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ABSTRACT 23 
 24 
Trachoma is an infectious disease characterized by repeated exposures to Chlamydia 25 
trachomatis (Ct) that may ultimately lead to blindness. District-level estimates of clinical disease 26 
are currently used to guide control programs. However, clinical trachoma is a subjective 27 
indicator. Serological markers present an objective, scalable alternative for monitoring and 28 
targeting of more intensive control efforts. We hypothesized that IgG seroprevalence in 29 
combination with geospatial layers, machine learning, and model-based geostatistics would be 30 
able to accurately predict future community-level ocular Ct infections detected by PCR. Among 31 
40 communities in the hyperendemic Amhara region of Ethiopia, median Ct infection prevalence 32 
among children 0-5 years old increased from 6% at enrollment to 29% at month 36. 33 
Seroprevalence was the strongest concurrent predictor of infection prevalence at month 36 34 
among children 0-5 years old (cross-validated R2 = 0.75, 95% CI: 0.58-0.85), though predictive 35 
performance declined substantially with increasing temporal lag between predictor and outcome 36 
measurements. Geospatial variables, a spatial Gaussian process, and stacked ensemble 37 
machine learning did not meaningfully improve predictions. Serological markers among children 38 
0-5 years old may be a promising programmatic tool for identifying communities with high levels 39 
of active ocular Ct infections, but accurate, future prediction in the context of changing 40 
transmission remains a challenge. 41 
 42 
INTRODUCTION 43 
 44 
Trachoma, caused by ocular infection with the bacterium Chlamydia trachomatis (Ct), is a 45 
leading infectious cause of blindness worldwide (1) and has been targeted for elimination as a 46 
public health problem by 2030 (2). The World Health Organization’s SAFE strategy (Surgery, 47 
Antibiotics, Facial cleanliness, and Environmental improvement) has been successful in 48 
countries across Asia and the Middle East, achieving elimination as a public health problem in 49 
many cases (2). Yet, trachoma is a persistent challenge in pockets of Africa, including some 50 
areas of Ethiopia that remain hyperendemic despite over 10 years of control activities (3). The 51 
ability to efficiently identify potential areas of ongoing transmission for follow-up surveys and 52 
more intensive interventions is crucial for the trachoma endgame. 53 
 54 
Trachoma elimination programs are currently guided by estimates of clinical disease markers, 55 
including trachomatous inflammation — follicular (TF), in evaluation units (EUs) of 100,000-56 
250,000 people (4). Evidence of trachoma clusters at the village- or sub-village level throughout 57 
Africa (5–10) suggest that aggregate estimates may mask heterogeneity in infection: high-58 
transmission villages may be missed by sampling design or their signal may be “washed out” in 59 
EU-level averages. Fine-scale estimates of trachoma could facilitate targeted allocation of 60 
limited resources to communities with the highest burden (11) and reduce unnecessary 61 
antibiotic use and subsequent selection for antibiotic resistance (12). 62 
 63 
Mass drug administration (MDA) of azithromycin is currently recommended for EUs with TF 64 
prevalence above 5% among children aged 1-9 years old (2). Clinical disease states are 65 
relevant signals of progression towards conjunctival scarring and ultimately blindness (1) but are 66 
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subject to misclassification, even by experienced graders (13). Immunoglobulin G (IgG) 67 
antibody responses to Pgp3 and CT694 antigens are a more objective alternative and have 68 
been identified as sensitive, specific, and durable indicators of past ocular Ct infection (14, 15). 69 
In addition, dried blood spot specimens used to assess serological markers are easy to collect, 70 
and Ct antigens can be included in multiplexed, integrated serosurveillance platforms to 71 
simultaneously and cost-effectively monitor numerous pathogens (16).   72 
 73 
Thus far, efforts to predict future trachoma prevalence at the village and district level have had 74 
modest success (17, 18) but have not considered serology or recent advances in machine 75 
learning and geostatistics that may facilitate fine-scale prediction. We hypothesized that models 76 
incorporating trachoma indicators (clinical disease, ocular Ct infection identified by polymerase 77 
chain reaction (PCR), and IgG response to Ct antigens), remotely sensed geospatial layers, and 78 
spatial structure would accurately predict future community-level Ct infection prevalence. We 79 
also hypothesized that seroprevalence would be a more accurate and stable predictor of Ct 80 
infections compared to clinical disease and that communities with high levels of infection would 81 
be geographically clustered in stable foci of transmission (“hotspots”). We tested our 82 
hypotheses using data from the WASH Upgrades for Health in Amhara (WUHA) randomized 83 
controlled trial (NCT02754583) (19). 84 
 85 
RESULTS 86 
 87 
Study population and setting. WUHA was a randomized controlled trial designed to evaluate 88 
the impact of a comprehensive water, sanitation, and hygiene (WASH) intervention on ocular Ct 89 
infection. The trial was conducted in forty communities in a dry, mountainous region of the Wag 90 
Hemra Zone of Amhara, Ethiopia (Figure 1). MDA was conducted for seven consecutive years 91 
in the study communities before the study began but was suspended for the duration of the trial. 92 
Baseline measurements were collected in December 2015 (month 0), and follow-up visits 93 
occurred annually for three years thereafter (months 12, 24, and 36). Clinical, serological, and 94 
molecular trachoma indicators were measured among randomly sampled children ages 0-9 95 
years old at each visit. Data were combined across the two intervention arms for this secondary 96 
analysis as no difference was observed for the primary endpoint of ocular Ct infection at the end 97 
of the study period [manuscript under review].  98 
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Figure 1. Map of study area. Inset (top right) highlights the Amhara Region (gray shading) of Ethiopia 99 
and the study area (black rectangle). Forty communities from three woredas (administrative level 3) in 100 
Amhara were included in the WUHA trial. 101 

