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Abstract 

Coronavirus disease 2019 (COVID-19), which is currently a global public health 

emergency and beyond vaccines as a prophylactic treatment, no specific and 

effective therapeutical treatments are available. COVID-19 induces a massive 

release of proinflammatory cytokines, which drives COVID-19 progression, 

severity, and mortality. In addition, bronchial epithelial cells are the first 

pulmonary cells activated by coronavirus-2 (SARS-Cov-2) leading to massive 

cytokine release, which can hyperactivate lung fibroblasts, resulting in 

pulmonary fibrosis, a phenomenon observed even in moderate COVID-19 

survivors. This in vitro study tested the hypothesis that Virlaza™, a herbal 

medicine, could inhibit the hyperactivation of human bronchial epithelial cells 

(BEAS-2B) and pulmonary fibroblasts (MRC-5) induced by SARS-Cov-2. BEAS-

2B (5x104/mL/well) and MRC-5 (5x104/mL/well) cells were co-cultivated with 

1ml of blood of a Sars-Cov-2 infected patient for 4 hours and Virlaza™ (1ug/mL) 

was added in the first minute of the co-culture. After 4 hours, the cells were 

recovered and used for analysis of cytotoxicity by MTT and for mRNA 

expression of P2X7 receptor E iNOS. The supernatant was used to measure 

ATP and cytokines. Sars-Cov-2 incubation resulted in increased release of 

ATP, IL-1beta, IL-6, IL-8, and TNF-alpha by BEAS-2B and MRC-5 cells 

(p<0.001). Treatment with Virlaza™ resulted in reduction of ATP, IL-1beta, IL-6, 

IL-8, and TNF-alpha release (p<0.001). In addition, Sars-Cov-2 incubation 

resulted in increased expression of P2X7 receptor and iNOS (p<0.001), which 

has been reversed by Virlaza™ (p<0.001). In conclusion, Virlaza™ presents 

important anti-inflammatory effects in the context of Sars-Cov-2 infection. 
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Introduction 

The quick spread of Coronavirus disease (COVID-19) resulted in a 

pandemic in the whole world, reaching more than 100 million cases and 2 

million deaths due to the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) [1]. The progression, severity, and mortality of COVID-19 differ 

from no, mild, or moderate symptoms in most of the patients, while up to 15% 

develop the severe and critical form of the disease with high mortality rates [2]. 

Among the factors underlying the development of the severe and critical forms 

of COVID-19, advanced age [3], comorbidities [3], hyperactivation of the 

immune system [3,4] are proven to have a central role, hyperactivation of the 

immune system results in the cytokine storm, which is characterized by the 

synthesis and release of high levels of proinflammatory cytokines [3,4]. In this 

way, cytokine storm plays a major role in Covid-19 pathogenesis [3,4]. 

In this context, bronchial epithelial cells have been described not only as 

a mechanical barrier for the respiratory tract, but also as an important cell layer 

centrally involved in the innate immune response, which actively synthetize and 

release a plethora of inflammatory and fibrotic mediators [5], capable to activate 

fibroblasts inducing fibrosis. In addition, activation of the purinergic receptor 

P2X7 in the airway epithelium has been described as a key receptor involved in 

the inflammatory [6] and fibrotic [7] responses of the lungs to a variety of 

stimulus, including SARS-CoV-2 [8]. Furthermore, P2X7 is also involved in 

pulmonary fibroblast proliferation and activation, driven the pulmonary fibrotic 

response as well [7]. 

Activation of P2X7 receptor may be a trigger by increased levels of nitric 

oxide (NO) mediated by increased expression and activation of inducible nitric 



oxide synthase (iNOS) [9]. Indeed, increased iNOS expression drives an 

increased inflammatory and fibrotic responses of the lungs, such as in asthma 

[10], pulmonary fibrosis [11], and bacterial infections [12, 13]. 

Thus, this study tested the hypothesis that Virlaza™ could inhibit 

bronchial epithelial cells and lung fibroblast activation in vitro, involving iNOS 

and P2X7 signaling. 

