term forecasts. However, this assumption is 78

likely to be violated over a long forecast horizon for a rapidly evolving epidemic such as 79

COVID-19, leading to a rapidly increasing uncertainty as the forecast horizon grows. 80

We have developed a novel approach relying on a simple heuristic that combines past 81

estimates of the reproduction number, explicitly accounting for the predicted future 82

changes in population immunity, to produce forecasts over longer time horizons. 83

Here we summarise the key transmission trends from our work on global short-term 84

forecasts between 8th March to 29th November 2020. We provide a rigorous quantitative 85

assessment of the performance of the ensemble model. We also present medium-term 86

forecasts using our approach and retrospectively assess the performance of our method. 87

Our results for medium-term forecasts suggest that we can accurately forecast the 88

trajectory of COVID-19 in several countries for horizons spanning up to 4 weeks. 89
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Materials and methods 90

Methods for estimating transmissibility during epidemics typically rely on the time series 91

of incident cases combined with the natural history parameters of the pathogen [32,33]. 92

However, in the current pandemic, interpretation and comparison of estimates across 93

countries based on the number of cases was made difficult by the differences in case 94

definitions, testing regimes, and variable reporting across countries as well as over time 95

within each country [34]. We therefore developed methods that relied on the number 96

of reported deaths to estimate COVID-19 transmissibility and to produce short-term 97

forecasts of deaths. Since we use deaths to estimate transmissibility, our estimates reflect 98

the epidemiological situation with a delay corresponding to the delay from infection to 99

death [35] . Despite this, our estimates and the short-term forecasts contributed and 100

continue to contribute to situational awareness by providing near real-time insights into 101

the dynamics of the pandemic. They also provide useful, albeit indirect, evidence into 102

the effectiveness of various interventions such as lockdowns and the impact of reopening. 103

The instantaneous reproduction number is frequently used to quantify transmissibility. 104

It is defined as the average number of secondary cases that an individual infected at 105

time t would generate if conditions remained as they were at time t [36]. When applied 106

to the incidence of deaths (rather than cases), the instantaneous reproduction number 107

RDt represents the average number of secondary deaths “generated by” the death of a 108

primary case at time t. We developed three different models, each of which estimated 109

transmissibility in the recent past and produced forecasts of COVID-19 deaths. We then 110

incorporated the outputs of these models to build an ensemble model. We produced 111

short-term forecasts (i.e. 1-week ahead), for which changes in the population immunity 112

level could be ignored. We also produced medium-term forecasts (up to 4-weeks ahead) 113

accounting for the depletion of the susceptible population due to the increased levels of 114

natural host immunity. The methods underlying the individual models are illustrated in 115

Fig. 1. 116

Hereafter, Dt and Ct represent the number of reported COVID-19 deaths and cases 117

at time t respectively. Since we only used reported deaths to estimate transmissibility, 118

for ease of notation, we drop the superscript D from RDt and use Rt to denote the 119

instantaneous reproduction number with respect to deaths at time t. R[t1, t2] is the 120
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reproduction number between times t1 and t2. The most recent estimate of transmissi- 121

bility is denoted as RcurrT . We use ω to denote the serial interval distribution of deaths 122

i.e. the interval between the deaths of an infectee and their infector, where both the 123

infector and the infectee die. Estimated incidence of deaths at time t is denoted by D̂t. 124

T refers to last time point in the existing incidence time series of cases or deaths. 125

Model 1 (RtI0) 126

The first model relies on a well-established method [37] that assumes the daily incidence 127

of deaths is approximated with a Poisson process following the renewal equation [36]: 128

Dt ∼ Poisson

(
Rt

t∑
s=1

Dt−sωs

)
(1) 129

A standard approach to inferring recent transmissibility from an incidence time 130

series relies on the assumption that the effective reproduction number is constant over a 131

window (i.e. the “calibration window”) back in time of size τ time units (for example 132

days or weeks) [33]. Adopting a similar approach here, we estimated Rt using only 133

the data in a fixed time-window (of τ days) prior to the most recent observation to 134

calibrate the model. We estimated the average transmissibility R[T − τ + 1, T ] over 135

that time-window, but made no assumptions regarding the epidemiological situation or 136

transmissibility prior to this calibration window (Fig. 1a). Instead, we jointly estimated 137

(using Markov Chain Monte Carlo (MCMC)) combinations of R[T − τ + 1, T ] and the 138

incidence of deaths prior to the calibration window D̂t for t = {1, 2, . . . T − τ} that 139

are consistent with the observed deaths in the time window [T − τ + 1, T ]. The model 140

likelihood is given by 141

L
(〈
D̂t

〉
, R[T − τ + 1, T ] | DT−τ+1, . . . , DT

)
=

T∏
s=T−τ+1

P
(
Ds |

〈
D̂t

〉
, R[T − τ + 1, T ], DT−τ+1, . . . Ds−1,

)