 102 

 103 
 104 

Approximately thirty children from two age groups (0-5 years old and 6-9 years old) were 105 
randomly sampled from each community at baseline and follow-up visits. The number of 106 
children evaluated differed slightly for each trachoma indicator (Table S1). Over the three-year 107 
study period, ocular Ct infection prevalence, as measured by PCR, increased substantially in 108 
both age groups (Table 1). Throughout this analysis, clinical disease was defined as diagnosis 109 
with either trachoma inflammation - follicular (TF), the presence of five or more follicles on the 110 
upper eyelid, or trachoma inflammation - intense (TI), a condition characterized by inflammatory 111 
thickening of the upper eyelid (20). Levels of clinical disease fluctuated with time but remained 112 
fairly consistent with baseline levels. Seropositivity, defined as antibody response above pre-113 
determined cut-offs for both Pgp3 and CT694 antigens, increased gradually among 0–5-year-114 
olds. Antibodies were not measured among 6–9-year-olds at months 12 and 24 but were similar 115 
between study arms at months 0 and 36. Results were similar when seroprevalence was 116 
assessed for each antigen separately (Table S2).  117 
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Table 1. Community-level prevalence of trachoma across 40 study communities by indicator, age 118 
group and month of follow-up visit.  119 
 120 

Month 

Median prevalence (%) (IQR), 0–5-year-olds  Median prevalence (%) (IQR), 6–9-year-olds 

n1 PCR2 Clinical TF/TI3 Serology  n1 PCR2 Clinical TF/TI3 Serology4 

0 1,269 5.6 (2.9-18.1) 62.9 (51.0-72.5) 25.0 (10.1-34.8)  1,135 3.5 (0.0-13.9) 40.3 (25.9-54.9) 49.2 (29.8-60.2) 

12 1,162 19.1 (6.6-30.2) 50.8 (40.6-61.1) 29.7 (15.6-40.2)  1,092 10.9 (5.7-17.4) 21.3 (14.3-27.8) - 

24 1,214 27.4 (11.6-34.3) 67.5 (55.5-77.4) 33.3 (20.5-39.0)  1,208 19.9 (9.7-34.2) 45.1 (29.4-53.4) - 

36 1,192 29.3 (16.2-46.8) 56.7 (45.2-64.3) 33.3 (23.5-42.3)  1,218 21.7 (15.2-38.2) 38.2 (30.1-53.6) 50.8 (28.9-65.4) 

