
 

Identifying and alleviating bias due to differential depletion of susceptible people in post-
marketing evaluations of COVID-19 vaccines 

Rebecca Kahn1,2, Stephanie J. Schrag2, Jennifer R. Verani2, Marc Lipsitch1,2,3  

1 Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. 
Chan School of Public Health, Boston, Massachusetts  

 2 COVID-19 Response, US Centers for Disease Control and Prevention, Atlanta, Georgia 

3 Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public 
Health, Boston, Massachusetts  

Disclaimer: The findings and conclusions in this report are those of the author(s) and do not 
necessarily represent the official position of the Centers for Disease Control and Prevention. 

Abstract  

Recent studies have provided key information about SARS-CoV-2 vaccines’ efficacy and 
effectiveness (VE). One important question that remains is whether the protection conferred by 
vaccines wanes over time. However, estimates over time are subject to bias from differential 
depletion of susceptibles between vaccinated and unvaccinated groups. Here we examine the 
extent to which biases occur under different scenarios and assess whether serologic testing has 
the potential to correct this bias. By identifying non-vaccine antibodies, these tests could identify 
individuals with prior infection. We find in scenarios with high baseline VE, differential depletion 
of susceptibles creates minimal bias in VE estimates, suggesting that any observed declines are 
likely not due to spurious waning alone. However, if baseline VE is lower, the bias for leaky 
vaccines (that reduce individual probability of infection given contact) is larger and should be 
corrected by excluding individuals with past infection if the mechanism is known to be leaky. 
Conducting analyses both unadjusted and adjusted for past infection could give lower and upper 
bounds for the true VE. Studies of VE should therefore enroll individuals regardless of prior 
infection history but also collect information, ideally through serologic testing, on this critical 
variable. 
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Vaccines are a critical tool for combatting the COVID-19 pandemic. Clinical trials and 
observational studies have provided key information about the vaccines’ efficacy and 
effectiveness  (VE). One important question that remains to be answered is whether or not the 
protection conferred by vaccines wanes over time. However, estimates of effectiveness over 
time are subject to bias from differential depletion of susceptibles between vaccinated and 
unvaccinated groups. This bias occurs when individuals who are no longer at risk of infection 
due to protection from past infection are included in the analysis; assuming the VE is greater 
than zero, these individuals with prior infection are more likely to be unvaccinated than 
vaccinated. Therefore, over time, more uninfected and unvaccinated individuals who are not at 
risk of infection are included in the analysis, biasing VE estimates downward. This bias grows 
as infection spreads and makes the VE incorrectly appear to wane over time (i.e. spurious 
waning) (1–4). Although some studies attempt to restrict analysis to those without prior infection, 
often many past infections will go undetected or unreported, particularly for pathogens with a 
large proportion of asymptomatic or mild infections. Additionally, in a population with individuals 
who have heterogeneous risk of infection (for example due to occupational exposure or choice 
to wear a face covering), the riskiest individuals will be depleted preferentially among the 
unvaccinated group when the vaccine is effective, leading to the same bias downwards in VE, 
growing over time and thus seemingly showing waning of VE (1).   

Serologic testing for SARS-CoV-2 antibodies has the potential to help correct the first bias. By 
identifying non-vaccine antibodies (e.g. N-protein), these tests could be used to identify 
individuals with prior infection and exclude them from studies of VE over time. Likewise, 
adjustment for individual-level risk of infection (in practice, for proxies such as occupation or 
behavior) can help address the second bias.  

While each of these issues can in principle affect VE estimates and induce a spurious 
impression of waning VE, the magnitude of this bias under various assumptions about baseline 
VE is not clear, nor has it been shown before to our knowledge how adjustments can solve the 
problems. Here we examine the extent to which these biases occur under different scenarios 
and assess approaches to alleviate bias under various assumptions.   

