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Abstract 1 

Background: Temperature and precipitation are known to affect Vibrio cholerae outbreaks. 2 

Despite this, the impact of drought on outbreaks has been largely understudied. Africa is both 3 

drought and cholera prone and more research is needed in Africa to understand cholera 4 

dynamics in relation to drought.  5 

Methods: Here, we analyse a range of environmental and socioeconomic covariates and fit 6 

generalised linear models to publicly available national data, to test for associations with 7 

several indices of drought and make cholera outbreak projections to 2070 under three 8 

scenarios of global change, reflecting varying trajectories of CO₂ emissions, socio-economic 9 

development, and population growth.  10 

Results: The best-fit model implies that drought is a significant risk factor for African 11 

cholera outbreaks, alongside positive effects of population, temperature and poverty and a 12 

negative effect of freshwater withdrawal. The projections show that following stringent 13 

emissions pathways and expanding sustainable development may reduce cholera outbreak 14 

occurrence in Africa, although these changes were spatially heterogeneous.  15 

Conclusions: Despite an effect of drought in explaining recent cholera outbreaks, future 16 

projections highlighted the potential for sustainable development gains to offset drought-17 

related impacts on cholera risk. Future work should build on this research investigating the 18 

impacts of drought on cholera on a finer spatial scale and potential non-linear relationships, 19 

especially in high-burden countries which saw little cholera change in the scenario analysis.  20 

Keywords  21 

Public Health, Epidemiology, Cholera, Disease Outbreaks, Vibrio cholerae, Droughts, 22 

Climate Change, Africa 23 
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Background  24 

Vibrio cholerae is a water-borne bacterial pathogen, causing profuse watery diarrhoea 25 

and rapid dehydration in symptomatic cases. This can lead to death within two hours of 26 

symptom onset and case fatality ranging from 3-40% [1,2]. The seventh and ongoing cholera 27 

pandemic began in 1961, spreading to Africa by the 1970s, where it now shows signs of 28 

endemicity in several countries [3,4]. Despite over 94% of World Health Organization 29 

(WHO) reported cholera cases occurring in Africa and some of the highest mortality rates [5], 30 

previous research has heavily focused on South America, the Indian subcontinent and more 31 

recently Haiti. 32 

Cholera outbreak frequency is closely related to environmental and climatic changes 33 

[6,7,8]. For instance, temperature and precipitation are considered important in cholera 34 

outbreak occurrence, with temperature driving epidemics and precipitation acting as a 35 

dispersal mechanism [9]. These relationships have implications for cholera outbreaks after 36 

natural hazards, such as droughts. Several links between drought and cholera outbreaks have 37 

been described [2,10,11] and it is hypothesised that increasing concentrations of infectious 38 

bacteria in more limited drinking water sources and increased risky drinking water 39 

behaviours are likely mechanisms for transmission [2,12]. Despite this, drought and cholera 40 

in Africa are understudied in isolation and links have more commonly been made between 41 

flooding, despite droughts potentially posing a considerably greater risk than floods [11].  42 

Cholera is considered a disease of inequity and several socio-economic risk factors 43 

have been implicated with cholera outbreaks, which may be further exacerbated by droughts. 44 

Some studies suggest that human-induced factors are more important for cholera dynamics 45 

than climate or environmental ones [13], including poverty [14], sanitation [15], drainage 46 

[16], water quality [17] and poor healthcare [9]. This supports the notion that outbreaks result 47 

from the breakdown of societal systems responses to a hazard, leading to a human-48 
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environment link and subsequent pathogen shedding [18]. Water, sanitation and hygiene 49 