1 Number of children tested for any indicator across all study communities 121 
2 Polymerase chain reaction 122 
3 Trachomatous inflammation - follicular / trachomatous inflammation - intense 123 
4 Serology was not measured for a random sample of 6–9-year-olds at months 12 and 24 124 
 125 
Active ocular infection was more common in the western and northern regions of the study area 126 
(Figure 2A); seroprevalence and clinical disease were similarly distributed in space (Figure 127 
S1A, Figure S2A). Based on empirical variograms (Figure 2B) and Moran’s I (Figure 2C), 128 
there was weak spatial structure in community-level Ct PCR prevalence that increased slightly 129 
over the study period; serology and clinical indicators also did not display clear spatial structure 130 
over the study area (Figure S1B-C, Figure S2B-C).   131 
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Figure 2. (A) Predicted surface, (B) variograms, and (C) Moran’s I for PCR-confirmed ocular C. 132 
trachomatis infection prevalence among 0–5-year-olds at each study month. Maps display 133 
prevalence for 40 study communities at each follow-up visit, spatially interpolated over the convex hull 134 
using kriging. Variograms capture similarity between community-level prevalence measurements as a 135 
function of distance between community pairs (in km), with smaller semivariance values representing 136 
increased similarity. Exponential (magenta) and Matérn (green) models were fit to each empirical 137 
variogram, and the effective range (dashed vertical line) is defined as the distance at which the fitted 138 
model reaches 95% of the sill. The Monte Carlo envelope (gray shading) displays pointwise 95% 139 
coverage of 1000 permutations, representing a null distribution. Moran’s I was calculated over 1000 140 
permutations (gray bars, with observed value represented by red line), and a permutation-based p-value 141 
was calculated. 142 

 143 
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Comparisons between serological, clinical, and molecular trachoma indicators. 144 
Seroprevalence demonstrated a stronger rank-preserving relationship, as measured by the 145 
Spearman correlation, with contemporaneous PCR prevalence than clinical disease for both 146 
age groups (Figure 3A-B). At baseline, immediately following seven years of MDA, the 147 
correlations between trachoma indicators were more pronounced among younger children, 148 
potentially reflecting lower transmission in the presence of MDA and saturation in 149 
seroprevalence due to durable antibody responses among older children. In a longitudinal 150 
cohort nested within the study, children who were seropositive at any survey were very likely to 151 
be seropositive one year later (Figure S4). Similar saturation dynamics may be at play for 152 
clinical trachoma, which has been shown to resolve slowly among children (21). By month 36, 153 
when infections were higher across the study area (Table 1), correlations between trachoma 154 
indicators were similar across age groups (Figure 3A-B). Rank-preserving relationships 155 
between indicators at each time point and month 36 PCR prevalence were stronger for more 156 
proximate measurements, and this increase was more pronounced for PCR compared to clinical 157 
trachoma or serology (Figure 3C). 158 
 159 
Figure 3. Correlations between trachoma indicators by age group and over time. Panels display 160 
Spearman rank correlations between (A) community-level seroprevalence and PCR prevalence at study 161 
months 0 and 36, (B) clinical trachoma prevalence and PCR prevalence at months 0 and 36, and (C) 162 
PCR prevalence at month 36 and trachoma indicators measured at earlier months across 40 study 163 
communities. Correlations are shown separately for 0–5-year-olds (green) and 6–9-year-olds (purple), 164 
and 95% confidence intervals were estimated from 1000 bootstrap samples. Serology data was not 165 
collected for a random sample of 6–9-year-olds at months 12 and 24. 166 
 167 