=
T∏

s=T−τ+1

Poisson

(
Ds | R[T − τ + 1, T ]

s∑
k=1

Ds−kωk

) (2)

where
〈
D̂t

〉
= {D1, D2, . . . DT−τ} and D̂t = Dt for t = T − τ + 1, . . . , T . The 142
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most recent estimate of transmissibility RcurrT in this model is R[T − τ + 1, T ]. We 143

then sampled sets of back-calculated early incidence time series (D̂1, . . . D̂T−τ ) and 144

reproduction numbers (R[T − τ + 1, T ]) from the joint posterior distribution obtained in 145

the estimation process, and projected future incidence D̂T+i for i ≥ 1 conditional on 146

these as follows: 147

D̂T+i ∼ Poisson
(
RcurrT

T+i−1∑
k=1

DT+i−kωk |RcurrT , D̂1, . . . D̂T−τ , DT−τ+1, . . . DT ,

D̂T+1, . . . , D̂T+i−1

)
,

(3)

where D̂t = Dt for t = T − τ + 1, . . . , T . During the period covered in the analysis, 148

the epidemiological situation in most countries was changing rapidly with public health 149

measures being reviewed weekly. At the same time, there was a strong ‘weekend effect’ 150

in the observed data, with typically fewer deaths reported on Saturdays and Sundays. 151

We therefore assumed a fixed calibration window of 10 days to incorporate the rapid 152

dynamics and offset the lower reporting over the weekend. We ran the MCMC for 10000 153

iterations. We sampled 1000 sets of RcurrT and back-calculated incidence, and for each 154

sampled set, we drew 10 stochastic realisations of the projected incidence of deaths. 155

Model 2 (APEestim) 156

Similarly to Model 1, Model 2 relies on the renewal equation (Eq. (1)) but uses the full 157

time series of observed deaths, and uses information theory to optimise the choice of the 158

calibration window i.e. the time-window of size τ over which R[T − τ + 1, T ] is assumed 159

to be constant in the estimation process [38]. Choices of window size can influence the 160

bias and variance of resulting estimates of transmissibility [39]. We integrated over the 161

entire posterior distribution of Rt (under a given window size), to obtain the posterior 162

predictive distribution of incidence at time t+ 1 as 163

P (Dt+1 | D1, D2, . . . Dt) =

∫
R[t−τ+1,t]

P (Rt)P (Dt+1 | D1, D2, . . . Dt, Rt) dRt (4) 164
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where R[t− τ + 1, t] represents the posterior distribution of Rt assuming a window 165

of length τ . We computed this distribution sequentially for t ∈ {1, 2, . . . T − 1} and then 166

evaluated every observed count of deaths according to their likelihood under the posterior 167

predictive distribution. This allowed us to construct the accumulated predictive error 168

(APE) for a window length τ and under a given serial interval distribution as [38]: 169

APEτ =
T−1∑
t=1

− logP (Dt+1 | D1, D2, . . . Dt) (5)

Here, Dt+1 is the observed number of deaths at time t+1. The optimal window length 170

τ∗ was then chosen as the window for which APEτ is minimised (Fig. 1b), optimising 171

the bias-variance trade-off (long windows reduce the estimate variance but increase bias 172

and short windows do the converse). 173

Again, forward projections were made assuming that transmissibility over the projec- 174

tion horizon remains the same as that in the last τ∗ days. That is, RcurrT is set to be 175

R[T − τ∗ + 1, T ]. We then obtain forecasts of deaths as 176

D̂T+i ∼ Poisson
(
RcurrT

T+i−1∑
k=1

DT+i−kωk | D1, . . . , DT , D̂T+1, . . . D̂T+i−1,

)
, (6)

for i ≥ 1. We drew 1000 samples from the posterior distribution of RcurrT and for 177

each sampled value, simulated 10 forward trajectories. 178

Model 3 (DeCa) 179

Models 1 (RtI0) and 2 (APEestim) use only the time series of deaths to estimate Rt. 180

Model 3 exploits the signal from both the reported deaths and cases to forecast deaths. 181

We assumed that the delay δ between a case being reported and the case dying (for those 182

who die) is distributed according to a gamma distribution with mean µ and standard 183

deviation σ. Let fΓ be the probability mass function of a discretised gamma distribution. 184

The cumulative number of reported cases at time t weighted by the delay distribution 185

from case report to death,
∞∑
0
fΓ(x | µ, σ)Ct−x, represents the potential number of deaths 186

at time t, if all cases were to die. The ratio ρt of the observed number of deaths to this 187
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quantity at time t can be thought of as an observed case fatality ratio (Fig. 1c). We 188

assume that deaths are distributed according to a binomial distribution: 189

Dt ∼ Binomial

( ∞∑
0

fΓ(x | µ, σ)Ct−x, ρt

)
. (7)

The model likelihood is given by 190

L (ρ1, ρ2, . . . , ρT | C1, . . . , CT , D1, D2 . . . DT , µ, σ)

=
T∏
s=1

P (Ds | C1, . . . , Cs, ρs, µ, σ)

=

T∏
s=1

Binomial

( ∞∑
0

fΓ(x | µ, σ)Ct−x, ρt | C1, . . . Cs, ρs, µ, σ

)
.