 

Materials and Methods 

This study and all experimental procedures were analyzed and approved 

by ethical committee of School of Medicine of Anhembi Morumbi University 

(4.637.625 in 08 of April of 2021) and were carried out in accordance with 

Declaration of Helsinki for ethical principles for medical research involving 

human subjects. 

Human Cell Co-Culture Study 

Virlaza™ [Clove glycerin extract (1:5); Eucalyptus Glycerin Extract (1:5); 

Basil Glycerin Extract (1:5); Sage Glycerin Extract (1:5); Maritime pine Glycerin 

extract (1:5); Clove Tincture (ethyl alcohol 99.8%) (1:5); Eucalyptus Tincture 

(1:5); Maritime pine Tincture (ethyl alcohol 99.8%) (1:5); Basilica Tincture (ethyl 

alcohol 99.8%); Sage Tincture (ethyl alcohol 99.8%) (1:5); Selenite (0.0051%), 

and Zinc (0.32%). 

Human bronchial epithelial cell line (BEAS-2B) and human lung fibroblast 

cell line (MRC-5), which are commercially available of immortalized cell lines, 

were co-cultured with whole blood from an infected patient with Sars-Cov-2. 



BEAS-2B and MRC-5 cells were obtained from Rio de Janeiro Cell Bank and 

co-cultured in DMEM high glucose medium (Sigma Chemical Co., St. Louis, 

MO, USA) supplemented with 10% fetal calf serum in 500ul of whole blood of 

Sars-Cov-2 infected male (35-40) years old patient (original Wuhan Sars-Cov-

2), presenting an estimated high viral load based on the cycle threshold (CT = 

15). Both BEAS-2B and MRC-5 cells were co-cultured at a concentration of 

5x104/mL/well in 48 wells plate, at a humidified atmosphere in a CO2 incubator 

(5% CO2, 37ºC) [14]. The blood was collected immediately after hospitalization, 

prior any antibiotic and corticosteroid administration. The written consent inform 

was obtained from the patient volunteer for this study. The cells (BEAS-2B or 

MRC-5) were incubated at the same time with Virlaza™ (1ug/mL) and with 

500ul of whole blood of Sars-Cov-2 infected patients and the cells and 

supernatant was obtained 4 hours after stimulation. The cells and supernatant 

were recovered, centrifuged at 900g for 5 minutes at 4ºC, and then the 

supernatant immediately used for ATP measurement and later for cytokine 

measurement. The cells were washed using phosphate-buffered saline (PBS) 

and then subjected to RT-PCR protocol. 

Cytotoxicity assay by MTT assay 

To assess the Virlaza™ cytotoxicity through cell viability, MTT assay was 

carried out. Briefly, 5x104 viable BEAS-2B and MRC-5 cells were placed into 

clear 96-well flat-bottom plates (Corning USA) in DMEM high glucose medium 

supplemented with 10% fetal calf serum and immediately after different 

concentrations (0.1ug/mL; 1ug/mL; 10ug/mL; 100ug/mL; and 1000ug/mL) of 

Virlaza™. Following 24h after incubation in a humidified atmosphere of a CO2 

incubator (5% CO2, 37ºC), 10μL/well of MTT (5mg/mL) was added to the cells 



(both in the control and Virlaza™), which was incubated for 4h. After this time, 

100μL of 10% sodium dodecyl sulfate (SDS) solution in deionized water was 

added to the cells and incubated overnight [15, 16]. The absorbance was 

measured at 595nm in a benchtop multimode reader SpectraMax i3 (Molecular 

Devices, San Jose, CA, USA). 

Adenosine Triphosphate (ATP) Measurement 

The ATP concentration was determined in the cell culture supernatant 

immediately after its collection by using the ATPlite Luminescence Assay 

System (Perkin Elmer, Waltham, MA, USA), according to the manufacturer’s 

instructions. The results were expressed in nmol/mL [17]. 