 168 
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Concurrent and forward prediction of PCR prevalence. We predicted community-level 169 
infection prevalence using a range of model specifications and conducted spatial 10-fold cross-170 
validation (CV) with 15x15 km blocks (22) to assess predictive performance using CV R2 and 171 
root-mean-square-error (RMSE) (details in Materials and Methods). Figure 4 presents results 172 
for models predicting PCR prevalence at month 36. “Concurrent” predictions utilized trachoma 173 
indicators measured at month 36 and/or geospatial variables measured over the preceding year 174 
(2018), while “forward” predictions used covariates measured 12, 24, or 36 months in the past. 175 
Seroprevalence was the single strongest concurrent predictor of month 36 community-level 176 
PCR prevalence (CV R2: 0.75, 95% confidence interval (CI): 0.58-0.85, CV RMSE: 0.10), 177 
substantially outperforming clinical trachoma prevalence (CV R2: 0.37, 95% CI: 0.08-0.56, CV 178 
RMSE: 0.16) (Figure 4). When predicting 12 months into the future, all trachoma indicators 179 
performed moderately well, but predictive performance declined for longer time horizons across 180 
all model specifications. No model that we assessed had a CV R2 significantly different from 0 181 
(equivalent to an intercept-only or mean-only model) when predicting PCR prevalence 24 182 
months or more into the future. 183 
 184 
As anticipated by the weak spatial dependence in PCR prevalence (Figure 2), incorporation of 185 
a Gaussian process with a Matérn covariance function did not improve predictions. In addition, 186 
LASSO-selected geospatial features (night light radiance and daily precipitation averaged over 187 
the preceding 12 months) (Figure S5) and a stacked ensemble approach leveraging five base 188 
models did not meaningfully improve CV R2 or CV RMSE compared to simpler models. Results 189 
were similar for models predicting PCR prevalence at each time point and pooled over all time 190 
points (Figure S6). 191 
 192 
Figure 4. Cross-validated R2 for models predicting month 36 community-level PCR prevalence 193 
among 0–5-year-olds. Cross-validated coefficient of determination (R2), 95% influence-function-based 194 
confidence interval, and cross-validated root-mean-square error (RMSE, text label) are shown for each 195 
model specification. Logistic regression was used for all models with the exception of the stacked 196 
ensemble (gray). Blocks of size 15x15km were used for 10-fold spatial cross-validation. 197 

 198 
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Efficient identification of high-burden communities. A complementary task to prediction is 199 
identifying communities with the highest infection burden, defined here as the number of Ct 200 
infections among 0–5-year-olds at a given time. To address variability in sample size, the 201 
number of Ct infections in each community was scaled to represent a sample of 30 individuals. 202 
At month 36, 80% of Ct infections were concentrated in just over half of the communities 203 
(23/40), and ordering communities by cross-validated concurrent predictions using 204 
seroprevalence identified infections more efficiently (i.e. in fewer communities, 25/40) than 205 
ordering them by predictions using clinical trachoma (27/40) (Figure 5). Performance declined 206 
when using predictors measured 12 months in the past, and communities ranked by predictors 207 
measured 24 and 36 months in the past could not identify high-burden communities based on 208 
PCR infections at month 36 better than chance. The distinction between models was greater at 209 
month 0 when 80% of Ct infections were concentrated in just the top 15 of 40 (38%) of 210 
communities (Figure S9). 211 
 212 
Figure 5. Cumulative proportion of C. trachomatis infections at month 36 identified by concurrent 213 
and forward prediction models. Dashed lines indicate the point at which the cumulative proportion of 214 
identified Ct infections at month 36, scaled to represent a sample of 30 individuals per community, 215 
surpassed 80%. The black line in each facet represents the optimal ordering of scaled PCR infections at 216 
month 36. To simulate a null distribution, we estimated the cumulative proportion of infections identified 217 
for 1000 random orderings of the 40 communities and plotted the 95% pointwise envelope (gray shading). 218 
For concurrent and 24-month-forward predictions, models using serology only and PCR only, 219 
respectively, performed equally well to a model using all trachoma indicators, geospatial features, a 220 
Matérn covariance, and ensemble machine learning; vertical lines were offset slightly for visibility. 221 
 222 