(WASH) factors are considered particularly significant, as the importance of the water body 50 

reservoirs depends on the sanitary conditions of the community [19]. Eight hundred and 51 

forty-four million people worldwide lack access to basic drinking water and a further 2.4 52 

billion are without basic sanitation [20], putting many people at risk of water-borne disease 53 

outbreaks including cholera.  54 

Here, we aim to address the research gap of drought-related health outcomes by 55 

investigating its implications on cholera. The work fills an important research gap as few 56 

studies have investigated the link between drought and cholera outbreaks in Africa, or 57 

projected outbreak changes into the future, and investigating mechanisms through which 58 

global change might yield health impacts. Research in this area is particularly important due 59 

to a significant number of people at risk of both cholera and drought and the negative 60 

implications that climate change may have for these communities.  61 

Methods  62 

In this study, we aimed to understand the implications of drought for cholera outbreak 63 

occurrence at a continental scale across Africa, after accounting for important socio-64 

economic factors. We aim to use these results to further understand the hypothesis that 65 

droughts lead to cholera outbreaks through elevated pathogen concentrations in limited water 66 

and an increase in risky drinking water behaviours, Fig. 1 shows a schematic to help visualise 67 

this hypothesis and potential pathways. In addition, we aimed to evaluate how future changes 68 

in drought area and risk due to climate change [21,22], alongside other development factors, 69 

may impact future cholera outbreak occurrence. We thus developed several projection 70 

scenarios incorporating different greenhouse gas emissions and socio-economic development 71 

trajectories. 72 
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Fig. 1. Pathways from water shortages to cholera outbreaks: Suggested mechanism through 73 

which drought can lead to cholera outbreaks in Africa [2,12] 74 

Datasets and Study Period 75 

We compiled data on cholera outbreaks and a range of social and environmental covariates 76 

over the period 1970 to 2019. Annual cholera cases were retrieved from the WHO’s Global 77 

Health Observatory [23], which provides reported annual cholera case for each country, 78 

which were confirmed either clinically, epidemiologically, or by laboratory investigation. For 79 

analysis, these numbers were transformed into a binary outcome to reflect outbreak 80 

occurrence (i.e., set at 0 for no outbreak and 1 for an outbreak (>1 case/death)), which was 81 

then used as the outcome variable in the models. We opted not to analyse raw case data to 82 

minimise the effect of unmeasured observations and reporting biases among countries. For 83 

years with no outbreak data, the outcome was set to 0, assuming if cholera cases/deaths 84 

occurred within a country then they would have been identified and reported (a sensitivity 85 

analysis for this assumption is presented in Supplementary Information 1).  86 

In total, 19 environmental and socio-economic covariates were selected for 87 

investigation based on prior hypotheses and previous results linking cholera outbreaks to risk 88 
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factors (summarised in Supplementary Table 1). Environmental data were extracted from a 89 

variety of sources and included climate (temperature and precipitation) [24], meteorological 90 

drought (Palmer Drought Severity Index, PDSI) [25], agricultural drought (soil moisture and 91 

potential evapotranspiration (PET) [26,27] and hydrological drought (runoff and freshwater 92 

withdrawal annually and per capita) [28,29]. Where monthly or sub-national data were 93 

available, we calculated national yearly means. Climate data were missing for Côte d’Ivoire 94 

and drought data were missing for Rwanda, The Gambia, Guinea-Bissau, Djibouti, Burundi, 95 

Benin, Cabo Verde, São Tomé and Principe, Comoros, Mauritius and Seychelles. 96 

Environmental data for these countries were derived by taking the mean of their neighbouring 97 

countries, whereas islands were excluded.  98 

Socio-economic data including annual indicators of poverty and development, 99 

WASH, malnourishment, and population (on a logarithmic scale), were taken from the 100 

WorldBank [30] and the United Nations Development Programme [31] datasets. Where a 101 

country’s socio-economic data were missing for some years, a national average was taken 102 

from the available data points and used for all years. If national data were missing for the full 103 

instrumental period, these countries were removed from the analysis. 104 

After examining data completeness across the full dataset, we designated the 105 

instrumental period for analysis to be 2000 to 2016 to limit omitting missing data and 106 

interpolation. Summary figures of the climate and cholera data over the instrumental period 107 

are shown in Supplementary Figure 1. Summary figures of the drought indices and their 108 

definitions are shown in Supplementary Figure 2 and Supplementary Information 2. 109 

Model Structure and Fitting  110 

Generalised linear models (GLM) were fitted to the dataset describing the cholera 111 

outbreak occurrence for the instrumental period (2000-2016), for all countries in mainland 112 

