
 

COVID-19 Chest X-Ray Image Classification Using Deep Learning

Gunther Correia Bacellar,1 Mallikarjuna Chandrappa,1 Rajlakshman Kulkarni,1 Soumava Dey1* 

Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA  

*Correspondence: soumava2@illinois.edu; soumavadey87@gmail.com 
               

ABSTRACT 
The rise of the coronavirus disease 2019 (COVID-19) pandemic has made it necessary to improve existing medical screening 

and clinical management of this disease. While COVID-19 patients are known to exhibit a variety of symptoms, the major 

symptoms include fever, cough, and fatigue. Since these symptoms also appear in pneumonia patients, this creates 

complications in COVID-19 detection especially during the flu season. Early studies identified abnormalities in chest X-ray 

images of COVID-19 infected patients that could be beneficial for disease diagnosis. Therefore, chest X-ray image-based 

disease classification has emerged as an alternative to aid medical diagnosis. However, manual detection of COVID-19 from a 

set of chest X-ray images comprising both COVID-19 and pneumonia cases is cumbersome and prone to human error. Thus, 

artificial intelligence techniques powered by deep learning algorithms, which learn from radiography images and predict 

presence of COVID-19 have potential to enhance current diagnosis process. Towards this purpose, here we implemented a set 

of deep learning pre-trained models such as ResNet, VGG, Inception and EfficientNet in conjunction with developing a 

computer vision AI system based on our own convolutional neural network (CNN) model: Deep Learning in Healthcare (DLH)-

COVID. All these CNN models cater to image classification exercise. We used publicly available resources of 6,432 images 

and further strengthened our model by tuning hyperparameters to provide better generalization during the model validation 

phase. Our final DLH-COVID model yielded the highest accuracy of 96% in detection of COVID-19 from chest X-ray images 

when compared to images of both pneumonia-affected and healthy individuals. Given the practicality of acquiring chest X-ray 

images by patients, we also developed a web application (link: https://toad.li/xray) based on our model to directly enable users 

to upload chest X-ray images and detect the presence of COVID-19 within a few seconds. Taken together, here we introduce 

a state-of-the-art artificial intelligence-based system for efficient COVID-19 detection and a user-friendly application that has 

the capacity to become a rapid COVID-19 diagnosis method in the near future.
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1. INTRODUCTION    
The COVID-19 is a viral infection that causes severe 

respiratory illness ranging from common cold to life 

threating diseases like Severe Acute Respiratory Syndrome 

(SARS) and Middle East Respiratory Syndrome (MERS). 

According to reports from the World Health Organization 

(WHO), major symptoms of COVID-19 are similar to that 

of common flu: fever, tiredness, dry cough, shortness of 

breath, aches and sore throat [1,2]. The similarities between 

COVID-19 and flu symptoms causes difficulties in detection 

of the coronavirus at early stages. It was found in some 

patients that the coronavirus, like other viruses and bacteria, 

also causes pneumonia, and the treatment for coronavirus 

induced pneumonia is different from other types of 

pneumonia. Moreover, bacterial pneumonia infected 

patients require antibiotic treatment whereas viral 

pneumonia cases can be treated by intensive care [3]. 

Therefore, accurate and timely diagnosis of COVID-19 

induced pneumonia is very important to save human lives as 

well as curbing the pandemic outbreak across the world. 

The WHO approved method of testing COVID-19 is 

the reverse transcription polymerase chain reaction (RT-

PCR) where short sequences of RNA are analyzed to detect 

presence of coronavirus [4]. However, following challenges 

 

 

are potential barriers to facilitate COVID-19 detection using 

current methodologies: (1) Negative results from RT-PCR 

do not rule out the possibility of a person infected with 

COVID-19. This requires the need for further assessment to 

confirm false negative cases [5,6]. (2) Limited availability of 

testing kits and screening workstation creates roadblocks, 

especially in pandemic hotspots in economically challenged 

communities. Furthermore, early detection of COVID-19 is 

critical since COVID-19 induced pneumonia causes higher 

mortality rate in certain demographics. However, the 

effectiveness of early detection is further hindered mostly 

due to the inconsistent incubation period, which is the time 

between catching the virus and beginning to show symptoms 

that varies from 1-14 days. These challenges highlight the 

need to develop alternative approaches for COVID-19 

detection. 