 223 
 224 
DISCUSSION 225 
 226 
We conducted a comprehensive study of repeated cross-sectional measurements of clinical 227 
trachoma, PCR-positive ocular Ct infections, and serological responses to Ct antigens over 228 
three years in 40 communities in the hyperendemic Amhara region of Ethiopia. In the absence 229 
of MDA during the study, active Ct infections surged and became increasingly dispersed across 230 
study communities. Based on empirical variograms and Moran’s I, we observed weak evidence 231 
for global spatial clustering in trachoma indicators over the study region. Seroprevalence among 232 
children 0-5 years old aligned closely with PCR prevalence measured at the same time, 233 
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highlighting the potential for serosurveillance as a monitoring tool that corresponds well with 234 
levels of active infection and is potentially easier to measure (23). Predictive performance of all 235 
models declined with increasing temporal lag between outcome and predictor measurements. In 236 
this setting, remotely sensed demographic, socioeconomic, and environmental geospatial 237 
layers, a spatial Gaussian process with Matérn covariance, and stacked ensemble machine 238 
learning did not meaningfully improve predictive performance compared to models using only 239 
trachoma indicators. 240 
 241 
Identifying potential future trachoma hotspots is notoriously challenging and sometimes termed 242 
“chasing ghosts” by trachoma programs (17). Our results underscore the difficulty of predicting 243 
community-level Ct infection prevalence even a year into the future, at least in the context of 244 
increasing transmission in the absence of MDA. Furthermore, our “forward prediction” models 245 
were trained on infection outcomes from the desired prediction time point and thus were 246 
potentially more optimistic than true “forecasting” models trained solely on historical data. Prior 247 
efforts to forecast district-level TF (18) and village-level PCR prevalence (17) have explored 248 
mechanistic and statistical models and observed modest performance, with one investigation 249 
concluding that models with the highest uncertainty resulted in the best predictive performance 250 
(17). It remains unclear why future prediction of trachoma presents such a difficult challenge, 251 
though likely contributing factors include the stochasticity of rare events especially in near-252 
elimination settings (24), biological unknowns in the complex natural history of trachoma (25), 253 
and the extended duration between survey measurements (often 6 months or greater). Models 254 
for other neglected tropical diseases have achieved some success in future prediction at the 255 
sub-district level, though often capitalizing on larger datasets. For example, a recent study 256 
developed models with over 80% accuracy for prediction of Schistosoma mansoni persistent 257 
hotspots (defined as failure of a village to reduce infection prevalence and/or intensity by 258 
specific thresholds) up to two years in the future in the context of decreasing prevalence (26). In 259 
a setting with fairly stable transmission, a sub-district-level study for visceral leishmaniasis 260 
reported 85.7% coverage of four-month-ahead 25-75% prediction intervals for case counts (27).  261 
 262 
Our investigation builds upon an existing body of work characterizing the dynamics between 263 
clinical, serological, and molecular trachoma indicators. Reports at the district, village, and 264 
individual level have established that relatively high levels of clinical trachoma or ocular 265 
infections tend to correspond to higher seroprevalence and/or seroconversion rates (14, 28–31); 266 
post-elimination settings have been of particular interest, with populations often displaying little 267 
to no antibody response (15, 32–37). Our findings align with earlier studies that showed clinical 268 
trachoma is more strongly correlated with infection prevalence in populations with ongoing 269 
transmission compared to populations in which transmission has been suppressed by MDA 270 
(38–40); also in agreement with prior findings, we observed that TI was slightly, but not 271 
significantly, more closely correlated with infection prevalence compared to TF immediately 272 
following MDA (Figure S10) (41). We additionally found that seroprevalence among children 0-9 273 
years old was more closely aligned with infection prevalence than clinical trachoma in both 274 
contexts. Moreover, we found that seroprevalence was more strongly correlated with PCR 275 
prevalence among children 0-5 years old compared to children 6-9 years old, especially in the 276 
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context of recent MDA at month 0. This result supports a focus on children 0-5 years old as a 277 
key sentinel population for trachoma serosurveillance. 278 
 279 
In general, we did not observe strong evidence of global spatial autocorrelation for trachoma 280 
indicators over the study region, though spatial structure in PCR prevalence appeared to 281 
increase slightly over the study period. A prior analysis over the entire Amhara region reported 282 
evidence of spatial autocorrelation in TF between villages within 25km bands (10), and another 283 
study of TF and TI in Southern Sudan detected residual spatial structure between villages at 284 
approximately 8 km, after adjusting for age, sex, rainfall, and land cover (42). A larger number of 285 
existing studies have characterized spatial autocorrelation at a fairly small scale. Studies using 286 
household-level information identified spatial clustering at less than 2 km for bacterial load (6, 287 
9), ocular infection (8, 9), and clinical disease (43). Our ability to detect spatial structure may 288 
