1

1 SARS-CoV-2-specific Humoral Immune Responses after A Single dose of

2 Inactivated Whole-virus SARS-CoV-2 Vaccine in Kidney Transplant

3 Recipients: An Initial Report

- 4 Jackrapong Bruminhent, MD^{1,2}, Sarinya Boongird, MD^{2,3}, Montira Assanatham, MD^{2,3},
- 5 Sasisopin Kiertiburanakul, MD, MHS¹, Kumthorn Malathum, MD¹, Arkom Nongnuch, MD^{2,3},
- 6 Angsana Phuphuakrat, MD, PhD¹, Pongsathon Chaumdee, MD⁴, Sopon Jirasiritham, MD^{2,5,6},
- 7 Chitimaporn Janphram, MD⁷, Sansanee Tossiri, MD⁷, Supparat Upama, MD⁸, Chavachol
- 8 Sethaudom^{9,*}
- 9
- ¹Division of Infectious Diseases, Department of Medicine, Faculty of Medicine Ramathibodi
- 11 Hospital, Mahidol University, Bangkok, Thailand
- 12 ²Excellence Center of Organ Transplantation, Faculty of Medicine Ramathibodi Hospital,
- 13 Mahidol University, Bangkok, Thailand
- ³Division of Nephrology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital,
- 15 Mahidol University, Bangkok, Thailand
- ⁴Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University,
- 17 Bangkok, Thailand
- 18 ⁵Division of Vascular and Transplant Surgery, Department of Surgery, Faculty of Medicine
- 19 Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
- ⁶Praram 9 Hospital, Bangkok, Thailand
- ⁷Somdech Phra Debaratana Medical Center, Faculty of Medicine Ramathibodi Hospital, Mahidol
- 22 University, Bangkok, Thailand
- 23 ⁸Samitivej Hospital Sukhumvit, Bangkok, Thailand

2

- ⁹Immunology Laboratory, Department of Pathology, Faculty of Medicine Ramathibodi Hospital,
- 25 Mahidol University, Bangkok, Thailand
- 26
- 27 *Correspondence
- 28 Chavachol Sethaudom
- 29 chavachol@hotmail.com
- 30 Abstract

31 We presented an initial pilot study report focused on immunogenicity and safety 32 following an inactivated whole-virus severe acute respiratory syndrome coronavirus 2 33 vaccination among kidney transplant (KT) recipients. At four weeks after the first dose of 34 vaccine, the level of anti-receptor-binding domain IgG antibody was not significantly different 35 compared to before vaccination in 30 KT recipients (p = 0.45). Moreover, a significant lower 36 mean (95% CI) anti-receptor-binding domain IgG antibody was observed compared to 30 37 immunocompetent controls (2.4 [95% CI 1.3-3.5] vs. 173.1 [95% CI 88.3-2,457.9] AU/mL, p < 0.001). Mild adverse events included fever (17%) and localized pain at the injection site (14%) 38 39 were observed after vaccination.

40 **Brief report**

Solid-organ transplant (SOT) recipients are at greater risk of significant coronavirus
disease 2019 (COVID-19) related morbidity and mortality.¹ Immunization against severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered one of the most promising
strategies to alleviate unfavorable consequences among SOT recipients and their allograft.

45 Several platforms of the SARS-CoV-2 vaccine were developed and utilized variably 46 worldwide among immunocompetent individuals. Data on SARS-CoV-2-specific immune

3

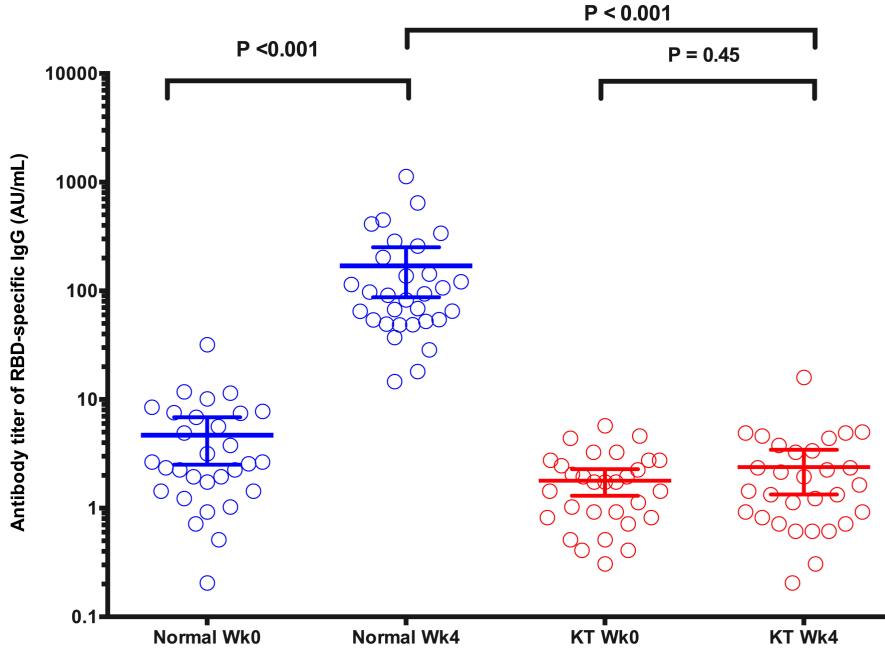
47 responses among patients with immunocompromised states such as those receiving SOT has 48 been scarce. Few recent studies evaluated the immunogenicity of SARS-CoV-2 messenger RNA 49 vaccine in SOT recipients receiving immunosuppressant revealed an acceptable safety profile. 50 However, a significant proportion of recipients who developed suboptimal immunologic 51 response after a single and double dose of the vaccine is a concern (17% and 54%, 52 respectively).^{2,3,4} On the other hand, immunogenicity, and safety following immunization with an 53 inactivated whole-virus SARS-CoV-2 vaccine among SOT recipients have not been assessed.⁵