Chest X-ray imaging is a frequently used modality for 

medical practitioners to assert or to deny the possibility of 

any pneumonia infection. A previous study identified that 

COVID-19 increases lung-density, which causes severe life 

threating Emphysema and chronic obstructive lung disease 

[7]. A COVID-19 chest X-ray image contains major image 

abnormalities such as horizontal white lines, bands, or 

reticular changes along with ground glass opacity [8]. 
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Therefore, this imaging technique can be considered as a 

first-line screening tool to detect COVID-19 by exploring 

the persistent visual abnormalities in a chest X-ray image of 

COVID-19 infectant [9]. Although other imaging 

modalities, such as computed tomography (CT) provides 

higher resolution, chest X-ray image is cost-effective with 

high sensitivity [10,11]. Easy availability of X-ray machines 

also makes it an attractive choice for COVID-19 detection in 

the absence of testing kits and screening stations. 

   However, the biggest challenge of an X-ray based 

COVID-19 detection approach lies in manual examination 

of each X-ray image and extraction of the findings. This 

would require enormous time and presence of medical 

professionals. Thus, computer-aided chest X-ray 

examination methods are required for detection of COVID-

19 cases from chest X-ray images. Towards this purpose, 

deep learning methods have proven to be useful in delivering 

high-quality results in addition to other advantages such as: 

(1) maximum utilization of unstructured data, (2) 

elimination of additional cost, (3) reduction of feature 

engineering, and (4) removal of explicit data labelling. 

Therefore, deep learning methods are often used to extract 

relevant features to classify image objects using its 

autonomous nature. Indeed, deep learning techniques have 

contributed significantly to analysis of medical images and 

achievement of excellent classification performance with 

less time-consuming simulated tasks [3].  

In recent years, the use of deep learning methods in 

building convolutional neural networks (CNNs) has led to 

many breakthroughs in various computer vision-oriented 

research work such as image segmentation, image 

recognition and object detection. Previous research related 

to COVID-19 detection used various pre-trained CNN 

models such as VGG19, MobileNet, ResNet, and others for 

multi-class and binary classification task. For example, a 

combination of VGG19 and MobileNet in a multi-class 

classification study gave 97.8% accuracy in COVID-19 

detection from healthy and pneumonia patients [12]. 

Another similar multi-class classification study using 

DarkCovidNet achieved a lower accuracy of 87% [13]. 

Using a binary classification system involving different 

ResNet models to classify COVID-19 versus non COVID-

19 patients yielded higher accuracy of >98% [3,14]. 

Here, we evaluated the effectiveness of various pre-

trained models and compared their performance with a CNN 

model developed here, DLH_COVID, in terms of detecting 

COVID-19 induced pneumonia cases from a set of chest X-

ray images. To achieve this purpose, we first trained multiple 

pre-trained models and DLH_COVID using 80% train 

dataset. Then we validated each model using a 10% 

validation dataset. Finally, we selected the best model and 

performed accuracy check using a 10% test dataset. This 

analysis using a ‘training-validation-testing’ approach 

showed that DLH_COVID outperformed other models 

based on accuracy in COVID-19 detection from X-ray 

images. Furthermore, we repurposed the DLH_COVID 

model to develop a web-based user application that would 

benefit medical professionals to distinguish between 

COVID-19 and bacterial/viral pneumonia cases from chest 

X-ray images in a rapid and efficient manner. 

 

2. RESULTS 
2.1 Segregation of image dataset into train, 

validation, and test 
We used a publicly available COVID-19 chest X-ray 

image repository [15] to obtain 6,432 images categorized 

into three groups: COVID-19, pneumonia and 

normal/healthy. These data included X-ray images with 

confirmed COVID-19, confirmed common pneumonia, and 

normal\healthy individuals. This dataset comprised 80% 

train dataset and 20% test dataset. To further prepare the test 

dataset for classification exercise, we applied stratified 

resampling method to split the test dataset into two subsets: 

10% validation and 10% test subset. The 10% validation 

subset was used to prevent model overfitting and enhance 

model evaluation process. Table 1 shows the final number 

of images distributed in the 80% train, 10% validation, and 

10% test dataset used for the pre-trained model and 

DLH_COVID model development described below. 