have been limited by the geographic distribution of the communities, which was determined by 289 
the main trial objectives rather than optimized for estimation of spatial model parameters, which 290 
often requires points fairly close to one another (44). In our study, only 26 (out of 780) pairs of 291 
study communities were within 5 km of one another leading to wide uncertainty at small ranges 292 
and hindering our ability to assess fine-scale spatial clustering. 293 
 294 
In addition to rainfall and land cover, studies have reported associations between clinical 295 
trachoma and distance to water source (10, 45–47), temperature (7, 46, 48), altitude (46, 48–296 
51), markers of socioeconomic status (7, 10, 45, 47, 51, 52), and markers of personal or 297 
household hygiene, such as facial cleanliness (7, 10, 45, 47, 52–59). Fewer studies have 298 
examined Ct infections identified by PCR, but associations reported were generally similar (52, 299 
59, 60). Using LASSO to down-select geospatial features, we included night light radiance 300 
(often a proxy for socioeconomic activity (61)) and precipitation in prediction models. However, 301 
these features were unable to predict infection prevalence better than an intercept-only model. 302 
Predictive power of geospatial variables may have been limited by relative homogeneity across 303 
the study area, and the relatively small number of communities likely limited the predictive 304 
performance of all models.  305 
 306 
Finally, our analysis focused on a hyperendemic region with increasing trachoma transmission 307 
in the absence of MDA and may not generalize to lower transmission settings. Ethiopia’s 308 
Amhara region presents a particularly stubborn elimination challenge, as seven consecutive 309 
years of MDA were unable to sustain control before the start of this study. It is unclear whether 310 
prediction would be more or less challenging in the context of low transmission; we may expect 311 
more predictability in a “steady state” environment, but stochasticity is also a defining 312 
characteristic of near-elimination disease dynamics (24). As an additional sensitivity analysis, 313 
we included survey month as a covariate to assess potential benefits of repeated sampling in 314 
the context of changing transmission and found only a modest improvement in predictive 315 
performance (Figure S11). 316 
 317 
Conclusions. Serological markers among children 0-5 years old may be well-suited for 318 
community-level trachoma monitoring given their objectivity, durability, relative ease of 319 
collection, and strong correlation with ocular Ct infection prevalence. While seroprevalence and 320 
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clinical trachoma were both correlated with infection prevalence in the midst of high 321 
transmission in the absence of MDA, only seroprevalence was strongly associated with 322 
community-level infections in the context of suppressed transmission directly following MDA. 323 
Accurate, future prediction of community-level Ct infection prevalence in settings with unstable 324 
transmission remains an open challenge. 325 
 326 
MATERIALS AND METHODS 327 
 328 
Data collection. This work was designed as a secondary analysis of data from the WASH 329 
Upgrades for Health in Amhara (WUHA) community-randomized trial, one of the trials in the 330 
Sanitation, Water, and Instruction in Face-Washing for Trachoma (SWIFT) (NCT02754583) 331 
series. Details of study methodology and implementation are described in the published protocol 332 
(19). WUHA was conducted in the Gazgibella, Sekota Zuria (i.e. Sekota) and Sekota Ketema 333 
(i.e. Sekota town) woredas of the Wag Hemra Zone in Amhara, Ethiopia. Forty communities 334 
were randomized in a 1:1 ratio to receive a comprehensive Water, Sanitation, and Hygiene 335 
(WASH) package at baseline or at completion of the study. Mass administration of azithromycin 336 
occurred for seven consecutive years (May 2009 to June 2015, with supplemental 337 
administration in October 2014) prior to the start of the study but was suspended in all study 338 
communities for the duration of the WUHA trial.  339 
 340 
Trachoma indicators were measured in each study community at baseline and three annual 341 
monitoring visits. Approximately one month prior to each monitoring visit, a census was taken to 342 
enumerate individuals living in each study community. The baseline census was conducted in 343 
December 2015. At each visit, thirty individuals in three age groups (0-5, 6-9, 10+) were 344 
randomly selected from each community for monitoring; this analysis focused on children aged 345 
0-9 years old. Per the trial design, not all trachoma indicators were measured in all age groups 346 
at each time point; only children 0-5 years old were tested for clinical, serological, and molecular 347 
outcomes at all visits. At the end of WUHA, no difference in the primary endpoint of community-348 
level ocular Ct infection among 0–5-year-olds was observed between intervention arms 349 
[manuscript under review]. As a result, we combined information across arms for this analysis. 350 
 351 
Measurement and definition of trachoma indicators. We analyzed age-group-specific 352 
community-level prevalence of three trachoma indicators: clinical disease, active ocular Ct 353 
infection detected by polymerase chain reaction (PCR), and IgG response to Pgp3 and CT694 354 
antigens. 355 
 356 
Trained trachoma graders used a pair of 2.5X loupes and a flashlight to assess the everted right 357 
superior tarsal conjunctiva for the presence of trachomatous inflammation - follicular (TF) or 358 
trachomatous inflammation - intense (TI) according to the WHO grading system (62). An 359 
individual was considered positive for clinical trachoma if either TF or TI was detected. 360 