Cytokines Measurement 

The levels of interleukin (IL)-1beta (DY201), IL-1RA (DY280), IL-6 

(DY206), IL-8 (DY208) and TNF-alpha (DY210) were measured in the cell 

culture supernatant by using DuoSet ELISA kit (R&D Systems; Minneapolis, 

MN, USA) according to the manufacturer’s recommendations using the 

SpectraMax i3 multiplate reader (Molecular Devices, CA, USA). The results 

were expressed as pg/mL [14-17]. 

Reverse transcriptase-polymerase chain reaction (RT-PCR) 

Total RNA isolation from cell pellets was used RNeasy mini kits (Qiagen, 

Hilden, Germany). Reverse transcription was used Stratascript reverse 

transcriptase (Stratagene, CA, USA) and random primers (Invitrogen, 

Germany). Quantitative PCR used Taqman Universal PCR Mastermix (Applied 

Biosystems, USA) and preformulated primers and probe mixes (Assay on 

Demand, Applied Biosystems, USA). PCR conditions were 2 min at 50°C, 10 



min at 95°C, followed by 45 cycles of 15 s at 95°C and 60°C for 1 min using the 

CFX96 thermal cycler (Bio rad, Hercules CA, USA). PCR amplification of the 

housekeeping gene encoding Glyceraldehyde-3-phosphate dehydrogenase 

(GADPH) was performed during each run for each sample to allow 

normalization between samples. β-actin was used as a control and correction 

factor for the expression of the P2X7 receptor, for which the sequences of 

primers are described as follows: β-actin - forward 

(5′GTGGGCCGCTCTAGGCACCA3′) and reverse primers 

(5′CTCTTTGATGTCACGCACGATTTC3′ 540 bp) [15] and P2X7 - forward, 

5′‐AGATCGTGGAGAATGGAGTG‐3′, and 

(5′‐TTCTCGTGGTGTAGTTGTGG‐3′) reverse primers [15]. For iNOS – forward 

5′-CTATCAGGAAGAAATGCAGGAGAT-3′, and Reverse 5′-

GAGCACGCTGAGTACCTCATT-3′ primers [16]. 

Statistical Analysis 

The software Graph Pad Prism 5.0 was used to perform the statistical 

analysis and build de graphs. The results were expressed as mean ± 

standard�error�of�the mean�(SEM) from at least three independent 

experiments. One-way analysis of variance (ANOVA) was used for multiple 

comparisons, followed by the Bonferroni post hoc test for comparison among 

groups. A p-value <0.05 was considered significant. 

 

Results 

Effects of Virlaza™ on ATP Release in BEAS-2B and MRC-5 Cells 



Figure 1 shows that Sars-Cov-2 activated BEAS-2B and MRC-5 cells, 

resulting in increased release of ATP by BEAS-2B (Figure 1, A; p<0.001) and 

by MRC-5 (Figure 1 B; p<0.001) cells, which has been significantly attenuated 

by Virlaza™, both in BEAS-2B (Figure 1 A; p<0.001) and by MRC-5 (Figure 1 B; 

p<0.001) cells. 

Figure 1 - Effects of Virlaza™ on ATP Release in BEAS-2B and MRC-5 

Cells 

 

Figure 1 – Adenosine triphosphate (ATP) levels in the supernatant of the cells. 

Figure 1 A correspond to experiments done in BEAS-2B cells. Figure 1 A 

correspond to experiments done in MRC-5 cells. *** p<0.0001. Co = Control; Vir 

= Treated with 10ug/mL of Virlaza™; SarsCov2 = Stimulated with blood infected 

with Sars-Cov-2; SarsCov2+Vir = Stimulated with blood infected with Sars-Cov-

2 + 10ug/mL of Virlaza™. 