Africa and Madagascar, using maximum likelihood estimation. Due to the binary outcome 113 
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variable for cholera outbreak occurrence, a binomial likelihood with a log-log link function 114 

was used in all models. Rows with missing values were removed from the data frame.  115 

From this initial dataset, a reduced pool of potential covariates was selected for model 116 

fitting using a covariate selection process developed by Garske et al. [32] and Gaythorpe et 117 

al. [33]. In summary, univariate models for each potential variable were fitted to the binary 118 

outcome variable and any variables not significantly associated with the outcome at a 10% 119 

confidence limit (p<0.1) were excluded. Of the remaining covariates, absolute pairwise 120 

correlations were calculated, and highly correlated variables (r>0.75) were then clustered into 121 

groups. The covariates from each cluster most strongly correlated with the outcome variable 122 

was then selected for inclusion in the multivariate models, fit using the function glm. Model 123 

fit was evaluated using Bayesian Information Criterion (BIC) and a single best-fit model was 124 

found using the stepAIC function. In addition, area under the receiver operator characteristic 125 

curve (AUC) was used to quantify model performance. All statistical analyses were carried 126 

out in R Studio version 3.6.2 (packages: tidyr, MASS, ggplot2, dplyr, magrittr, corrplot, 127 

caret, nlme, MuMIn, car, boot). 128 

Testing for Temporal and Spatial Effects 129 

The inclusion of multiple years of data across multiple countries raises the possibility 130 

of spatial and temporal confounding (e.g., autocorrelation). To investigate the potential 131 

influence on the covariate selection and subsequent model, separate analyses were run 132 

including year and ISO3 country code as predictor variables following the same step-wise 133 

covariate selection process and multivariate model approach as described above. 134 

Autocorrelation diagnostics were run on selected spatial and temporal covariates by testing 135 

the significance of the linear relationship with and without consideration of AR1 136 

(autoregressive model of order 1) autocorrelation and assessing evidence of autocorrelation in 137 

the residuals. Leave-one-out (LOO) cross validation using Akaike Information Criterion 138 
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(AIC) was used to assess model performance of both the original (without year/ISO) and the 139 

updated (with year/ISO) multivariate models selected through the covariate selection process.  140 

Projection Scenarios 141 

Three scenarios (S1, S2 and S3) were developed for 2020-2070 (at decadal 142 

increments) as summarised in Table 1. Each scenario represents an alternative possible future 143 

trajectory of the variables retained in the best fit model, parameterised to varying degrees of 144 

climate mitigation and socio-economic development. Here, S1 represents a “best-case” 145 

scenario, loosely aligning to highly ambitious climate change mitigation and strong progress 146 

towards the Sustainable Development Goals (SDG), S2 represents an intermediate scenario, 147 

and S3 a “worst-case” scenario with slower progress towards emissions reductions and the 148 

SDGs.  149 

Table 1. Cholera projection scenarios for 2020-2070 at decadal intervals: Scenario 1 (S1), a 150 

"best-case" scenario; Scenario 2 (S2), an intermediate scenario and Scenario 3 (S3), a “worst-151 

case" scenario. The scenarios were projected over fifty years from 2020-2070. HWC = high 152 

withdraw countries including MDG, LBY, SDN, MRT and MAR 153 

 Year Drought Temperature Poverty Water withdrawal 

 

 

 

Scenario 1 

2020  

 

 

2000-2016 

average 

2000-2016 average 2016 2016 

2030 2000-2016 average Reduce 2016 by 50% 2016 

2040 2000-2016 average Reduce 2016 by 50% 2016 

2050 RCP4.5 2050 Medium value between 

2030 & 2070 

20% increase and 20% 

decrease for HWC 

2060 RCP4.5 2050 Medium value between 

2030 and 2070 

20% increase and 20% 

decrease for HWC 

2070 RCP4.5 2070 Poverty elimination (0%) 20% increase and 20% 

decrease for HWC 

 

 

 

2020  

 

2000-2016 average 2016 2016 

2030 2000-2016 average 2016 2016 

2040 2000-2016 average 2016 2016 
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Scenario 2 

 

 

 

 

 