 361 
Conjunctival swabs were collected and tested in the study laboratory at the Amhara Public 362 
Health Institute in Bahir Dar, Ethiopia with the Abbott RealTime assay (automated Abbott 363 
m2000 System), which is highly sensitive and specific for Ct (63, 64). Groups of five samples, 364 
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stratified by community and age group, were pooled for testing, and community-level Ct 365 
infection prevalence was estimated from pooled results using a maximum likelihood approach 366 
(65). Certain pools were selected for individual-level PCR testing based on pooled prevalence 367 
and other characteristics. 368 
 369 
To measure antibody response, field staff lanced the index finger of each individual and 370 
collected blood onto TropBio filter paper. Samples were tested at the US Centers for Disease 371 
Control on a multiplex bead assay on the Luminex platform for antibodies to two recombinant 372 
antigens (Pgp3, CT694) that measure previous exposure to C. trachomatis (14, 15, 66). 373 
Seropositivity thresholds were defined as median fluorescence intensity minus background 374 
(MFI-bg) of 1113 for Pgp3 and 337 for CT694 using an ROC cutoff from reference samples (37). 375 
Individuals who were seropositive with respect to both antigens were considered seropositive 376 
for the main analysis; descriptive results were similar when considering either antigen 377 
separately (Table S2, Figure S3).Descriptive analysis of trachoma indicators. Spearman rank 378 
correlation coefficients were calculated for pairwise combinations of trachoma indicators by age 379 
group and follow-up visit. Correlations were also calculated between PCR prevalence at month 380 
36 and serological, molecular, and clinical prevalence at each preceding time point to observe 381 
changes in correlation with increasing temporal lag between measurements. 95% confidence 382 
intervals were estimated from 1000 bootstrap samples. 383 
 384 
Descriptive spatial analysis. Administrative boundaries for Ethiopia were downloaded from the 385 
Humanitarian Data Exchange (67). Spatially interpolated maps for each trachoma indicator at 386 
each time point were generated using a simple kriging model including latitude, longitude, and a 387 
Matérn covariance. We estimated empirical variograms after removing linear spatial trends for 388 
distances up to 33.3 km (half of the maximum distance between any two study communities) 389 
and fit exponential and Matérn models; for stability, we required bins to contain ten or more 390 
pairs of communities. The effective, or practical, range was defined as the distance at which the 391 
fitted model reached 95% of the sill. We compared the observed variograms to a 95% pointwise 392 
envelope based on 1000 Monte Carlo simulations; for each simulation, prevalence residuals 393 
were permuted while holding coordinates fixed and the empirical variogram was recalculated 394 
(68). We also calculated Moran’s I, a measure of global spatial autocorrelation, over 1000 395 
permutations of the prevalence values and estimated a p-value based on permutations resulting 396 
in a Moran’s I greater than or equal to the observed value. 397 
 398 
Predictive model selection. Prediction models were limited to children 0-5 years old due to 399 
availability of all trachoma indicators for this age range at all time points. We developed several 400 
candidate models using baseline data only, with the analysis team masked to any future 401 
measurements. A wide range of publicly available environmental (69–73), demographic (74), 402 
and socioeconomic (75–77) variables were explored based on prior associations with trachoma 403 
or other infectious diseases (Table S3). When possible, features were extracted and aggregated 404 
using Google Earth Engine (78), and means were used for spatial and temporal aggregation 405 
unless otherwise specified in Table S3. All features were aggregated to a grid resolution of 2.5 406 
arc minutes (approximately 4.5 km at the median latitude of the study area) based on the lowest 407 
resolution dataset (TerraClimate) and reprojected to WGS84. Each community was assigned to 408 
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the grid cell containing its household-weighted geographic centroid, defined as the median 409 
latitude and longitude across all households in the community. 410 
 411 
Models were built using predictor variables measured over the same (“concurrent”) and prior 412 
(“forward predictions”) time periods. Time-varying features were summarized based on calendar 413 
year, with 2015 data considered “concurrent” with month 0 trachoma indicators and so on. 414 
Time-varying features were first aggregated by month and then summarized based on recency 415 
relative to the time of monitoring (e.g. last 1 month or December of the calendar year, last 2 416 
months, up to 12 months). To reduce collinearity, we evaluated pairwise Pearson correlation 417 
coefficients between temporal summaries of the same variable and dropped the summary over 418 
fewer months for pairs with correlation over 0.9. 419 
 420 
During preliminary model development with baseline data, we observed that a large number of 421 
predictor variables led to overfitting and unstable model performance due to the relatively small 422 
number of communities. As a result, logistic LASSO regression was used to identify a restricted 423 
set of geospatial features to include in the final prediction models. Night light radiance and daily 424 
precipitation averaged over the preceding 12 months were selected from a model using 425 
concurrently measured predictors and outcomes across all follow-up visits. 426 
 427 
Logistic regression models of the following form were used as base prediction models: 428 
 429 