(8)

We obtained a posterior distribution for ρ1, ρ2, . . . , ρT using the conjugate beta 191

prior for ρt (using the R package binom [40]), assuming that parameters of the delay 192

distribution µ and σ are known and fixed. The forecasted number of deaths at time 193

T + i for i ≥ 1 were then drawn from a binomial distribution as 194

D̂T+i ∼ Binomial

(
T+i−1∑
k=0

fΓ(k | µ, σ)CT+i−k, ρT

)
. (9)

Note that the number of deaths at time T + i depends on the number of cases from 195

the beginning of the epidemic to time T + i for i ≥ 1. That is, for forecasting deaths 196

at time T + i, we need the number of cases at time t > T . To augment the observed 197

time series of cases, we assumed that the cases in beyond T are distributed according to 198

a gamma distribution with mean and standard deviation of the observed cases in the 199

last week, implicitly assuming no growth or decline in cases. We assessed the extent to 200

which this assumption affected our results (SI Sec. 4). Finally, to include transmissibility 201

estimates from this model in the ensemble, we estimated RcurrT using the observed and 202

median forecasted deaths D1, . . . DT , D̂T+i for i ≥ 1. using the R package EpiEstim [33]. 203

We drew 10000 samples from the posterior distribution of ρT and 10000 samples 204

from a gamma distribution to augment the observed cases. We then drew 10000 samples 205
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from a binomial distribution (Eq. (9)) for each pair of augmented cases trajectory and 206

sampled ρT . 207

Ensemble Model 208

We combined the estimates of RcurrT , and the outputs of models RtI0, APEestim, and 209

DeCa into an unweighted ensemble model by sampling the forecasts and reproduction 210

number from each model described above. We also explored building a weighted ensemble 211

by weighting the contribution of each model according to the relative error of the model 212

in the previous week, all previous weeks, across all countries, or estimating the weights 213

independently for each country. We did not find any substantial difference in the 214

performance of the unweighted and weighted ensembles (not shown here). We therefore 215

restricted our analyses to an unweighted ensemble model. 216

We first drew 10000 samples from the posterior distribution of RcurrT and forecasts 217

from each model and then sampled each posterior distribution with equal weight to build 218

the ensemble posterior distribution of RcurrT and corresponding forecasts. 219

Short-term forecast horizon 220

The short-term forecast horizon was set to be 1 week. We produced forecasts for the 221

week ahead (Monday to Sunday) using the latest data up to (and including) Sunday. 222

We did not model the potential changes in the population immunity levels as any such 223

change is not expected to affect the trajectory of the epidemic over this short time 224

horizon. 225

Medium-term forecasts 226

Over the course of the epidemic, the effect of the potential depletion of the susceptible 227

population on the trajectory of the epidemic may become more pronounced. Inherently, 228

by estimating transmissibility in real-time, the models outlined above account for any 229

general decrease in the proportion of population being susceptible. However, the forecasts 230

produced do not account for any further decrease in this proportion, which may become 231

substantial when forecasting over a medium- to long-term time horizon. 232

July 19, 2021 9/32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.19.21260746doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.19.21260746
http://creativecommons.org/licenses/by-nc-nd/4.0/


Estimating transmissibility for medium-term forecasts 233

To better capture ongoing trends in transmissibility over time, we examined changes in 234

past ensemble estimates of RcurrT in consecutive weeks. To forecast over a time horizon 235

longer than a week, we developed a novel heuristic that uses, in addition to the estimates 236

of RcurrT , estimates from earlier weeks which are combined into a single weighted estimate 237

RwT as follows. Starting with the estimates of RcurrT , we went back one week at a time, 238

for as long as the 95% credible interval (CrI) of RcurrT ′ (where T ′ < T ) overlapped the 239

95% CrI of RcurrT . We then sampled from the posterior distribution of RcurrT ′ in each of 240

those weeks, with a probability that decays exponentially in the past to favour the more 241

recent estimates. That is, the distribution of RcurrT−7k contributed to RwT with a relative 242

weight proportional to e−βk (Fig. 1d). Each week, the rate of decay β was optimised by 243

minimising the relative error in the predictions for the previous week. 244

Accounting for depletion of the susceptible population due to naturally- 245

acquired immunity 246

As the weighted reproduction number Rwt already accounts for the population immunity 247

at time t, we first estimated an effective reproduction number Refft , defined as the 248

reproduction number if the entire population were susceptible. That is, 249

Refft =
Rwt
pSt

(10)

where Rwt is the weighted reproduction number at time t and pSt is the proportion of 250

population that is susceptible to infection at time t. pSt is given by 1−
t∑

j=0

Ij/N where 251

Ij is the number of infections at time j and N is the total population. In estimating 252

the potential future population immunity using this formulation, we only accounted 253

for naturally acquired immunity assuming that the immunity acquired after infection 254

persists. Since we were forecasting deaths (rather than infections), the true number 255

of infections was estimated using a country-specific age-distribution weighted Infection 256

Fatality Ratio (IFR) (SI Sec. 3). 257

We then incorporated the effect of a declining proportion of susceptible population 258

due to naturally acquired immunity as 259
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RSt+i = Refft pSt+i (11)

From the ensemble estimates of RcurrT , we first estimated RST . The medium-term 260

forecasts were then produced using the renewal equation (Eq. (1)) and the forecasts used 261

to update the estimates of RST+i for each i ≥ 1 over the forecast horizon. 262

Medium-term forecast horizon 263

The medium-term forecasts were made over a 4-week horizon using RSt . Since estimates 264

of the weighted reproduction number could only be obtained once we had sufficient 265

weekly estimates to combine, medium-term forecasts were produced from 29th March to 266

