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Forecasting admissions 1n psychiatric hospitals
before and during Covid-19
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Abstract—Introduction The COVID-19 pandemic has strong
effects on most health care systems and individual services
providers. Forecasting of admissions can help for the efficient
organisation of hospital care. We aimed to forecast the number of
admissions to psychiatric hospitals before and during the COVID-
19 pandemic and we compared the performance of machine
learning models and time series models. This would eventually
allow to support timely resource allocation for optimal treatment
of patients. Methods We used admission data from 9 psychiatric
hospitals in Germany between 2017 and 2020. We compared
machine learning models with time series models in weekly,
monthly and yearly forecasting before and during the COVID-
19 pandemic. Our models were trained and validated with data
from the first two years and tested in prospectively sliding
time-windows in the last two years. Results A total of 90,686
admissions were analysed. The models explained up to 90% of
variance in hospital admissions in 2019 and 75% in 2020 with the
effects of the COVID-19 pandemic. The best models substantially
outperformed a one-step seasonal naive forecast (seasonal mean
absolute scaled error (sMASE) 2019: 0.59, 2020: 0.76). The best
model in 2019 was a machine learning model (elastic net, mean
absolute error (MAE): 7.25). The best model in 2020 was a
time series model (exponential smoothing state space model with
Box-Cox transformation, ARMA errors and trend and seasonal
components, MAE: 10.44), which adjusted more quickly to the
shock effects of the COVID-19 pandemic. Models forecasting
admissions one week in advance did not perform better than
monthly and yearly models in 2019 but they did in 2020. The
most important features for the machine learning models were
calendrical variables. Conclusion Model performance did not
vary much between different modelling approaches before the
COVID-19 pandemic and established forecasts were substantially
better than one-step seasonal naive forecasts. However, weekly
time series models adjusted quicker to the COVID-19 related
shock effects. In practice, different forecast horizons could be
used simultaneously to allow both early planning and quick
adjustments to external effects.

Index Terms—TForecasting, Psychiatry, Hospitals, Covid-19

I. INTRODUCTION

EALTH care systems need to balance potentially
unlimited demand for services with scarce health care
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resources [1]. This balance might become even more difficult
in the future due to an aging population that leads to increased
demand for health care services and reduced medical work
force [2]. Hospitals often consume a large part of total
health care budgets [3]. A possible way to mitigate resource
constraints in hospitals is the use of modern technologies
to make services more cost-effective [4]. For instance, the
increasing availability of data allows to support medical
decision making in hospitals with information derived from
machine learning algorithms [5, 6].

Efficient resource allocation in hospitals requires the
management of volatile demand and available resources.
This management is more critical in hospitals than in other
areas since lack of timely and sufficient services can lead to
negative patient outcomes [7]. Insufficient staff can lead to
increased morbidity and mortality [8, 9]. Due to the shortage
of trained medical staff in many health care systems, securing
sufficient medical staff to permanently meet patient needs
becomes a critical objective [10]. Inpatient mental health care
is more staff intensive than other medical disciplines due to
the personal nature of many interventions [11, 12].

The Covid-19 pandemic has strong effects on most
health care systems and individual service providers [13].
A sudden surge in patients requiring intensive respiratory
care and the possible shortage of ICU capacities led to
political supply side interventions in many health care
systems [14]. In Hesse, Germany, somatic and psychiatric
hospitals were required to restrict new admissions to urgent
care cases and avoid elective patients from 16th March
2020. Furthermore, new hospital hygiene regulations and the
requirement to quarantine patients reduced hospital capacities.

Forecasting of admissions can help for the efficient organ-
isation of hospital care and for the adjustment of resources
to sudden changes in patient volumes. We aimed to forecast
the number of admissions to psychiatric hospitals before and
during the COVID-19 pandemic and we compared the perfor-
mance of machine learning models and time series models.

II. METHODS
A. Data

We included all inpatient admissions from 01. January 2017
to 31. December 2020 to nine hospitals in Hesse, Germany.
These hospitals are part of a common service provider and
account for about half of all inpatient mental health care
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in the state of Hesse. Aggregated admission numbers per
day were obtained from the hospital administrations and did
not contain individual patient data. Returns after planned
interruptions, such as home leave, were excluded. Multiple
separate admissions of the same patient were counted
individually. Admissions to the departments of child and
adolescent psychiatry and admissions to the departments for
psychosomatic medicine were excluded.