In general, COVID-19 images look whiter compared 

to other images due to increased lung-density. Depending on 

the severity of pneumonia, some lung markings are partially 

obscured by the increased whiteness, which refers to as 

ground glass opacity. In more severe cases, the lung 

markings of COVID-19 images are completely removed due 

to whiteness, which is known as consolidation. Therefore, 

our artificial intelligence (AI) model considered 

radiographic appearance of multifocal ground glass opacity, 

horizontal white lines and consolidation as the determining 

factors for detecting COVID-19 from chest X-ray images of 

the infected patients [8]. Figure 1 shows representative chest 

X-ray images of all the three conditions of COVID-19, 

pneumonia, and normal/healthy conditions.  

 

2.2 Pre-trained model selection 
Previous research helped us to identify pre-trained 

models with high accuracy of COVID-19 detection from 

chest X-ray images [3,12,13,14]. These are the following 

models we used: 

(1) ResNet: These architectures were proposed by He et al. 

from Microsoft [16]. ResNet architectures introduced the use  

Table 1. Number of images segregated in the train, validation and test 

folders of the original dataset. Final distribution comprised 80% train, 

10% validation and 10% test. 

Classification Train Validation Test Total

COVID-19 460 58 58 576

Normal 1266 158 159 1583

Pneumonia 3418 427 428 4273

Total 5144 643 645 6432
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of residual layers and skip connection to solve the problem 

of vanishing gradient that may impact the weightage change 

in neural network. 

(2) VGG: These architectures were introduced by Oxford 

University’s Visual Geometry Group [17], where they 

demonstrated that using small filters of size 3  3 in each 

convolutional layer throughout the network may result in 

better performance. The main idea behind VGG architecture 

is that multiple small filters can make design simpler and 

reproduce similar results compared to that of larger filters. 

(3) GoogleNet: The main feature of GoogleNet/Inception 

architecture [18] is the innovation of inception module, 

which is a series of 1-by-1 convolutional layers/blocks used 

for dimensionality reduction and feature aggregation. This 

model comprised total 22 layers with 9 inception modules. 

(4) EfficientNet: This is a convolutional network with 

scaling method that uniformly scales width, depth, and 

resolution with a set of fixed coefficients. The base 

architecture is based on MobileNetV2, in addition to squeeze 

and extension blocks [19]. 

Furthermore, all the above pre-trained models are 

aligned with the transfer learning method, which we used to 

re-evaluate their performance in detection of COVID-19 

from X-ray images. 

 

2.3 DLH_COVID architecture 
 In this study, we developed a new convolutional 

neural network (CNN) for image classification exercise. We 

tested more than 100 different architectures with (i) different 

number of layers, (ii) different combination of number of 

neurons per layer, (iii) normalizations, (iv) max pooling 

techniques and (v) hyperparameters. We selected the one 

that achieved the best validation accuracy during training 

phase and named it as ‘DLH_COVID’. DLH stands for 

‘Deep Learning in Healthcare’ and represents an artificial 

intelligence (AI) model purposed for COVID-19 detection. 

DLH_COVID consist of three convolutional layers followed 

by two fully connected linear layers. We used the 80% train 

dataset to carry out the aforementioned testing and finalized 

the DLH_COVID architecture. Figure 2 shows the detailed 

architecture of DLH_COVID as described below: 
 

(1) First convolutional layer: the first convolutional layer 

has an input channel of dimension 3 to make it compatible 

with RGB image format. The kernel size was chosen to be 

of size 3  3 with stride of 1. We further applied image 

padding of size 1 to keep uniformity between input and 

output feature map. The output feature map at this layer is 

128  224  224. 

Using batch normalization function (BatchNorm2d) 

followed by ReLU activation function in the intermediate 

layer, we normalized the feature map and incorporated non-

linearity to the neural network. To reduce the number of 

training parameters and control the overfitting issue, a max  

pooling layer with kernel size 4  4 and stride 4 was 

introduced after ReLU activation function. The max pooling 

layer downsampled the feature map to 128  56  56. 

 

(2) Second convolutional layer: similar to the first layer, 

we added kernel size and image padding of size 3  3 along 

with stride of 1 to avoid any transformation in the dimension 

of the output feature map. The output feature map at this 

layer is 128  56  56.  