29th November 2020. 267

Epidemic Phase 268

Following Abbott et al. [41], we defined the epidemic phase in a country at time t using 269

the distribution of the reproduction number at t (Rcurrt for the short-term forecasts 270

and RSt for the medium-term forecasts). At time t, we defined the epidemic phase in a 271

country to be: 272

• ‘definitely growing’ if Rcurrt < 1 in less than 5% of the samples of the posterior 273

distribution; 274

• ‘likely growing’ if Rcurrt < 1 in less than 20% of the samples of the posterior 275

distribution; 276

• ‘definitely decreasing’ if Rcurrt > 1 in less than 5% of the samples of the posterior 277

distribution; 278

• ‘likely decreasing’ if Rcurrt > 1 in less than 20% of the samples of the posterior 279

distribution; 280

• ‘indeterminate’ otherwise. 281
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Assessing model performance 282

The model forecasts were validated against observed deaths as these became available. 283

To quantitatively assess the performance of the model for both short- and medium-term 284

forecasts, we used the mean relative error (MRE) and the coverage probability i.e. the 285

proportion of observations that are in a given credible interval of the distribution of 286

forecasts (SI Sec. 5). Following Gu [42], we compared the absolute error of the model 287

(the absolute difference between the forecasts and observations averaged across simulated 288

trajectories) with the error of a model that used (i) the average of the last 10 observations 289

as a forecast for the week ahead (no growth), and (ii) forecasted using a linear model 290

fitted to the last 10 observations (linear growth). 291

Data and epidemiological parameters 292

We used the number of COVID-19 cases and deaths reported by the World Health 293

Organisation (WHO) [1]. Any data anomalies were corrected using data published by 294

the European Centre for Disease Prevention and Control [43], or other sources (SI Sec. 2). 295

For the weekly analysis, we defined a country as having evidence of active transmission 296

if at least 100 deaths had been reported, and at least ten deaths were observed in each 297

of the past two weeks (SI Sec. 2). Countries with large variability in the reported deaths 298

within each week over the analysis period were excluded from the final analysis for this 299

work (SI Sec. 2 lists the full exclusion criterion). Results for 81 countries were included 300

in the work presented here. 301

We assumed a gamma distributed serial interval with mean 6.48 days and standard 302

deviation of 3.83 days following [44]. For simplicity, we assumed that the delay in 303

reporting a death is the same as the delay from onset to a case being reported. We 304

assumed that the delay in reporting of deaths follows a gamma distribution with mean of 305

10 days, and standard deviation of 2 days. These figures are roughly consistent with an 306

onset-to-death delay of 15.9 days [45] and onset-to-diagnosis delay of 6.6–6.8 days [46]. 307

The serial interval and delay distributions were discretised using R package EpiEstim [33]. 308

We used a country-specific population-adjusted IFR estimated using the IFR reported 309

in the REACT study (SI Sec. 3). 310
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Results 311

Short-term forecasts and model performance 312

Beginning 8th March 2020, we produced weekly forecasts for every country with evidence 313

of sustained transmission. As the pandemic rapidly spread across the world, the number 314

of countries included in the weekly analysis grew from 3 in the first week (week beginning 315

8th March 2020), to 94 in the last week of analysis included in this study (week beginning 316

29th November 2020) (SI Fig. 1). 317

Overall, the ensemble model performed well in capturing the short-term trajectory of 318

the epidemic in each country. Across all weeks of forecast and all countries, an average 319

58.7% (SD 32.4%) of the observations were in the 50% credible interval (CrI) and 89.4% 320

(SD 21.7%) of the observations were in 95% CrI (for a breakdown by country and week 321

of forecast see SI Sec. 5.5). 322

The MRE across all countries and all weeks was 0.4 (SD 0.4) (Fig. 3). That is, on 323

average the model forecasts were 0.4 times lower or higher than the observed incidence. 324

In most countries, the reporting of both cases and deaths through the week was variable, 325

with fewer numbers reported on some days of the week (typically, Saturday and Sunday). 326

The variability in reported deaths strongly influenced the model performance. The MRE 327

scaled linearly with the coefficient of variation (ratio of the standard deviation to the 328

mean) in the reported deaths for the week of forecasting. Thus, the error in forecasts 329

was on average similar to the variability in the reported deaths (SI Fig. 6). The MRE of 330

the model scaled inversely with the weekly incidence i.e. the error was relatively large 331

when the incidence was low (SI Fig. 6), as estimates of reproduction number when the 332

incidence is low are inherently more unstable [47]. 333

The model performance was largely consistent across epidemic phases (growing, 334

likely growing, decreasing, likely decreasing and indeterminate) with similar coverage 335

probability and MRE (SI Table 1). The slightly larger proportion of observations in 336

the 50% and 95% credible intervals for the ‘indeterminate’ phase and the larger MRE 337

in this phase together suggest that the model was ‘under-confident’ with large credible 338

intervals [48]. 339

We compared the performance of the model with that of a null no-growth model. In 340

most instances, the ensemble model outperformed the null model. In 80.9% of the weeks 341
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in ‘definitely decreasing’ phase and 61.4% of weeks in ‘definitely growing’ phase, the 342

absolute error of the model was smaller than the error made by the null model (Fig. 3, 343