2050 Median value 

between S1 and 

S2 

RCP6.0 2050 Reduce 2016 by 50% 10% increase and 10% 

decrease for HWC 

2060 RCP6.0 2050 Medium value between 

2050 and 2070 

10% increase and 10% 

decrease for HWC 

2070 RCP6.0 207 Poverty elimination (0%) 10% increase and 10% 

decrease for HWC 

 

 

 

 

 

 

Scenario 3 

 

 

 

 

 

2020 ((Coefficient*4) + 

2016 value) 

2000-2016 average 2016 2016 

2030 ((Coefficient*10) + 

2020 value) 

2000-2016 average 2016 2016 

2040 ((Coefficient*10) + 

2030 value) 

2000-2016 average 2016 2016 

2050 ((Coefficient*10) + 

2040 value) 

RCP8.5 2050 2016 5% increase and 5% 

decrease for HWC 

2060 ((Coefficient*10) + 

2050 value) 

RCP8.5 2050 Medium value between 

2050 and 2070 

5% increase and 5% 

decrease for HWC 

2070 ((Coefficient*10) + 

2060 value) 

RCP8.5 2070 Reduce 2016 value by 

50% 

5% increase and 5% 

decrease for HWC 

 154 

Detailed descriptions and justifications of the projected changes for each variable are 155 

provided in full in Supplementary Information 3. Briefly, projected temperature data (for 156 

2050 and 2070) were taken from WorldClim [34], as this was also used for historical data. 157 

The data is Coupled Model Intercomparison Project 6 (CMIP6) downscaled future climate 158 

projections, processed for nine global climate models using three Representative 159 

Concentration Pathways (RCP). We used RCP4.5, 6.0 and 8.5 for scenarios S1, S2 and S3, 160 

respectively. This was projected for 2050 and 2070 and we used the instrumental period 161 

average (2000-2016) for 2020-2040 values. The average was used to account for interannual 162 

climate variability. Supplementary Figure 3 summaries the data for each pathway and year.  163 

Projecting PDSI at a continental or national scale is contentious showing a range of 164 

projection outcomes, due to high spatial heterogeneity and between model 165 

uncertainty/disagreement [21,35], as well as computational discrepancies depending on the 166 
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PET algorithm used [36]. Several PDSI modelling studies [36,37] and paleoclimatic studies 167 

[38,39] found that drought severity and durations remained constant despite periods of 168 

extreme dryness, over a range of time scales. We also observed this in our dataset for both the 169 

full data range and the instrumental period and our data accurately captured past drought as 170 

its changes tracked with soil moisture, a good index of drought (see Supplementary Figure 4 171 

and 5) [41]. Given these disagreements and following other drought projection studies [40], 172 

we opted to estimate future drought conditions for each scenario as follows: For S1, we 173 

included no change relative to a current “baseline” by fixing drought values to the 174 

instrumental period average (2000-2016), the average was used to account for interannual 175 

climate variability. For S3 (representing “business-as-usual”) we extrapolated the full 176 

historical data trends for each country (1850-2016) using univariate linear regression models 177 

(drought~year). The results of these models are available in Supplementary Table 2 and the 178 

coefficients then acted as a yearly multiplier (up until the extreme values of +4 for extreme 179 

wetness and -4 for extreme dryness). For S2, we took an intermediate value between S1 and 180 

S3. To account for uncertainty in the drought projections and to further examine how drought 181 

in isolation may alter future cholera outbreaks, a second sensitivity analysis was run, 182 

maintaining the other covariates at the 2016 levels and altering drought in six analyses +/-0.5, 183 

+/-1 and +/-2 (or until the extreme values, +4 or -4). Full details and results of this sensitivity 184 

analysis are shown in Supplementary Table 3 and Supplementary Figure 6.  185 

Poverty changes were based on SDG 1 [42], despite the limitations of the SDGs (e.g., 186 

ambiguous terms), they are a globally recognised standard for sustainable development. As 187 

such, S1 meets the goal of a 50% reduction in extreme (<$1.25/day) poverty by 2030 and 188 

poverty eliminated by 2070. In S2, the 50% reduction goal is met by 2050 and by 2070 for 189 