Figure 1. Representative chest X-ray images of (A) COVID-19, (B) pneumonia and (C) normal/healthy conditions. Note the increased ground glass opacity 

in COVID-19 X-ray images. Each image is of 224  224 resolution. 
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       Like the previous intermediate layer between first and 

second convolutional layer, both batch normalization and 

ReLU activation function were applied sequentially to 

stabilize the neural network for further forward propagation. 

We introduced another max pooling layer with kernel size 2 

 2 and stride 2 to downsample the feature map to 128  28 

 28. 

 

(3) Third convolutional layer: the third convolutional layer 

was introduced to upgrade the output channel. Further, we 

incorporated another set of maxpool and ReLU activation 

layers, which transformed the output feature map to 256  

14  14. This map was fed into the linear layer in the later 

stage of feature extraction. 

 

(4) Fully Connected Layer: Finally, two connected linear 

layers in conjunction with a dropout layer were added to 

reduce data overfitting and streamline the final output 

channel. We used recommended dropout value of p = 0.5 

[20]. 

A flattened version of the feature map was passed to 

the first fully connected linear layer. So, the input dimension 

of the first linear layer consisted of 256  14  14 = 50176 

nodes and later it was integrated with the final linear layer of 

256 nodes. The final output dimension of the DLH_COVID 

architecture was 3 corresponding to the total number of 

image classes: COVID-19, pneumonia and normal/healthy. 

 

2.4 Image pre-processing 
 Previous research has shown that downsampling input 

images to a lower resolution increased effectiveness of CNN 

classification models [3]. Therefore, we rescaled all train, 

validation, and test images into standard size 224  224 to 

maintain uniformity in image resolution. Since one of the 

selected pre-trained models, Inception-V3, is only 

compatible with resolution 299  299 [21], we made further 

readjustments to image resolution. The pre-processing step 

also included center crop mechanism, which was applied on 

all the X-ray images to reduce background noise and 

enhance focal length position. In addition, following image 

augmentation techniques on 80% train dataset during data 

pre-processing step [3] was applied:  

(i) Rotation: rotated images at various angles between -100 

to +100 and added these augmented images in the train 

dataset, (ii) Gaussian Blur: applied Gaussian filter of kernel 

size (3,3) on the images to remove high frequency 

components, (iii) Flip: images were randomly flipped 

horizontally and vertically to achieve data augmentation, (iv) 

RandomResizecrop: images were cropped and resized 

randomly to overcome any unforeseen data overfitting 

issues, and (v) Grayscale transformation: images were 

transformed from RGB (three channels) to grayscale (one 

channel). However, none of the image augmentation 

techniques were effective during training phase as the 

augmented images incurred high train and validation loss. 

Therefore, we used only non-augmented images that was 

necessary to eradicate potential pitfall of the classification 

exercise in later stages. 
 

2.5 Model optimization 
       In the model training phase, we relied on both manual 

intervention and dynamic approach to fine-tune all model 

hyperparameters such as (i) learning rate, (ii) number of 

epochs and (iii) optimizer. We focused on determining the 

optimal learning rate, which is an essential hyperparameter 

as it correlates with the loss function. However, the selection 

of optimal learning rate can be cumbersome because large 

learning rate can cause weights of the neurons to converge 

Figure 2. Schematic of DLH_COVID model architecture. It consists of three convolutional layers, two fully connected linear layers and additional 

intermediate maxpool layers. Input dimension of the CNN network: 3  224  224 and output dimension of the CNN network: 256  3.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.15.21260605doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.15.21260605
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

quickly, or smaller learning rate may cause delays in training 

the network [3]. Therefore, we followed two approaches: (i) 

train model with static learning rate, often in the range 

between small and default learning rate le-2 and (ii) adopt 

dynamic learning rate using scheduler functionality of 

PyTorch to ascertain the final optimal learning rate. 