SI Sec. 5.2, SI Table 2). The null model performed better when the trajectory of the 344

epidemic in a country was relatively stable exhibiting little to no change over the time 345

frame of comparison. This is to be expected as the null model describes precisely this 346

stable dynamic. Indeed, in 68.1% of the weeks in the ‘likely growing’ phase and 67.1% 347

weeks classified as ‘indeterminate’ phase, the absolute error of the model was larger than 348

the error made by the null model. However, the relative error of the model remained 349

small even in countries and weeks where it did not perform as well as the null model. 350

Similarly, our model performed better than a linear growth model across all phases, 351

specifically in 96.4% of the weeks in ‘definitely decreasing’ phase and 70.3% weeks in 352

‘definitely growing’ phase (SI Sec. 5.3, SI Table 2). 353

Medium-term forecasts and model performance 354

The rapidly changing situation and the various interventions deployed to stem the growth 355

of the pandemic make forecasting at any but the shortest of time horizons extremely 356

challenging [49]. Despite these challenges, we find that our medium-term forecasts were 357

able to robustly capture the epidemic trajectory (Fig. 4) in all countries included in the 358

analysis (4). 359

Overall, the MRE remained small over a 4-week forecast horizon, with errors increasing 360

over the projection horizon (SI Sec. 6.1). We therefore restricted the projection horizon 361

to 4 weeks. The MRE across all countries in 1-week ahead forecasts was 0.4 (SD 0.3), 362

increasing to 2.6 (SD 28.3) in 4-week ahead forecasts (Fig. 5, SI Fig. 10). The MRE for 363

1-week ahead forecasts was less than 1 (indicating that the magnitude of the error was 364

smaller than the observation) in 91.1% of weeks for which we produced forecasts. The 365

corresponding figure for 4-week ahead forecasts was 66.0% (SI Table 3). 366

The proportion of observations in the 50% CrI remained consistent across the forecast 367

horizon and varied from 56.3% (SD 33.4%) in 1-week ahead forecasts to 45.6% (SD 368

40.9%) in 4-week ahead forecasts (SI Fig. 11, SI Fig. 12). 369

More importantly, using RSt estimates from Eq. (11), we accurately characterised 370

the phase of the epidemic in each country. Across the 81 countries and 2210 weeks 371
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(15470 days) for which we produced both short- and medium-term forecasts, the phase 372

definition using the reproduction number estimates from medium-term forecasts (RSt ) 373

was consistent with that using the estimates from the short-term forecasts (Rcurrt ) in 374

87.6% (13559/15470) of country-days (number of countries X number of days for which 375

we produced forecasts. The phase definition using reproduction number estimates from 376

medium-term forecasts was updated each day over the forecast horizon while the short- 377

term forecasts assigned the same phase to all days of a week.) in 1-week ahead forecasts 378

and in 84.9% (13138/15470) of country-days in 4-week ahead forecasts (Fig. 6). When 379

the phase definitions using RSt and Rcurrt were different, the medium-term estimates 380

most frequently misclassified them as a phase with greater uncertainty. For instance, 381

in 253 weeks when the epidemic phase was identified as ‘definitely decreasing’ using 382

weekly estimates and incorrectly characterised using medium-term estimates, it was 383

misclassified as ‘likely decreasing’ in 100% (253/253 weeks) of country-days. Similarly, in 384

the misclassified weeks, when the epidemic phase using weekly transmissibility estimates 385

was ‘definitely growing’, the medium-term classification was ‘indeterminate’ in 43.7% 386

(1175/2688) and ‘likely growing’ in 56.3% (1513/2688) of the country-days. This mis- 387

characterisation is expected as the uncertainty in estimates of RSt grows over the forecast 388

horizon. Crucially, none of the weeks where RSt misclassified the epidemic phase, the 389

phase using Rcurrt indicated the opposite trend (growing classified as decreasing or vice 390

versa). This finding shows that the medium-term transmissibility estimates can be used 391

a reliable indicator of the overall direction of the epidemic trajectory. 392

Discussion 393

Models used to forecast COVID-19 cases and/or deaths vary in complexity in the data 394

used for model calibration. More complex and/or granular models rely on multiple 395

data streams including data on hospital admissions and occupancy, testing, serological 396

surveys and data on patient clinical progression and outcomes [21]. Such complex 397

location-specific models can provide crucial insights into the ongoing epidemic and 398

inform targeted public health interventions by synthesising evidence from different data 399

streams. However, scaling such analysis to include multiple geographies is challenging 400

because of the variability in availability and reliability of local surveillance data. The 401
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computational time needed to fit complex models make scaling them difficult and delays 402

the timely provision of risk estimates. 403

In addition to the variable availability of surveillance data across countries, the wide- 404

scale societal and behavioural changes brought about by the pandemic impose practical 405

constraints on utilising data that are available for multiple countries. For instance, widely 406

available data on the changes in mobility inferred from mobile phone usage released by 407

Google and Apple were informative of the changes in transmission in the early phase of 408

the COVID-19 pandemic and were used in several modelling studies [50,51]. Although 409

these data continue to be available, recent evidence suggests a decoupling of transmission 410

and mobility in most countries [35,52]. Models that relied on such additional data [51] 411

or assumptions about non-pharmaceutical interventions [53] could not fit the observed 412

trajectory well as the situation continued to change over the course of the epidemic. 413

Efforts to model and forecast COVID-19 transmission dynamics must therefore meet 414

the challenges of a long and ongoing pandemic spread over an unprecedented scale. 415