 430 
 431 
where pcm represents PCR prevalence for study community c at month m, α is the model 432 
intercept, and xcn1...xcnp denote covariates with coefficients β measured at time n, where n = m 433 
for concurrent predictions and n = m - k for predictions k months forward. Extended models also 434 
included a Gaussian process with Matérn covariance function (79) to capture residual spatial 435 
structure, represented by the S function dependent on latitude and longitude of the community. 436 
 437 
As an extension of our prediction models, we also explored stacked ensemble machine 438 
learning, also known as stacked regression (80) or stacked generalization (81). Stacked 439 
ensembles combine predictions from multiple ‘Level 0’ models using a ‘Level 1’ model, also 440 
called the superlearner or metalearner (82). Ensembles are theoretically guaranteed to perform 441 
as well as or better than any single member of their library (80, 82). Our ‘Level 0’ learners 442 
included logistic regression, generalized additive models (83), random forest (84), extreme 443 
gradient boosting (85), and multivariate adaptive regression splines (86). This set of models, 444 
including parametric, semi-parametric, and tree-based methods, was selected to ensure 445 
diversity in approach; outcome specification also varied (e.g. binomial, quasibinomial, 446 
continuous) based on requirements of the learner. Logistic regression with a Matérn covariance 447 
was used as ‘Level 1’ superlearner for the baseline analysis; different superlearner models, 448 
including logistic regression without a Matérn covariance and non-negative linear least squares 449 
with and without normalized (convex combination) coefficients, resulted in similar predictive 450 
performance (Figure S7).  451 
 452 
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Predictive model assessment. We conducted 10-fold cross-validation to assess predictive 453 
performance. Spatial autocorrelation can violate the independence assumption between training 454 
and validation sets in cross-validation and lead to overly optimistic estimates of predictive power 455 
(22, 87). Therefore, we partitioned the study area into 12 15x15km blocks, each containing 1-8 456 
spatially proximate communities. Communities in the same block were assigned to the same 457 
validation set, with some sets consisting of more than one block. This approach decreases 458 
spatial dependence between training and validation sets in the same fold and simulates 459 
prediction in a new, but geographically proximate, area. We observed consistent results in 460 
sensitivity analyses using leave-one-out cross-validation, random cross-validation folds, and 461 
spatial blocks of 5x5 km and 20x20 km (Figure S8), perhaps reflecting the weak spatial 462 
autocorrelation observed in this dataset (Figure 2). Predictive performance was assessed using 463 
cross-validated root-mean-square-error (RMSE) and R2 (88), where R2 was calculated as:  464 
 465 

 466 
 467 
95% confidence intervals for R2 were estimated using the influence function (89, 90). 468 
Communities received equal weight in all validation metrics. 469 

470 
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