S3. The poverty setting used in the SDGs is slightly lower ($1.25) than the WorldBank data 190 

used in this analysis ($1.90), and it is difficult to distinguish the level of poverty within the 191 
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data; therefore, the projected scenarios mainly aligned with the second part of the goal, to 192 

halve the population in poverty by 2030. 193 

Projected changes in freshwater withdrawal are largely dependent on future human 194 

behaviour and adaptation to changing water security, which are highly uncertain. Therefore, 195 

freshwater withdrawal projections were based on SDG6.4 and either increased or decreased 196 

based on each country’s historical freshwater withdrawal relative to available water 197 

resources, taken from the same source used in the model [28]. This indicator of freshwater 198 

security for each country is plotted in Supplementary Figure 7. Expanded freshwater 199 

withdrawal would likely increase peoples’ access but this must be done sustainably and in 200 

line with resources. Increased withdrawal may also be a sign of development as more people 201 

have access to wells, boreholes and piped water. As such, for S1 we increased sustainable 202 

freshwater availability by the middle of the projection period (2050) by 20% for countries 203 

with sufficient resources. For S2, we increased freshwater availability by 10% and for S3 by 204 

5%.  205 

For population projections, the United Nation’s World Population Prospectus [43] 206 

median variant was used for all three scenarios. Although population growth is expected to be 207 

more restricted under high attainment of the SDGs, we opted to use a single medium 208 

population size to isolate the effects of the other environmental and socio-economic 209 

covariates.  210 

Results 211 

Model Fitting and Covariate Selection 212 

The univariate model results (p-values, coefficients, BIC and AUC of the 19 tested 213 

covariates against cholera outbreak occurrence) are shown in Table 2. Six of these were not 214 

significantly associated with the data at the threshold of p<0.1. Of the remaining 13, one 215 

cluster was formed containing two highly correlated variables (soil moisture and drought), 216 
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while all other covariates were considered uncorrelated at the given threshold and therefore 217 

could be included in the full model.  218 

Table 2. Univariate model outputs and goodness-of-fit measures for the tested covariates 219 

against cholera outbreak occurrence, including p-values, coefficients, BIC and AUC. * p<0.1 220 

Covariate p-value Coefficient BIC AUC 

Potential evapotranspiration (mm/day) 0.961 0.011 785.323 0.5979 

Annual freshwater withdrawal (billion m³) 0.649 -0.029 784.570 0.5279 

Runoff (mm/year) 0.373 -0.064 785.395 0.6068 

Health expenditure (% GDP) 0.371 0.126 783.253 0.5389 

Prevalence of malnourishment (% population) 0.139 -0.169 784.014 0.5892 

Gross domestic output (current $) 0.126 -0.091 783.079 0.5148 

Population density (people/km²) 0.051* -0.145 781.802 0.5773 

Water withdrawal per capita (m³/person/year) 0.032* 0.151 762.801 0.6184 

Average precipitation (mm)  0.021* -0.263 780.742 0.6345 

People with basic handwashing facilities (% 

population) 

0.018* 0.189 766.430 0.5882 

Percentage living in informal settlement (% urban 

population) 

0.013* -0.467 778.730 0.4903 

Mean drought 0.003* -0.199 768.863 0.5827 

Human Development Index 0.0002* 1.014 767.927 0.6562 

People using at least basic sanitation (% 

population) 

0.0001* 0.384 757.283 0.6347 

Poverty headcount (% population at <$1.90/day) 0.0001* -0.583 768.649 0.7018 

Average temperature (°C) 0.00005* -1.715 765.124 0.5349 

Soil moisture (%) 0.00003* -0.706 768.044 0.6871 

People with basic drinking water (% population) 0.00002* 0.906 762.312 0.6521 

Population (log. population in thousands) 0.0000000004* -3.064 741.192 0.6521 

 221 

Output from the Best-Fit Model  222 

After model fitting, five covariates were retained in the best-fit model. These include 223 

population, mean meteorological drought (in PDSI), average temperature, poverty headcount 224 

and per capita freshwater withdrawal. Goodness of fit measures and outputs for the best-fit 225 

model are shown below in Table 3. Higher population numbers and more people living in 226 
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poverty were associated with increased cholera outbreaks. For the environmental covariates, 227 

per capita freshwater withdrawal was negatively associated with cholera, while higher 228 

temperatures and drier conditions (more negative PDSI) were both associated with increases 229 

in cholera outbreaks. These relationships are shown in the marginal effect plots in Fig. 2.  230 