54 A pilot, multi-center, prospective study of adult Asian KT recipients who received a 4week interval immunization of an inactivated whole-virus SARS-CoV-2 vaccine, CoronaVac® 55 56 (Sinovac Biotech Ltd.) was conducted from April 2021 to June 2021. SARS-CoV-2-specific 57 humoral immunity was measured before, one month after the first dose, using a quantitative 58 assay of SARS-CoV-2 immunoglobulin G (IgG) assay (Abbott diagnostics) that tests for 59 antibodies against the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, which 60 reported in arbitrary units (AU)/mL. Those were also referenced to immunocompetent patients. 61 The study was approved by the Institutional Review Board of the Faculty of Medicine 62 Ramathibodi Hospital, Mahidol University, Bangkok, Thailand (MURA2021/242). All patients 63 provided written informed consent prior to participation.

A total of adult 60 patients was recruited into the study and comprised of immunocompetent patients (n=30) and KT recipients (n=30). Among KT recipients, the median age was 47 years (interquartile range [IQR], 41-52 years), and 67% of them were men. The median time since transplant was 3.6 years (IQR, 2-9.5 years). The maintenance immunosuppression regimen included tacrolimus (57%), cyclosporine (29%), corticosteroids (97%), mycophenolic acid (91%), sirolimus (3%), and everolimus (3%). At four weeks after the

4

70	first dose of vaccine, a mean (95% confidence interval [CI]) of anti-receptor-binding domain		
71	IgG antibody was not significantly different compared to before vaccination in all participants (p		
72	= 0.45) Figure 1. KT recipients developed significantly lower anti–receptor-binding domain IgC		
73	antibody compared to immunocompetent patients (2.4 [95% CI 1.3-3.5] vs. 173.1 [95% CI 88.3		
74	2,457.9] AU/mL, $p < 0.001$). Approximately half of the participants did not report any adverse		
75	events (AEs) followed by mild AEs such as fever (17%) and pain at the injection site (14%). No		
76	serious AEs observed.		
77	Our initial report revealed that KT recipients receiving the first dose of an inactivated		
78	whole-virus SARS-CoV-2 vaccine could remain vulnerable to infection, however, with		
79	infrequent and mild adverse reactions. A complete result is ongoing, and further large-scale		
80	studies reaffirmed this result is needed (Thai Clinical Trials Registry, TCTR20210226002).		
81			
82	Disclosure		
83	The authors of this manuscript have no conflicts of interest to disclose		
84			
85	Funding		
86	This study was granted by the National Research Council of Thailand (102912).		
87			
88	References		
89			
90	1. Hadi YB, Naqvi SF, Kupec JT, Sofka S, Sarwari A. Outcomes of Coronavirus Infectious		
91	Disease -19 (COVID-19) in Solid Organ Transplant Recipients: A Propensity Matched		
92	Analysis of a Large Research Network. Transplantation. 2021 Feb 5.		


5

93	2.	Marion O, Del Bello A, Abravanel F, Couat C, Faguer S, Esposito L, Hebral AL, Izopet
94		J, Kamar N. Safety and Immunogenicity of Anti-SARS-CoV-2 Messenger RNA
95		Vaccines in Recipients of Solid Organ Transplants. Ann Intern Med. 2021 May 25.
96	3.	Boyarsky BJ, Werbel WA, Avery RK, Tobian AAR, Massie AB, Segev DL, Garonzik-
97		Wang JM. Immunogenicity of a Single Dose of SARS-CoV-2 Messenger RNA Vaccine
98		in Solid Organ Transplant Recipients. JAMA. 2021 May 4;325(17):1784-1786.
99	4.	Boyarsky BJ, Werbel WA, Avery RK, Tobian AAR, Massie AB, Segev DL, Garonzik-
100		Wang JM. Antibody Response to 2-Dose SARS-CoV-2 mRNA Vaccine Series in Solid
101		Organ Transplant Recipients. JAMA. 2021 May 5:e217489.
102	5.	Baraniuk C. What do we know about China's covid-19 vaccines? BMJ. 2021 Apr
103		9;373:n912.
104		
105	Figur	e legend
106	Figur	e 1 A mean with 95% confidence interval of anti-receptor-binding domain

107 immunoglobulin G antibody in immunocompetent patients and kidney transplant recipients
108 before and at four weeks after a single dose of inactivated whole-virus SARS-CoV-2 vaccine.

109

110