       Initially each model was separately trained using two 

fixed learning rate le-3 and le-2, and the model with learning 

rate le-3 inclined towards achieving better performance. We 

observed that the pre-trained model exhibited more stable 

validation accuracy with lower number of epochs ranging 

between 20 and 25. On the contrary, the DLH_COVID 

model required more epochs with fixed learning rate to 

achieve stable validation accuracy. Figure 3A shows the 

validation and train losses of our CNN model using a fixed 

learning rate of le-3 and 100 epochs. The line plot also shows 

a steep increase in validation loss at epoch 25 and gradually 

increasing gap between train and validation loss based on 

higher number of epochs. To avoid inconsistencies between 

train and validation loss, we adopted AutoML dynamic 

learning rate technique using scheduler functionality of 

PyTorch to train the DLH_COVID model. In this scenario, 

the model training started with a learning rate of 1e-3 and 

gradually reduced to 1e-5. Although we defined maximum 

100 epochs for training, we noticed that the validation loss 

of the DLH_COVID model did not improve after 30 epochs. 

For instance, the validation accuracy varied from 0.92 to 

0.97 when we trained the model with a fixed learning rate 

and 25 epochs. However, it remained stable between 0.96 

and 0.97 when we adopted variable learning rates and 

epochs. Figure 3B shows that the train and validation loss 

appeared to be more stable after incorporating dynamic 

learning rate procedure.  

 Taken together, the dynamic learning rate technique 

was proven to be beneficial to determine the optimized 

learning rate and number of epochs for the DLH_COVID 

model, but a similar dynamic approach was not necessary for 

the pre-trained models. Furthermore, we used both Adam 

and SGD optimizer to train each model sequentially. 

Although training CNN model with Adam optimizer is less 

time consuming in comparison to training with Stochastic 

Gradient Descent (SGD) optimizer, all the models yielded 

higher accuracy by using the latter optimizer. We assumed 

that this scenario occurred due to the failure of Adam 

optimizer to converge to an optimal point under specific 

settings [22]. Therefore, SGD was selected as the primary 

optimizer for this study. 

 

2.6 Performance evaluation  
Model performance was evaluated using the common 

statistical measure confusion matrix from which we obtained 

various metrics like accuracy, precision, recall and f1-score. 

In Table 2, we show the evaluation metrics of both pre-

trained models and DLH_COVID based on 10% validation 

dataset. We considered accuracy score as the best statistical 

measure to compare performance of the pre-trained models  

with that of the DLH_COVID model. Initial analysis of 

validation data revealed the following: (1) none of the pre-

trained models achieved more than 96% accuracy score 

(Table 2); (2) DLH_COVID model with a simpler 

architectural design was able to outperform these pre-trained 

models in terms of detection of COVID-19 from 10% image 

validation dataset.        

       

        To support the results obtained from performance 

evaluation shown in Table 2, we carried out k-fold cross 

validation procedures. This was done to evaluate generalized 

Figure 3. Train and validation loss with (A) fixed learning rate over 100 

epochs, and (B) dynamic learning rate over 25 epochs of DLH_COVID 

model. 

Table 2 depicts the preliminary evaluation metrics of different models 

acquired for this image classification task. We used ‘accuracy’ column 

values to measure performance of each model and selected DLH_COVID, 

since it exhibited the highest accuracy. 

Model Accuracy Precision Recall F1 score

VGG16 0.92731 0.910803 0.928168 0.919067

VGG19 0.933022 0.930662 0.924649 0.927626

ResNet18 0.950338 0.953714 0.923171 0.937496

ResNet34 0.953488 0.956445 0.940649 0.948349

ResNet50 0.922481 0.929862 0.885737 0.906222

ResNet101 0.934884 0.943559 0.907175 0.924327

Inception 0.965732 0.968638 0.959973 0.963973

EfficientNet 0.939252 0.919735 0.961581 0.938566

DLH_COVID 0.967442 0.96544 0.957881 0.96106
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performance of the DLH_COVID model and perform 

accuracy score comparison with other pre-trained CNN 

models. For this purpose, we selected commonly used 

variation of folds, that is, k = 5. Figure 4 depicts the five-

fold cross validation where one unique fold represents test 

dataset, and the remaining folds are chosen as training 

dataset. The models were fitted on the training dataset and 

validated on the test dataset. The key performance measures 

of accuracy score, precision, recall and f1-score obtained for 

each of the fold were averaged to produce the final five-fold 

performance metrics of the model.  

 During the training phase, the weights of our neural 

network model were reset at the beginning of each fold run 

to avoid data overfitting issue. However, that technique was 

not necessary for other models because only last layer of the 

pre-trained network was fitted during execution of each fold. 