We obtained weather and climate data from the Climate
Data Centre of Germany’s National Meteorological Service
[15]. We used the gtrendsR package to query Google trend
data for Hesse, Germany [16]. School holidays and public
holidays were obtained from publicly available calendars.

B. Analyses

We used machine learning and time series models to predict
the number of hospital admissions for each day of year 2019
and 2020. The machine learning models were a) gradient
boosting with trees (XGB) [17], b) support vector machines
(SVM) [18] and c¢) elastic nets [19]. The time series models
were a) exponential smoothing state space models (ETS) [20],
b) exponential smoothing state space models with screening
for Box-Cox transformation, ARMA errors and trend and
seasonal components (TBATS) [21] and c¢) additive models
with non-linear trends fitted by seasonal effects (PROPHET)
[22]. We compared models forecasting a week in advance, a
month in advance and a whole year one week in advance.

C. Features

Our machine learning model used calendrical variables,
climate and weather data, google trend data, Fourier terms
and lagged number of admissions as features. The calendrical
features were day of week, weekend, public holiday, school
holiday, quarter of the year, month of the year, bridge days,
i.e. days between a public holiday and the weekend and the
end of the year, i.e. the days between Christmas and new
year’s eve. The climate and weather data were wind speed,
cloudiness, air pressure, precipitation depth and type, duration
of sunshine, snow height, air temperature and humidity. Since
the weather of future days was unknown at the point of
prediction we used lagged values, i.e. the weekly model used
the weather 7 days before the predicted day and the monthly
models used the weather data 28 days before the predicted
day. We did not use weather data for the yearly model.

We used the following keywords in google trend data:
depression, sadness, suicide, mania, fear, panic, addiction,
dependence, alcohol, drugs, schizophrenia, psychosis and hal-
lucinations. As for the weather data, we used lagged values
of google trend data. The weekly models used the number
of admissions 14 days before the predicted day, because the
number of admissions was not known yet on day 7 before
prediction, as additional feature and the monthly model used
these values with a lag of 35. Our time series models did not
use feature variables.

D. Training and testing

We used prospectively sliding time windows to validate
(2018) and test (2019 and 2020) model performance.
The final weekly models predicted each day of one full
week of hospital admissions seven days in advance. We
tested one model for each week and study site in 2019
and 2020, thereby incrementally prolonging the training
period and forwarding the 7-day testing period each by
one week. The monthly models each predicted 28 days of
hospital admissions in advance and the incremental slides
were 28 days. In the yearly models, we predicted the whole
year of 2019 and 2020 each one week before the years started.

We compared model performance with the Root-Mean-
Squared-Error (RMSE), the R2, the Mean Absolute Error
(MAE) and a seasonal Mean Absolute Scaled Error (SMASE).
The sMASE [23] was calculated by dividing the MAE of our
weekly, monthly and yearly forecasts by the MAE derived
from a naive forecast based on the number of admissions
observed 14 days, 35 days and 364 days before the predicted
day, respectively.

III. RESULTS

The number of admissions showed a relatively strong
weekly seasonality and a yearly seasonality. Figure |1
provides the results of a multiple seasonal decomposition of
the number of daily admissions by loess [24]. There was no
strong trend in admission numbers during the first three years,
until the commencement of the Corona hospital regulation
on March 16th had a clear negative effect on the number of
admissions.

Table I shows the forecasting performance in 2019 and
in 2020 at all study sites combined. The naive seasonal
forecasts were based on the number of admissions 14, 35
and 364 days before the predicted day for the weekly,
monthly and yearly models, respectively. In absolute terms,
the best model in 2019 was the weekly elastic net, which
achieved a MAE of 7.25 days and an explained variance of
90%. Compared to a naive forecast based on the number
of admissions two weeks in advance, this model achieved
a forecast improvement of 38% (sMASE=0.62). In absolute
terms, the best model in 2020 was the weekly TBATS
model. However, compared to the monthly possible naive
forecast, i.e. the number of admission 35 days in advance,
the highest improvement was achieved with the monthly SVM.