Modelling groups around the world have attempted to meet one or both challenges with 416

various analyses conducted at a sub-national scale [54], at a national scale for a specific 417

country [22,55–57], and for several countries across the globe [41,58,59]. In contrast to 418

models built for a region or country and calibrated using local data, models that aim to 419

provide a global overview must be sufficiently general to describe the epidemic trajectory 420

in a range of countries/regions using widely available data that are consistently available 421

over time. 422

We have produced short-term forecasts and estimates of transmissibility for 81 423

countries for more than 65 weeks at the time of writing implementing three simple 424

models that use only the time series of COVID-19 cases and deaths. We have thus 425

traded particularity for generality, to allow us to carry out analysis for a large number 426

of countries over a long period of time. As our methods make few assumptions and use 427

routine surveillance data, they can be easily used during any other future outbreaks. 428

Despite the challenges inherent in forecasting a fast-moving pandemic in the presence 429

of unprecedented public health interventions, our ensemble model was able to successfully 430

capture the short-term transmission dynamics across all countries included in the analysis 431

with small relative error in the weekly forecasts across different COVID-19 waves in 432

each country. The variable performance of our model in weeks and countries with fewer 433
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deaths and/or large variability in reported deaths over weeks reflects this trade-off. 434

In the absence of more detailed data, we assumed that epidemiological parameters 435

such as the delay from onset of symptoms to death were the same across all countries 436

and throughout the period of analysis. These parameters are likely to vary over time 437

and between countries and using country-specific parameters could lead to moderate 438

improvements in the model fits and forecast performance. 439

Due to the variability in testing and reporting of cases across different countries and 440

over time within countries, using the reported number of cases to estimate transmissibility 441

and produce forecasts is difficult without using more complex models. For these reasons, 442

we primarily used deaths to estimate the reproduction number as we assumed that 443

reporting of COVID-19 deaths was more complete and consistent over time and across 444

different country surveillance systems. Although this assumption is unlikely to hold for 445

many countries [60–62], our methods are robust to a constant rate of under-reporting 446

over time as this would not alter the overall epidemic trends. A limitation of our work is 447

that our estimates reflect the epidemiological situation with a delay of approximately 19 448

days (the delay from an infection to a death [53]). Nevertheless, our short-term forecasts 449

and transmissibility estimates provide a valuable global overview and continuous insights 450

into the dynamic trajectory of the epidemic in different countries. They also provide 451

indirect evidence about the effectiveness of public health measures. Future research 452

could investigate integrating more data streams into the models. In addition to the 453

weekly reports that we publish, our work has also contributed to other international 454

forecasting efforts [22,48,55]. 455

We developed a simple heuristic to combine past estimates of transmissibility and a 456

decline in the proportion of susceptible population to produce medium-term forecasts. 457

We were able to achieve good model performance in forecasting up to 4 weeks ahead. 458

Consistent with findings from other modelling studies [22], we found that the model 459

error was unacceptably high beyond 4 weeks, suggesting that forecasting beyond this 460

horizon is difficult. Importantly, our characterisation of the epidemic phase using 461

weighted estimates of transmissibility were largely in agreement with that using short- 462

term transmissibility estimates. Thus, our method was successful at capturing the 463

broad trends in transmission up to 4 weeks ahead. The medium-term forecasts can 464

therefore serve as a useful planning tool as governments around the world plan further 465
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implementation or relaxation of non-pharmaceutical interventions. 466

Our method incorporates the depletion of susceptible population and hence can in 467

principle be extended to account for increasing population immunity as vaccination is 468

rolled out across the world. However, inclusion of vaccine induced immunity depends 469

on the availability of reliable data on vaccination coverage. Further, even if such data 470

were available, teasing apart the impact of vaccination on transmission and mortality 471

could be non-trivial. In light of these issues, it might be challenging to extend our 472

approach to rigorously assess the effect of vaccination on epidemic trajectory on a global 473

scale. However, our latest estimates of transmissibility indirectly reflect the impact of 474

vaccination on transmission, allowing for the delay from vaccination to full immunity, 475

and from infection to death. As we continue to track COVID-19 transmissibility globally, 476

any temporal changes in transmissibility would implicitly account for the changes due to 477

differential vaccination coverage. 478

Mathematical modelling and forecasting efforts have supported data-driven decision 479

making throughout this public health crisis. Our work has aimed to improve global 480

situational awareness. Using relatively simple approaches, we were able to produce 481

robust forecasts for COVID-19 in 81 countries and provide crucial and actionable insights. 482

This effort is being continued [26] as the world continues to grapple with renewed waves 483

of COVID-19 cases. 484

Supporting information 485

S1 File. Additional results. The supplementary file contains additional results on 486

model performance. 487

S1 2. Web tool. An interactive web-tool available at https://shiny.dide.imperial. 488

ac.uk/covid19-forecasts-shiny/ presents both short- and medium-term forecasts, 489

and reproduction number estimates for all countries included in the analysis. 490

Acknowledgements 491

The authors acknowledge funding from the MRC Centre for Global Infectious Disease 492

Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research Council 493

July 19, 2021 18/32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.19.21260746doi: medRxiv preprint 

https://shiny.dide.imperial.ac.uk/covid19-forecasts-shiny/
https://shiny.dide.imperial.ac.uk/covid19-forecasts-shiny/
https://shiny.dide.imperial.ac.uk/covid19-forecasts-shiny/
https://doi.org/10.1101/2021.07.19.21260746
http://creativecommons.org/licenses/by-nc-nd/4.0/


(MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), under the 494

MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme supported 495

by the European Union. JW acknowledges research funding from the Wellcome Trust 496

(grant 102169/Z/13/Z). SB acknowledges funding from the Wellcome Trust (219415). 497

This study is partially funded by the National Institute for Health Research (NIHR) 498

Health Protection Research Unit in Modelling and Health Economics, a partnership 499

between Public Health England, Imperial College London and LSHTM (grant code 500

NIHR200908); and acknowledges funding from the MRC Centre for Global Infectious 501

Disease Analysis (reference MR/R015600/1), jointly funded by the UK Medical Research 502

Council (MRC) and the UK Foreign, Commonwealth & Development Office (FCDO), 503

under the MRC/FCDO Concordat agreement and is also part of the EDCTP2 programme 504

supported by the European Union. The views expressed are those of the author(s) and 505

not necessarily those of the NIHR, Public Health England or the Department of Health 506

and Social Care. 507

References 508

1. WHO Coronavirus Disease (COVID-19) Dashboard; 2021. https://covid19. 509

who.int. 510

2. Lipsitch M, Finelli L, Heffernan RT, Leung GM, Redd; for the 2009 H1N1 Surveil- 511

lance Group SC. Improving the evidence base for decision making during a 512

pandemic: the example of 2009 influenza A/H1N1. Biosecurity and Bioterrorism: 513

Biodefense Strategy, Practice, and Science. 2011;9(2):89–115. 514

3. WHO Ebola Response Team. Ebola Virus Disease in West Africa – The First 515

9 Months of the Epidemic and Forward Projections. New England Journal of 516

Medicine. 2014;371:1481–1495. doi:10.1056/NEJMoa1411100. 517

4. The Ebola Outbreak Epidemiology Team. Outbreak of Ebola virus disease in the 518

Democratic Republic of the Congo, April & May, 2018: an epidemiological study. 519

The Lancet. 2018;392:213–221. doi:10.1016/S0140-6736(18)31387-4. 520

July 19, 2021 19/32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.19.21260746doi: medRxiv preprint 

https://covid19.who.int
https://covid19.who.int
https://covid19.who.int
https://doi.org/10.1101/2021.07.19.21260746
http://creativecommons.org/licenses/by-nc-nd/4.0/


5. Nsoesie E, Mararthe M, Brownstein J. Forecasting Peaks 521

of Seasonal Influenza Epidemics. PLoS Currents. 2013;5. 522

doi:10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc. 523

6. Bogoch II, Brady OJ, Kraemer MU, German M, Creatore MI, Kulkarni MA, 524

et al. Anticipating the international spread of Zika virus from Brazil. The Lancet. 525

2016;387(10016):335–336. 526

7. WHO Ebola Response Team. West African Ebola Epidemic after One Year — Slow- 527

ing but Not Yet under Control. New England Journal of Medicine. 2015;372(6):584– 528

587. doi:10.1056/NEJMc1414992. 529

8. Meltzer MI, Atkins CY, Santibanez S, Knust B, Petersen BW, Ervin ED, et al. 530

Estimating the future number of cases in the Ebola epidemic–Liberia and Sierra 531

Leone, 2014–2015. 2014;. 532

9. Barry A, Ahuka-Mundeke S, Ali Ahmed Y, Allarangar Y, Anoko J, Archer BN, 533

et al. Outbreak of Ebola virus disease in the Democratic Republic of the Congo, 534

April–May, 2018: an epidemiological study. The Lancet. 2018;392(10143):213–221. 535

doi:10.1016/S0140-6736(18)31387-4. 536

10. Biggerstaff M, Johansson M, Alper D, Brooks LC, Chakraborty P, Farrow DC, et al. 537

Results from the second year of a collaborative effort to forecast influenza seasons 538

in the United States. Epidemics. 2018;24:26–33. doi:10.1016/j.epidem.2018.02.003. 539

11. for the Influenza Forecasting Contest Working Group, Biggerstaff M, Alper D, 540

Dredze M, Fox S, Fung ICH, et al. Results from the Centers for Disease Control and 541

Prevention’s predict the 2013–2014 Influenza Season Challenge. BMC Infectious 542

Diseases. 2016;16(1):357. doi:10.1186/s12879-016-1669-x. 543

12. Verity R, Okell L, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of 544

the severity of coronavirus disease 2019: a model-based analysis. Lancet Infectious 545

Diseases. 2020;doi:10.1016/S1473-3099(20)30243-7. 546

13. Nishiura H, Linton NM, Akhmetzhanov AR. Serial interval of novel coro- 547

navirus (COVID-19) infections. International Journal of Infectious Diseases. 548

2020;doi:10.1016/j.ijid.2020.02.060. 549

July 19, 2021 20/32

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 22, 2021. ; https://doi.org/10.1101/2021.07.19.21260746doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.19.21260746
http://creativecommons.org/licenses/by-nc-nd/4.0/


14. Ali ST, Wang L, Lau EH, Xu XK, Du Z, Wu Y, et al. Serial interval of SARS- 550

CoV-2 was shortened over time by nonpharmaceutical interventions. Science. 551

2020;369(6507):1106–1109. doi:10.1126/science.abc9004. 552
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Figures 693