Table 3. Output and goodness of fit measures for the best-fit model  231 

 Coefficient Exp(Coefficient) p-value 

Mean national drought (PDSI) -0.0927813 0.9113928127 0.051172 

Population, total (log) 1.3125412 3.7156036497 2.85x10⁻¹³	

Average temperature (°C)  0.0927423 1.0971789754 0.000113 

Poverty headcount (at <$1.90/day) 0.0327487 1.0332908900 4.23x10⁻¹⁶ 

Per capita freshwater withdrawal (m³/person/year) -0.0024225 0.9975804550    5.43x10⁻⁷ 

Residuals Min 1Q Median 3Q Max 

 -2.0286 -0.7974 0.4069 0.8601 2.2564 

R2: 0.276254 

AUC: 0.7784 
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Fig. 2. Marginal effect plots for the five selected covariates for the best-fit model, showing 232 

cholera outbreak occurrence probability  233 

Temporal and Spatial Effects 234 

Re-running the covariate selection process with year, ISO3 country code and the 19 235 

original predictor variables, selected year but not ISO3 at the significance threshold (p=<0.1). 236 

It also selected the same covariates as the original model and additionally basic handwashing 237 

and Human Development Index. The linear relationship between year and cholera was 238 

visualised using loess curves for each country (shown in Supplementary Figure 8) and when 239 

accounted for AR1 autocorrelation year was found to no longer be significant (p=<0.05).  240 

Out-of-sample validation using AIC and LOO found no appreciable difference 241 

between the two selected best-fit models. Therefore, the model selected without the inclusion 242 

of year and country code in the selection process was thus as the best-fit model (diagnostic 243 

results are shown in Supplementary Information 4).  244 
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Cholera outbreak occurrence appears conditionally independent of year given the 245 

other covariates in the model, as time does not cause cholera but instead the changes in 246 

covariates over time, making them good predictors of cholera outbreak occurrence. It is also 247 

thought that some temporal increases in cholera are due to global improvements for detection 248 

of all-pathogen outbreaks from the mid 1990s onwards, especially in low- and middle-income 249 

countries, improving countries’ capacity for detection, response and therefore reporting 250 

[44,45].  251 

Cholera Projections to 2070 252 

Cholera projections from the best-fit model according to the parameter values for 253 

each of the three scenarios are shown in Fig. 3. The cholera outbreak projections show 254 

several changes through to 2070 and spatial heterogeneity among countries over the 255 

continent. Most countries show a general decrease in cholera outbreaks in S1 and S2, with 256 

few exceptions e.g., Tunisia. Although countries with the highest cholera levels saw little 257 

change, remaining at a high outbreak occurrence level throughout, including the Democratic 258 

Republic of Congo (DRC) and Nigeria.  259 
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Fig. 3. Projected cholera outbreak occurrence (0-1) for the three scenarios in 2030, 2050 and 260 

2070. Grey represents countries where covariate data was missing (Botswana, Zimbabwe, 261 

Somalia, Egypt, Eswatini, Western Sahara, Algeria, Libya and Eritrea) and therefore could 262 

not be included in the model 263 

Fig. 4 shows the decadal continental average for the projected cholera outbreak 264 

occurrence, to help understand the general trend across the continent. Overall, S3 shows a 265 

slight increase throughout the projected period, whereas S1 and S2 exhibit declines. 266 

However, overlapping confidence intervals between S1 and S2 mean it is difficult to 267 

distinguish meaningful differences, although by 2070 S3 projects significantly more 268 

outbreaks than S1 and S2.  269 
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Fig. 4. Mean continental cholera outbreak occurrence for the projected period (2020-2070) 270 

using the three scenario datasets 271 

The drought sensitivity analysis showed modest changes through the six different 272 

analyses, with more negative values of PDSI seeing higher cholera outbreak occurrence 273 