The training parameters for all the pre-trained networks were 

as follows: learning rate: le-3, batch size = 32, number of 

epochs = 20. We picked the best VGG and ResNet model 

based on previous validation results (Table 2) for the cross-

validation exercise. Table 3 shows that DLH_COVID 

exhibited best performance by achieving highest average 

accuracy score of 95% on the one-fold test dataset. 

 
2.7 Final model accuracy check 

  DLH_COVID model attained highest accuracy score 

in comparison to other pre-trained models in detection of 

COVID-19 images from 10% validation dataset. Moreover, 

it achieved almost similar performance in baseline k-fold 

cross validation process. This further demonstrated the 

robustness of the model in classifying X-ray images. 

Therefore, we decided to utilize this AI model for 

performing final validation on 10% test dataset and report 

the accuracy in a form of confusion matrix. Figure 5 shows 

the 3  3 confusion matrix where each row and column 

represent one image class. The black cells of the matrix 

signify the number of images that were evaluated as False 

Positive and False Negative images. Taken together, a total 

of 21 out of 645 test images were misclassified by the 

DLH_COVID model, and the majority of misclassification 

occurred between the X-rays of pneumonia and normal 

image class. 

2.8 COVID-19 detection web-based application 
Lastly, we integrated the DLH_COVID model with a 

cloud-based web platform, which is easily accessible and 

easily shareable with medical professionals around the world 

including pandemic hotspots. This AI system is a browser-

based web application (link: https://toad.li/xray) that takes 

chest X-ray image as input data, processes image data 

through the DLH_COVID classification model and 

generates probability score of the image class as output. The 

image class corresponds to COVID-19, pneumonia and 

normal/healthy condition. Since the probability score is a 

measure to determine the class of the uploaded chest X-ray 

image, the image class with the highest score is predicted as 

Figure 4. Schematic depiction of 5-fold cross validation technique. One 

unique fold represents test dataset, and the remaining folds are chosen 

as training dataset. 

Table 3 shows the 5-fold cross validation results of pre-trained and 

DLH_COVID model. For this model evaluation process, we selected the 

pre-trained models that exhibited higher accuracy value in the previous 
validation stage. DLH_COVID model yielded highest accuracy here as 

well. 

Figure 5. Confusion matrix of DLH_COVID model. Each entry of the 

matrix denotes the number of predictions made by the model where it was 

classified correctly or incorrectly. All the entries located in black cells 

represent False Positive or False Negative value of the matrix. 

5-fold CV

Fold 1 Test Train Train Train Train

Fold 2 Train Test Train Train Train

Fold 3 Train Train Test Train Train

Fold 4 Train Train Train Test Train

Fold 5 Train Train Train Train Test

Dataset

Fold Accuracy Precision Recall F1-score

Fold-1 92% 91% 89% 90%

Fold-2 92% 91% 92% 91%

Fold-3 93% 94% 92% 93%

Fold-4 94% 94% 92% 93%

Fold-5 91% 90% 89% 90%

Mean 92% 92% 91% 91%

Fold-1 94% 93% 93% 93%

Fold-2 93% 92% 94% 93%

Fold-3 96% 97% 95% 96%

Fold-4 94% 96% 93% 94%

Fold-5 95% 95% 95% 95%
Mean 94% 94% 94% 94%

Fold-1 95% 93% 92% 92%

Fold-2 96% 95% 94% 94%

Fold-3 95% 95% 93% 94%

Fold-4 96% 97% 93% 95%

Fold-5 94% 96% 89% 92%
Mean 95% 95% 92% 93%

Fold-1 90% 90% 84% 87%
Fold-2 89% 88% 90% 89%

Fold-3 90% 91% 87% 88%

Fold-4 92% 94% 88% 91%

Fold-5 90% 88% 88% 88%

Mean 90% 90% 87% 88%
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the final output of the AI model. For example, Figure 6 

shows that DLH_COVID was able to accurately predict the 

presence of COVID-19 from an uploaded image. It 

estimated a high probability score >99% in the image class 

of COVID-19. Similarly, AI model enables users to detect 

bacterial/viral pneumonia from chest X-ray images as well, 

demonstrating that the model can execute multi-class image 

classification in real time.  