(a)
(b)

(c) (d)

Fig 1. Schematic of the models (a) Model 1 assumes a single value for R[T−τ+1, T ].
The model is fitted using only the data in this window (T −τ+1 to T ) to jointly estimate
the initial incidence of deaths and R[T − τ + 1, T ]. (b) Model 2 optimises the window
over which Rt is assumed to be constant by minimising the cumulative predictive error
over the entire epidemic time series. Estimates from R[T − τ∗+ 1, T ] are used to forecast
into the future, with τ∗ the window of optimal length. (c) Model 3 uses data from both
cases and deaths. The dashed blue curve represents the incidence of reported cases
weighted by the case-report to death delay distribution, where µ is the mean delay. ρt
is the ratio of the observed deaths and the weighted cases at time t and is analogous
to an observed case fatality ratio. Forecasts of deaths are obtained by sampling from a
binomial distribution using the most recent estimate of ρT . See also SI Fig. 3. (d) To
obtain medium-term forecasts, we combine the most recent transmissibility estimate
RcurrT (shown in dark blue) with estimates of transmissibility in the previous weeks to
produce a weighted estimate of transmissibility RwT (filled in pink) at time T . Estimates
from previous weeks are combined with the most recent estimates if the 95% CrI of
estimates in week k, RcurrT−7k overlaps the 95% CrI of RcurrT . Estimates for weeks where
the 95% CrI overlap are shown in light purple, and where the 95% CrI do not overlap
in grey. The dashed horizontal lines represent the 2.5th and 97.5th quantile of RcurrT .
We combine the estimates by sampling from the posterior distribution of RcurrT−7k with

probability proportional to e−β∗k, where β is a rate at which the probability decays as
we go back in time.
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Fig 2. Short-term forecasts. The short-term forecasts and observed deaths for six
countries: Brazil, India, Italy, South Africa, Turkey and the United States of America
(USA). For each country, the top panel shows the observed deaths in gray; the solid green
line shows the median forecast. The shaded interval represents the 95% CrI of forecasts.
The forecasts were produced using the most recent estimates of RcurrT assuming that the
transmissibility remains constant. The bottom panel for each country shows the effective
reproduction number (RcurrT ) used to produce the forecasts. The solid green line in the
bottom panel for each country is the median estimate of RcurrT while the shaded region
represents the 95% CrI. The dashed red line indicates the RcurrT = 1 threshold. Note
that the y-axis is different for each subfigure. See SI 2 for results for all other countries.
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(a) (b)

Fig 3. Short-term forecasts MRE and comparison with null model (a) The
mean relative error of the ensemble model for each week of forecast (x-axis) and for each
country (y-axis). Dark blue cells indicate weeks where the relative error of the model
was greater than 2. (b) The ratio of the absolute error of the model to the absolute
error of a no-growth null model that uses the average of the last 10 days as a forecast
for the week ahead. Shades of green show weeks for a given country where the ratio was
smaller than 1 i.e., the ensemble model error was smaller, and weeks where the ratio was
greater than 1 i.e. the ensemble model error was larger than the null model error are
shown in shades of red (yellow to red). Dark blue indicates weeks when the ratio was
larger than 2. In order to present a representative sample, we first ranked all countries
by the percentage of weeks in which ensemble model error was smaller than the null
model error. We then selected every third country from the top 75 countries in this list.
Results for the selected 25 countries are shown here. See SI Fig. 4 for the results for
other countries. Ordering of countries in the figure reflects the order in the ranked list
i.e. countries with the highest percentage of weeks with model error smaller than null
model error are shown on the top.
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Fig 4. Medium-term forecasts. The medium-term forecasts and observed deaths for
six countries: Brazil, India, Italy, South Africa, Turkey and the United States of America
(USA). For each country, the top panel shows the observed deaths in grey; the solid
green line shows the median the 4-weeks ahead forecast. The shaded interval represents
the 95% CrI of forecasts. The bottom panel for each country shows the median (solid
black line) and the 95% CrI (grey shaded area) of weekly estimate of Rcurrt from the
short-term forecasts and the median (green line) and the 95% CrI (shaded green area )
of RSt i.e. the reproduction number accounting for depletion of susceptible population
from the medium-term forecasts over a 4-week horizon ( Methods). The dashed red line
indicates the RSt = 1 threshold. Note that the y-axis is different for each subfigure. The
forecasts were produced every week over a 4-week forecast horizon. The figure shows all
non-overlapping forecasts over the course of the pandemic. See SI 2 for results for all
other countries and weeks.
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Fig 5. Relative error of medium-term forecasts. The mean relative error of the
model in 1-week, 2-week, 3-week and 4-week ahead forecasts for each week when a
forecast was made (x-axis) and for each country (y-axis). Blue cells indicate weeks where
the relative error of the model was greater than 2. For ease of presentation, results
are shown for the same 25 countries as Fig. 2. See SI Sec. 5 for the results for other
countries.
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Fig 6. Characterisation of the epidemic phase. For a given classification of
epidemic phase using the weekly estimates of the reproduction number from the short-
term forecasts(x-axis), the figures in the cell show the percentage of days for which the
characterisation was consistent using the medium-term reproduction number estimates
(show on the y-axis)
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