(Supplementary Table 3 and Supplementary Figure 6). Despite this, these changes were not 274 

excessive with a 0.06 average increase in continental cholera outbreak occurrence from the 275 

2000-2016 averages to sensitivity analysis 6 (2016 value – 2). This suggests that while future 276 

drought is likely to continue to affect cholera in Africa, improved socio-economic conditions 277 

may counteract this effect, by reducing pathogen exposure.  278 

Discussion 279 

Cholera has well established environmental [6,7,8] and socio-economic links 280 

[9,14,15], such as poverty, poor WASH conditions, the Intertropical Convergence Zone and 281 

El Niño Southern Oscillation. Here, environmental variables were important covariates in the 282 
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model. Meteorological drought (according to PDSI) was found to be a significant predictor of 283 

cholera outbreaks, with drier conditions seeing higher cholera outbreak occurrence. While 284 

previous studies have implicated drought in cholera outbreaks [2,10,11], our study models 285 

drought in isolation allowing a more in-depth investigation of its impacts, which have been 286 

largely understudied in comparison to flooding. In addition, we tested whether drought is 287 

likely to influence cholera outbreaks under scenarios of climatic change and socio-economic 288 

development (attainment of the SDGs). While we found drought will continue to be an 289 

important hazard for cholera outbreaks in the future, our results suggest that gains in 290 

sustainable development (reduction of poverty, increased water security) may offset cholera 291 

risk in the future.  292 

Temperature was identified as a significant predictor, providing another link between 293 

changing drought risk and increased cholera outbreak occurrence, as an increased 294 

temperature is important in both drought onset and duration. The positive relationship 295 

between temperature and cholera is expected, as cholera is considered a temperature-sensitive 296 

pathogen, with optimum growth at elevated temperatures (up to a threshold) [46]. This may 297 

also represent an independent effect of temperature from drought and why both variables are 298 

independently selected in the model. For example, a 1°C rise in temperature was associated 299 

with a 2-fold increase in cholera cases in Zanzibar [8]. Moreover, when run in the univariate 300 

models, precipitation had a slightly negative coefficient, again providing a potential link 301 

between drought, decreased water availability and cholera outbreaks. Precipitation, however, 302 

was not selected in the final model, potentially suggesting that precipitation effects for 303 

cholera in Africa, may be less important than temperature. 304 

The inclusion of more than one type of drought index in the best-fit model (PDSI and 305 

water withdrawal) shows the importance of considering several drought definitions and 306 

measures when investigating its implications. Drought is a complex phenomenon involving 307 
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climate, agriculture, water stress and societal response and therefore including additional 308 

drought variables can help capture the varying elements of the hazard, exposure and 309 

vulnerability. Water withdrawal per capita was a highly significant environmental variable in 310 

the model, linking to the original hypothesis that a reduction in water availability leads to 311 

riskier water practices. More water withdrawal suggests higher water availability for drinking 312 

and washing and a reduction in risky behaviour such as with multi-use water. Better water 313 

management may help mitigate negative drought-related health outcomes, and when water is 314 

available, this should not be exploited to avoid times of scarcity. 315 

Cholera is a disease of inequity and poverty and is often seen in combination with 316 

poor WASH facilities [14,49]. Here, poverty was the most significant variable (according to 317 

the p values) included in the model and may suggest that environmental determinants of 318 

cholera are only key drivers up to certain thresholds and then socio-economic covariates are 319 

more appropriate predictors [13]. For example, droughts have been known to impact the US 320 

and Europe [47,48], but large-scale cholera outbreaks do not occur due to generally high 321 

levels of sanitation and hygiene. Several socio-economic covariates were expected to be 322 

important here but only poverty was selected in the final model and all socioeconomic 323 

covariates were independently selected for model inclusion. A possible explanation is that 324 

other socio-economic covariates such as, sanitation, hygiene, drinking water and people 325 

living in informal settlements is captured within the effects of poverty and possibly 326 

enhancing its impact. Even with the ideal environment for cholera to proliferate, social 327 

conditions allow the link to be made for pathogen exposure and spread. Poor access to 328 