 

3. DISCUSSION 
 The accurate detection of COVID-19 cases in a timely 

manner has become a salient factor to curb the outbreak in 

pandemic hot spots. Recent research studies have shown the 

usefulness of chest X-ray images in COVID-19 diagnosis 

[23,24,25,26,27]. Our research work augments these 

previous studies by reinforcing the importance of chest X-

ray imaging in similar medical diagnosis procedures. We 

also showcase an AI system driven by a DLH_COVID 

model established in this study, which can predict the 

presence of COVID-19 in a chest X-ray image and 

distinguish it from pneumonia or normal condition. It also 

broadens the scope of classification levels by additionally 

detecting pneumonia cases with a reasonable high accuracy 

score from X-ray images. 
        The DLH_COVID model is unique, reliable and 

independently developed without any influence of the 

transfer learning method. We attempted to fine-tune the 

model through trial-and-error approach, as theoretically it is 

impossible to determine the optimal hyperparameters 

without going through a comprehensive series of training 

cycles. The experimental results during prospective 

validation phase suggests that the DLH_MODEL 

outmatched most of the pre-trained models since it showed 

a promising accuracy of 96% in classifying COVID-19, 

pneumonia, and normal/healthy cases from the image 

dataset. Furthermore, k-fold cross validation results 

reassured the efficacy of the DLH_COVID model in 

determining multiple image classes without performing any 

explicit data cleaning process. Given the simple CNN 

architecture of the DLH_COVID model, it can be easily 

extended by incorporating additional convolutional layers or 

by readjusting other model components. Therefore, we 

believe that AI researchers could easily leverage this model 

through transfer learning or ensemble learning method for 

future studies related to similar medical image classification.  

 However, there were 21 images misclassified by the 

DLH_COVID model during the final accuracy test. This is 

primarily due to lower image resolution, which prevented 

the AI model to predict image class accurately. Furthermore, 

we encountered data scarcity issue throughout the study as 

the model was not trained with a sufficient number of 

COVID-19 images in comparison to that of other image 
classes. This limited availability of training data pertaining 

to a given image label created class imbalance constraint 

Figure 6. Sample screenshot image of COVID-19 detection web application. A chest X-ray image of a COVID-19 sample was uploaded as input. Within a 

few seconds, the application provided an output prediction of COVID-19 with 99.9993 probability score. In contrast, probability scores of 0.0007 and 0.0000 

was obtained for pneumonia and healthy X-ray samples, respectively. 
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[28], which often causes model overfitting issue in neural 

network. Although we added dropout layer to DLH_COVID 

architecture and executed k-fold cross validation to 

overcome this issue, this is not sufficient to alleviate the 

overfitting issue and make the AI model more generalized to 

handle unseen test data. We believe that model sustainability 

and accuracy can be drastically improved by incorporating a 

larger COVID-19 chest X-ray image dataset. In addition, the 

AI model can be further improved by enhancing the quality 

of the misclassified images using computer vision 

techniques such as stretching, slicing and histogram 

equalization [29]. 

        The recent success of an AI system in carrying out 

similar X-ray image classification task supplements our 

objective of developing a user interface system driven by 

DLH_COVID model [30].  On the contrary, another recent 

study revealed that applicability of deep learning models in 

real hospital management ecosystem is still unclear [6]. 

Thus, it is imperative for more assessments to be made to 

assert the reliability of AI systems as an important tool for 

COVID-19 diagnosis. Therefore, we have ensured that the 

DLH_COVID based web application is publicly accessible 

so that doctors and radiologists can easily test the underlying 

AI model in clinical settings and capture results accordingly. 

Critical feedback from medical professional will provide 

additional guidance to improve the DLH_COVID AI model. 

This will eventually benefit COVID-19 clinical management 

settings in pandemic hotspots with an accurate and fast 

diagnosis process in the foreseeable future. 

 
4. METHODS 

4.1 Pre-trained model reusability: Transfer learning method was 

employed to demonstrate the reusability of pre-trained models that 

had shown good performance in carrying out COVID-19 X-ray 

image classification task in previous research [3]. Transfer learning 

was used for the following reasons: (a) since the initial layers of the 

network are already trained, it saves train time and avoid huge 

computational power required for training, (b) requires low volume 

of training data given the lack of large numbers of COVID-19 X-

ray images, and (c) proven to be beneficial to fit training dataset 

comprised of standard size images. We used VGG16, VGG19 [17], 

ResNet18, ResNet34, ResNet50, RestNet101[16], Inception [18] 

and EfficientNet [19] that are aligned with the transfer learning 

method.  