The error accumulation in 2019 and 2020 at all study sites
combined is shown in Figure 2. While model performance was
relatively similar in 2019, errors diverged after commencement
of the Corona hospital regulation on March 16th, 2020. Weekly
time series models adjusted quicker to the new circumstances
and accumulated less error until the end of year 2020.

The forecasting models showed variation in performance
between study sites. Figure 3 shows differences in percentage
errors between study sites per week derived from the overall
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Fig. 1. Multiple seasonal decomposition by loess. The y-axes are scaled differently.

best performing weekly machine learning and time-series
models (see Table I), respectively. Both models performed
similar in year 2019. However, the elastic net caused less error
peaks, for instance at easter Monday and during Christmas
time because it had these holidays as features. In contrast,
the TBATS model adjusted quicker to the corona regulations
and adjusted to the new level of admission numbers during
the rest of 2020 better than the elastic net.

Figure 4 shows the top 25 feature variables ordered by their
importance in forecasting the number of admissions with the
elastic net, which was the best performing machine learning
algorithm in our comparison. Variable importance represents
the influence of each feature on the forecast performance
relative to the other variables [25]. The strongest influence
on forecast performance was found in calendrical variables.

IV. DISCUSSION
A. Key findings

We aimed to forecast the number of admissions to psychi-
atric hospitals before and during the COVID-19 pandemic and
we compared the performance of machine learning models and
time series models. This would eventually allow to support
timely resource allocation for optimal treatment of patients.
Model performance did not vary much between different

modelling approaches before the COVID-19 pandemic. Es-
tablished forecasts were substantially better than seasonal
naive forecasts. The most important features were calendrical
variables that did not require short term adjustments in weekly
and monthly models. However, weekly time series models
adjusted quicker to the COVID-19 related shock effects than
monthly and yearly models and the machine learning models.

B. Strength and weaknesses

A strength of our study were the data of four years
from nine hospitals representing about half of all inpatient
psychiatric admissions in Hesse, Germany. This allowed both
to give a representative picture of inpatient psychiatric care
in Germany and to show how the forecasting approaches
work at different study sites. Furthermore, it was possible to
analyse the effect of sudden changes in hospital admissions
to the performance of different modelling approaches due
to the commencement of the Corona hospital regulation in
March 2020.

A limitation of our study was the lack of data to differ-
entiate between causes of reduced hospital admissions after
the corona regulation came into effect in March 2020. The
reduced admissions could have been a result of different
supply side and demand side effects, such as avoidance of
elective admissions, reduced capacities due to isolation and
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TABLE 1. Forecasting performance in 2019 and in 2020. Best values per column are in boldface. RMSE= Root-Mean-Squared-Error, MAE= Mean Absolute
Error, sSMASE= Seasonal Mean Absolute Scaled Error. 1: The naive seasonal forecasts were based on the number of admissions 14, 35 and 364 days before
the predicted day for the weekly, monthly and yearly models, respectively.

RMSE R2 MAE sMASE (1)
2019 2020 2019 2020 2019 2020 2019 2020
Week XGB 11.38 16.21 0.86 0.71 8.40 12.06 0.72 1.08
SVM 10.45 15.68 0.88 0.73 7.56 10.78 0.65 0.97
Elastic net 9.65 15.63 0.90 0.75 7.25 11.42 0.62 1.03
ETS 13.92 16.19 0.78 0.66 8.65 10.76 0.74 0.97
TBATS 14.10 15.43 0.77 0.70 8.93 10.44 0.77 0.94
PROPHET 13.54 16.13 0.79 0.68 8.81 11.03 0.76 0.99
Month XGB 11.45 16.50 0.86 0.70 8.44 12.30 0.68 0.84
SVM 10.49 15.90 0.89 0.73 7.69 11.17 0.62 0.76
Elastic net 9.74 16.36 0.90 0.73 7.32 11.94 0.59 0.81
ETS 13.89 18.10 0.78 0.60 8.65 12.31 0.70 0.84
TBATS 14.15 18.24 0.77 0.60 9.15 12.45 0.74 0.85
PROPHET 14.18 18.41 0.77 0.59 8.91 12.38 0.72 0.84
Year XGB 11.31 16.95 0.87 0.71 8.37 12.80 0.67 1.02
SVM 10.60 16.52 0.88 0.72 7.77 11.61 0.62 0.93
Elastic net 9.81 16.60 0.90 0.74 7.33 12.33 0.59 0.98
ETS 13.77 18.83 0.78 0.66 8.62 12.98 0.69 1.04
TBATS 13.78 18.08 0.78 0.67 8.85 12.59 0.71 1.00
PROPHET 13.80 18.83 0.78 0.68 8.63 13.42 0.69 1.07
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Fig. 2.