WASH facilities means that large groups of people are at risk, not just for cholera, but for 329 

several other diseases. For example, nearly 90% of diarrhoeal disease has been attributed to 330 

sub-optimal WASH [50]. These findings highlight the need to meet or exceed the SDGs, 331 
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lifting people out of poverty and providing basic sanitation and hygiene as a public health 332 

priority.  333 

The scenario dataset and projections provide some insight into the future importance 334 

of climate and socio-economic development on cholera outbreak occurrence in Africa. 335 

Historical and projected changes are spatially heterogenous but projected continental trends 336 

under S3 slightly increased cholera outbreak occurrence to 2070. Whereas, under S2 and S1 337 

cholera occurrence decreased to 2070, with S1 showing the lowest levels. The projected 338 

changes over the next 50 years show that reducing poverty, expanding sustainable freshwater 339 

availability and striving for greater emissions reductions will be important for achieving 340 

positive health outcomes. How societies will continue to respond and adapt to climate change 341 

and drought is difficult to determine in the future and therefore understanding future risks can 342 

be challenging. As with any projections and the creation of scenarios, uncertainty can be 343 

high, arising from theoretical, methodological and computational challenges in projecting 344 

future climate change and its consequences. There are also the realities of meeting or 345 

exceeding the SDGs. Several of the terms within the SDGs are ambiguous, consequently the 346 

aims and roadmap to achieve them are not clearly defined. Finally, we did not consider that 347 

in a “worst-case” scenario poverty and water withdrawal may regress or the introduction of 348 

new strains and changing immunity could complicate cholera eradication efforts. Despite 349 

this, with decreasing poverty and the expansion of freshwater availability, even the 350 

introduction of new cholera cases and strains could be offset.  351 

Climate, drought and socio-economic data were missing for several countries and 352 

years, meaning that data had to be averaged or omitted. This meant that data were then 353 

missing from the model, or assumptions had to be made both spatially and temporally about 354 

conditions in certain countries, potentially introducing error. Cholera is largely 355 

underreported, and many people never seek formal medical assistance. The WHO’s most 356 
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optimistic estimate suggests only 5-10% of cases are reported [51], possibly due to a 357 

spectrum of transmission dynamics and lulls in cases meaning focus on tracking the diseases 358 

can be lost [52]. Countries can be disincentivized to report outbreaks due to potential impact 359 

on tourism and trade [53]. Considering this underreporting, issues may have arisen from 360 

assigning the outcome variable to zero for missing years, as this could have led to the 361 

underrepresentation of cholera outbreaks. Given the results of the sensitivity analysis in 362 

Supplementary Information 1, however, we believe this is the best interpretation of missing 363 

values, as removing values created issues when trying to select covariates from small 364 

numbers of data points. Furthermore, the cholera data lack age and sex-disaggregation, 365 

meaning that demographic differences were not captured. GLMs assume a monotonic 366 

relationship and therefore non-linear effects of several covariates might not be captured and 367 

evaluating these non-linear effects are a potential area of future work. This issue may also 368 

have been present for the S3 drought projections as some countries fit the linear trend better 369 

than others. 370 

Conclusions 371 

In conclusion, the relationships between temperature, drought and water withdrawal 372 

help add further evidence to the original hypothesis that hotter and drier conditions and a lack 373 

of freshwater availability increases cholera outbreak occurrence, potentially through risky 374 

water behaviours. Although elevated pathogen concentrations are difficult to distinguish from 375 

these results, the importance of elevated temperatures and its effect on cholera may be related 376 

to increases in pathogen concentrations. Socio-economic variables came out highly 377 

significant in the best-fit model, showing the impact of vulnerability in times of water 378 

shortage and the importance of lifting people out of poverty to improve health and reduce 379 

mortality.  380 
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The work presented here offers additional insight into how climate change may yield 381 

health impacts in the future and work should build on these results, to understand these 382 

relationships on a finer spatial scale. High burden countries such as the DRC and Nigeria saw 383 

very few changes in cholera over the projected period and scenarios, showing potential areas 384 

for further work to understand outbreak drivers and mitigators in the most at-risk countries. 385 
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