 

4.2 DLH_COVID model development: We used a conventional 

CNN architecture to develop a new image classification model 

DLH_COVID.  

 

4.3 Dataset used: We used a publicly available COVID-19 chest 

X-ray images repository [15] to obtain total 6,432 images 

categorized into three groups: COVID-19, pneumonia and 

normal/healthy. These data included images with confirmed 

COVID-19, confirmed common pneumonia, and normal\healthy 

individuals. This dataset comprised 80% train dataset and 20% test 

dataset. 

 

4.4 Model Optimization: We use hyperparameter optimization as 

it helped us to determine the optimal combination of 

hyperparameters that minimizes the train and validation loss during 

the model training phase. The following methods given below were 

proven instrumental to achieve the purpose of model optimization.  

(1) Learning rate scheduling method: We used PyTorch library 

module optim() that provides several methods to adjust learning 

rate based on the number of epochs during model training phase 

[31]. This functionality benefits the model by reducing the learning 

rate dynamically if no improvement is seen for a fixed number of 

epochs. 

(2) SGD optimizer: Stochastic Gradient Decent (SGD) is a variant 

of gradient decent algorithm which allows the optimizer to compute 

on a small subset or random selection instead of the whole training 

dataset. SGD performs computation much faster as it removes 

redundancy by performing one model hyperparameter update at a 

time [32]. 

(3) Adam optimizer: Adaptive Moment Estimation (Adam) is an 

adapting learning rate algorithm mainly purposed for gradient-

based optimization of stochastic objective functions. This optimizer 

method is very straightforward to implement, computationally 

efficient, less time-consuming and requires little memory to 

process [32]. 

 

4.5 Performance metrics: Model performance was evaluated 

using the common statistical measure confusion matrix from which 

we obtained various metrics like accuracy, precision, recall and f1-

score. These measures are briefly described below. 

 

(i) Accuracy: a parameter that evaluates the correctness of the 

model by measuring a ratio of accurately predicted cases out of total 

number of cases. Mathematical formula is expressed as: 
 
Accuracy = (TN + TP) / (TN + TP + FN + FP)  [33, 34]                           
 
True Positive (TP): number of correctly identified COVID-

19/pneumonia X-ray images,  

False Negative (FN): number of incorrectly classified COVID-

19/pneumonia X-ray images,  

True Negative (TN): number of correctly identified healthy X-ray 

cases. 

False Positive (FP): number of incorrectly identified healthy X-ray 

cases.  

 

(ii) Precision: the ratio of correctly predicted positive cases to the 

total predicted positive cases. High precision relates to a low false 

positive rate. It is expressed as: 
 
Precision = TP / (TP + FP)                    [35] 
                                              
(iii) Recall: It is the ratio of correctly predicted positive 

observations to all observations in actual class. 
 
Recall = TP / (TP + FN)                         [36]                                                           
 
(iv) F1-Score: F1 Score is measured in case of uneven class 

distribution especially with a large number of true negative 

observations. It provides a balance between Precision and Recall. 
 

F1-score = 2  [(Precision x Recall) / (Precision + Recall)] [37]                                                                                  
                                                                                          
In addition, we performed a k-fold cross validation to support the 

initial performance metric evaluation. 

 

4.6 Software and infrastructure: All the models were trained 

using open-source machine learning library PyTorch [38]. To 
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harness better computing power and maximum throughput, we 

used both Google Colab cloud platform and machines with modern 

GPU configurations to train the CNN models. We used Microsoft 

Azure’s cloud service to deploy DLH_COVID model and made it 

accessible via web browser.  

 

DATA AVAILABILITY 

The chest X-ray image dataset used for this research is available at 

https://www.kaggle.com/prashant268/chest-xray-covid19-

pneumonia. 

 

CODE AVAILABILITY 

The python code of the DLH_COVID model network along with 

the model hyperparameters required to reproduce the image class 

predictions is available at https://github.com/soudey123/COVID-

19-CHEST-X-RAY-IMAGE-CLASSIFICATION_UIUC 
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