Cumulated mean absolute error in 2019 and 2020 by machine learning and time series models. XGB= Gradient boosting with trees, SVM= Support

vector machines, ETS= Exponential smoothing state space models, TBATS= Exponential smoothing state space models with Box-Cox transformation, ARMA
errors and trend and seasonal components, PROPHET= Additive models with non-linear trends fitted by seasonal effects.

quarantine requirements and unwillingness of patients to enter
hospitals during the Corona crisis. Another limitation of our
study was its restriction to one large German provider of
inpatient mental health care, which requires a lot of care when
translating to different healthcare systems or different clinical
settings.

C. Comparison to previous research

Previous studies often focused on emergency departments
[26] and there were no previous studies that analysed fore-
casting of psychiatric hospital admissions comparable to our

study in scale and scope.

Vollmer et al 2021 predicted admission numbers in the
emergency departments of two hospitals in London with
data from 2011 to 2018 [27]. They compared machine
learning models to more traditional time series models to
make forecasts of admissions one, three and seven days in
advance. The forecasts of different time horizons, i.e., one,
three and seven days in advance, performed very similar.
This is comparable to our findings of relatively similar results
between weekly, monthly and yearly predictions, although at
a different scale. In contrast to our study, lagged admissions
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Fig. 3.
and trend and seasonal components, IQR= Interquartile range.

from previous weeks were among the strongest predictors,
probably related to the stronger increase and decrease of
admission number levels during the study period at the
different hospitals in comparison to our study. As in our
study, Vollmer et al also found that calendrical variables were
among the features with the strongest influence on forecasting
performance. Weather and climate data and google search
data had a relatively low influence on forecasting performance.

Similar results were found by Boutsioli et al, who used a
simple OLS regression to forecast hospital admissions to the
emergency departments of ten public hospitals in Greece [28].
They only used the calendrical variables weekend, summer
holiday, public holiday and the participation in emergency
care in their model and explained a relatively high variance
in hospital admissions of up to 88%.

Jones et al forecasted the admission numbers at three
emergency departments in the USA one, seven, fourteen,
twenty-one and thirty days in advance [29]. They used
autoregressive integrated moving average (ARIMA) models,
time series regression, exponential smoothing, and artificial
neural network models to predict admissions per day. They
also found that admissions were characterised by yearly and
weekly seasonality (see for comparison our Figure 1). As
in our study, they found a relatively low improvement in
forecasting performance in the shorter forecasting horizons in
comparison to the longer horizons. Similar to our study and

Variation of percentage error between study sites. TBATS= Exponential smoothing state space models with Box-Cox transformation, ARMA errors

to the study of Vollmer et al [27], weather and climate had a
relatively low influence on forecasting performance.

McCoy et al forecasted hospital discharge numbers at two
academic medical centers in the USA [30]. They compared the
performance of a PROPHET model with a seasonal ARIMA
model and a one-step naive seasonal forecast and compared
monthly models to yearly models. The best performance
was achieved by a PROPHET model. Comparable to our
study, they also found relatively low to none improvement
of forecasting accuracy in refitting their models monthly in
comparison to yearly models.

V. CONCLUSIONS

Accurate forecasting of hospital admissions can help for
the efficient organisation of hospital care and for the adjust-
ment of resources to sudden changes in patient volumes. We
found a substantial improvement of forecasting accuracy in
comparison to a seasonally adjusted naive baseline forecast.
Model performance did not vary much between different mod-
elling approaches and different forecasting horizons before the
COVID-19 pandemic. However, weekly time series models
adjusted quicker to the COVID-19 related shock effects. In
practice, different forecast horizons could be used simultane-
ously to allow both early planning and quick adjustments to
external effects.
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