Effects of Virlaza™ on Bronchial Epithelial Cells (BEAS-2B) Activation 

Figure 2 shows that Sars-Cov-2 activation resulted in increased 

synthesis and release of IL-1beta (Figure 2, A; p<0.001), IL-6 (Figure 2 C; 

p<0.001), IL-8 (Figure 2 D; p<0.001), and TNF-alpha (Figure 2 E; p<0.001), 

while Virlaza™ resulted in a significant reduction of the synthesis and release of 



all these pro-inflammatory cytokines (p<0.001). On the other hand, on Sars-

Cov-2 stimulated cells, Virlaza™ resulted in a significant increase in the 

synthesis and release of IL-1RA (Figure 2 B; p<0.001), a potent anti-

inflammatory cytokine. 

Figure 2 - Effects of Virlaza™ on Bronchial Epithelial Cells (BEAS-2B) 

Activation 

 

Figure 2 – Cytokines levels in the supernatant of BEAS-2B cells. *p<0.05; 

**p<0.01; *** p<0.0001. Co = Control; Vir = Treated with 10ug/mL of Virlaza™; 



SarsCov2 = Stimulated with blood infected with Sars-Cov-2; SarsCov2+Vir = 

Stimulated with blood infected with Sars-Cov-2 + 10ug/mL of Virlaza™. 

Effects of Virlaza™ on Pulmonary Fibroblasts (MRC-5) Activation 

Figure 3 shows that Sars-Cov-2 activation resulted in increased 

synthesis and release of IL-1beta (Figure 3 A; p<0.001), IL-6 (Figure 3 C; 

p<0.001), and TNF-alpha (Figure 3 E; p<0.001), but not of IL-8 (Figure 3 D; 

p>0;05), while Virlaza™ resulted in a significant reduction of the synthesis and 

release of all these pro-inflammatory cytokines (p<0.001). On the other hand, in 

Sars-Cov-2 stimulated cells, Virlaza™ resulted in a significant increase in the 

synthesis and release of IL-1RA (Figure 3 B; p<0.001), a potent anti-

inflammatory cytokine. 

Figure 3 - Effects of Virlaza™ on Pulmonary Fibroblasts (MRC-5) 

Activation 



 

Figure 3 – Cytokines levels in the supernatant of MRC-5 cells. *** p<0.0001. Co 

= Control; Vir = Treated with 10ug/mL of Virlaza™; SarsCov2 = Stimulated with 

blood infected with Sars-Cov-2; SarsCov2+Vir = Stimulated with blood infected 

with Sars-Cov-2 + 10ug/mL of Virlaza™. 

Effects of Virlaza™ on P2X7 receptor expression in BEAS-2B and MRC-5 

Cells 

Figure 4 shows that Sars-Cov-2 activation resulted in increased 

expression of P2X7 receptor in BEAS-2B (Figure 4 A; p<0.001), and in MRC-5 

(Figure 4 B; p<0.001), while Virlaza™ resulted in a significant reduction of the 



expression of P2X7 receptor in BEAS-2B (Figure 4 A; p<0.001), and in MRC-5 

(Figure 4 B; p<0.001) cells. 

Figure 4 - Effects of Virlaza™ on P2X7 receptor expression in BEAS-2B 

and MRC-5 Cells 

 

Figure 4 – P2X7 Receptor mRNA expression in BEAS-2B and MRC-5 cells. 

**p<0.01; *** p<0.0001. Co = Control; Vir = Treated with 10ug/mL of Virlaza™; 

SarsCov2 = Stimulated with blood infected with Sars-Cov-2; SarsCov2+Vir = 

Stimulated with blood infected with Sars-Cov-2 + 10ug/mL of Virlaza™. 

Effects of Virlaza™ on iNOS mRNA Expression in BEAS-2B and MRC-5 

Cells 

Figure 5 shows that Sars-Cov-2 activation resulted in increased 

expression of iNOS in BEAS-2B (Figure 5 A; p<0.001), and in MRC-5 (Figure 5 

B; p<0.001), while Virlaza™ resulted in a significant reduction of the expression 

of iNOS in BEAS-2B (Figure 5 A; p<0.001), and in MRC-5 (Figure 5 B; p<0.001) 

cells. 

Figure 5 - Effects of Virlaza™ on iNOS mRNA Expression in BEAS-2B and 

MRC-5 Cells 



 

Figure 5 – P2X7 Receptor mRNA expression in BEAS-2B and MRC-5 cells. 

*p<0.05; **p<0.01; *** p<0.0001. Co = Control; Vir = Treated with 10ug/mL of 

Virlaza™; SarsCov2 = Stimulated with blood infected with Sars-Cov-2; 

SarsCov2+Vir = Stimulated with blood infected with Sars-Cov-2 + 10ug/mL of 

Virlaza™. 

Effects of Virlaza™ on Cell Viability of BEAS-2B and MRC-5 Cells 

Figure 6 shows the different concentrations of Virlaza™ on cell toxicity to 

determine the IC50 value. Figures 6 A (BEAS-2B cells) and 6 B (MRC-5 cells) 

show that 10 μg/mL was reached, was the dose corresponding to IC50, and 

was chosen was the study dose. 

Figure 6 - Effects of Virlaza™ on Cell Viability of BEAS-2B and MRC-5 

Cells 

 



Figure 6 – Cell viability (%) measured by MMT assay in BEAS-2B and MRC-5 

cells stimulated with growing doses of Virlaza™ (0.1ug/mL, 1ug/mL, 10ug/mL, 

100ug/mL, 1000ug/mL). 

 

Discussion 

This study shows for the first time that Virlaza™ was able to block the 

cytokine storm caused by Sars-Cov-2-induced epithelial (BEAS-2B) and lung 

fibroblast (MRC-5) activation, involving dampening of exacerbated purinergic 

signaling and iNOS expression. In addition, the study demonstrated the safety 

of an active therapeutic dose Virlaza™ in the context of cellular toxicity. 

Considering the lack of effective treatment for COVID-19, and the 

evidence that severely ill COVID-19 patients develop a cytokine storm, some 

studies are testing the hypothesis that the blockade of some proinflammatory 

cytokines, such as IL-6 [18] and IL-1beta [19] could be beneficial for severely ill 

COVID-19 patients. In addition, beyond massive infiltration by neutrophils and 

macrophages into the lungs, increased blood levels of IL-1β, IL-6, and TNF-

alpha have been linked to higher severity and mortality in COVID-19 patients 

[18, 19]. In this context, bronchial epithelial cells are the main entrance door and 

the main target of different types of respiratory bacteria and viruses, harming 

the immune system by exacerbating release of pro-inflammatory cytokines and 

growth factors [20, 21]. In the present study, we demonstrated that bronchial 

epithelial cells (BEAS-2B) when stimulated with Sars-Cov-2, responded to 

increased release of IL-1beta, IL-6, IL-8 and TNF-alpha, which were abolished 



by treatment with Virlaza™, clearly demonstrating the efficacy of Virlaza™ 

blocking the epithelial hyperactivation in the context of Sars-Cov-2. 

Importantly, the literature demonstrates the importance of increased 

expression of P2X7 receptor and consequent activation triggering 

proinflammatory and pro-fibrotic response in the context of respiratory diseases 

[4-7]. Such importance has been demonstrated in several cells of the 

hematopoietic system [6], but also in lung structural cells, such as in epithelial 

cells [4, 5] and lung fibroblasts [7]. , the activation of P2X7 receptors is 

classically related to the initiation, maintenance, progression, and severity of 

inflammatory states triggering IL-1beta release [7-9]. Herein, this study 

demonstrated that Virlaza™ inhibited IL-1beta release not only by epithelial 

cells (BEAS-2B) but also by lung fibroblasts (MRC-5). Particularly about 

fibroblasts, the inhibitory effect of Virlaza™ inhibiting the release of IL-1beta is 

of particular importance, since IL-1beta directly stimulates collagen synthesis 

and proliferation in fibroblasts [22, 23]. Therefore, it is plausible to hypothesize 

that Virlaza™ could also have a potential effect to inhibit lung fibrosis, which is 

commonly observed in COVID-19 survivors [24]. Such observed effects of 

Virlaza™ on IL-1beta release can be supported by the additional results of the 

present study, which demonstrated that Virlaza™ inhibited ATP release and 

accumulation, resulting in decreased expression of P2X7 receptor in BEAS-2B 

and in MRC-5 cells. Therefore, further clinical trial investigating the effects of 

Virlaza™ in COVID-19 survivors were guaranteed. 

Beyond P2X7 receptor, inducible nitric oxide synthase (iNOS), is though 

as a key enzyme involved in all aspects of the pathophysiological process of 

pulmonary infections with diverse etiologies, including for the Sars-Cov-2 [25, 



26]. In the context of COVID-19, intense and diffuse pulmonary inflammation 

results in endothelial dysfunction of the lung vasculature, uncoupling eNOS 

activity, lowering nitric oxide (NO) production, resulting in different pulmonary 

alterations and coagulopathy [25, 26]. On the contrary, viral infections trigger an 

increasing in iNOS activity, which may be acutely advantageous for host 

defense, once NO plays antiviral effects. However, sustained overproduction of 

NO mediates deleterious proinflammatory effects [25, 26]. In the present study, 

it was observed that Sars-Cov-2 increased iNOS expression in epithelial cells 

(BEAS-2B) and in lung fibroblasts (MRC-5 cells), which was dampened by 

Virlaza™. Interestingly, the literature demonstrates that NO synthesized 

specifically by the airway epithelium is vital to antiviral, inflammatory, and 

immune defense of the lungs [26]. However, again, the increased NO mediated 

by iNOS is related to an unresolved inflammatory process [27] as well as pro-

fibrotic response [28]. iNOS overexpression is linked to the release of 

proinflammatory cytokines, such as IL-1beta, IL-6, IL-8, and TNF-alpha, 

particularly in the context of acute respiratory distress syndrome (ARDS), 

phenomena present in cases of severe COVID-19 [27]. In the present study, 

Sars-Cov-2 stimulation resulted in an increase expression of iNOS by epithelial 

cells (BEAS-2B) and in lung fibroblasts (MRC-5 cells) and increased release of 

IL-1beta, IL-6, IL-8, and TNF-alpha, Virlaza™ significantly reduced iNOS 

expression and pro-inflammatory cytokines release, reinforcing the anti-

inflammatory and anti-fibrotic effects of Virlaza™. These findings concerning the 

iNOS inhibition by Virlaza™ can be strengthened once the literature already 

points out the possible therapeutic role of iNOS blockade for acute and long 

COVID-19 [29]. 



Beyond to inhibit the release of proinflammatory cytokines (IL-1beta, IL-6, 

IL-8, and TNF-alpha), Virlaza™ also induced the release of anti-inflammatory 

cytokine IL-1RA by epithelial cells (BEAS-2B) and by lung fibroblasts (MRC-5 

cells). Functionally, interleukin-1 receptor antagonist (IL-1RA) inhibits the 

activities of interleukin 1 alpha (IL-1alpha) and interleukin 1 beta (IL-1beta), 

modulating a wide range of immune and inflammatory responses driven by 

interleukin 1 related cytokines [30]. Anakinra is a recombinant IL-1RA that has 

been tested for the treatment of COVID-19 patients, resulting in better clinical 

outcomes [31-33]. 

Therefore, the present study concludes that Virlaza™ was capable not 

only to inhibit the release of proinflammatory cytokines but also to stimulate the 

release of the anti-inflammatory cytokine IL-1RA, which has already been 

demonstrated to be a promising therapeutic option to prevent the development 

of severe forms of COVID-19 including respiratory failure, as well to treat the 

severe forms of COVID-19, improving the clinical outcomes and survival [31-

33]. Thus, based on the findings of the present study, further clinical trials with 

Virlaza™ for the prevention and treatment of COVID-19 are guaranteed. 
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