Methods 

Network and epidemic 

We first create a network model of 20,000 individuals, similar to models described previously 
(2,5). The probability of connections between individuals in the network is calibrated in 
combination with the parameter for the probability of infection given contact to result in a 
reproduction number (R) of 1.25 or 1.50 (see Table 1 for a full list of parameters) (6). We seed 
an epidemic of a SARS-CoV-2-like pathogen with ten exposed individuals. Each day, each 
susceptible individual has a daily probability of infection from their infected connections in the 
network. A random half of the population is high risk, and the other half is low risk. High risk 
individuals have a daily probability of infection three times that of low risk individuals. This binary 
risk status is a simplified proxy for multiple factors that could affect individuals’ risks for infection, 
such as occupation, demographics, geography, or behavioral patterns (7–9).  
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We assume that half of those who are infected become symptomatic and that people are 
infectious for seven days. We assume that symptomatic, pre-symptomatic, and asymptomatic 
infected individuals have the same level of infectiousness. After individuals recover, we assume 
that complete protection from natural immunity lasts for 90 days (10), after which individuals can 
be reinfected; we then assume recovered individuals’ susceptibility is 95% lower than those 
without prior infection, resulting in low numbers of reinfection during the study period examined 
in the simulations (11). It is unknown exactly how VE differs for recovered individuals, although 
there is evidence that vaccination further reduces previously infected individuals’ risk (12). For 
simplicity we assume vaccinated recovered individuals' susceptibility is further decreased by the 
same amount as for vaccinated susceptible individuals.  

Scenarios 

We simulate random vaccination (to prevent unmeasured confounding) of 2500 individuals, or 
12.5% of the population, on the first day of the simulation. Another 2500 unvaccinated 
individuals are also randomly selected for potential follow-up over the course of the simulations. 
We compare four primary scenarios (Table 2). In the first scenario, vaccine efficacy against 
susceptibility to infection (VES) is 0.90, and vaccine efficacy against progression to symptoms 
(VEP) is 0.5. These measures combine to give a vaccine efficacy against symptomatic disease 
(VESP), the primary outcome of most SARS-CoV-2 vaccine trials (13–16), of 0.95, under the 
formula !"!" = 1 − (1 − !"!)(1 − !"")(17). These values are similar to those that have been 
observed in the trials (13,15) and initial observational studies (18–20) of the mRNA vaccines. In 
the second scenario, we assume VES and VESP are 0.7, similar to the findings from the Janssen 
vaccine trial (14).  

In the first two scenarios, we assume the vaccine is “leaky”, meaning it reduces the probability 
of infection given contact to an equal degree, but not perfectly, in all vaccinated individuals (3). 
However, in the third scenario, to assess the impact of the vaccine mechanism, we model an 
all-or-nothing vaccine, meaning it protects a certain proportion of vaccinated individuals 
completely and provides no protection to the rest. In this scenario, VES and VESP are both 0.9. In 
supplementary scenarios, we also examine an all-or-nothing vaccine with lower VES and VESP 

,as well as a leaky vaccine with VESP = 0.95, similar to Scenario 1, but with lower VES and higher 
VEP. (21).  

Finally, in scenario 4, we examine a setting with a leaky vaccine with VESP = 0.95 in which some 
of the population has already been infected and recovered before the simulations and 
vaccination begin. We explore a range from 0-30% of individuals with prior infection under a 
higher R than in the other scenarios (R=2.0) to prevent herd immunity from prior infections from 
substantially slowing the epidemics before spurious waning can be observed. In these 
simulations, 20 individuals are exposed on the first day and 100 individuals are infectious 
(except in the simulations with 0 individuals previously infected).  

Analyses 

Test-negative design 
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We then simulate sampling of cases, or individuals with COVID-19 (symptoms and positive 
virologic test), on a given day and a random 1:4 sample of controls (i.e. individuals without 
COVID-19), similar to a test-negative design (TND). We repeat this sampling for seven different 
time periods, every 25 days from day 75 to day 225, treating each day independently. Given the 
faster epidemics in scenario 4 with the higher R, we examine every 25 days from day 25 to day 
150. We then estimate VESP -- the estimand that is in practice estimated in a standard TND, 
although the progression to symptoms aspect is not always acknowledged (22) -- using four 
analyses. We focus on VESP as it was the primary outcome in vaccine trials and due to potential 
biases that can arise in TNDs when estimating VE against all infection when vaccines affect 
disease severity (23).  

In the first analysis (baseline), we estimate VESP by calculating the odds ratio (OR), using data 
from all individuals sampled:  

VESP	= 1	 −		 #!"#"		⁄	#!$#"#!"#$		⁄	#!$#$	
 , where D is disease (symptoms and a positive virologic test) 

and V is vaccine. 

In the second analysis, we estimate the OR using logistic regression, controlling for risk (i.e. the 
binary measure described above for increased or decreased susceptibility to infection).  

In the third analysis, we simulate serologic testing for non-vaccine antibodies (i.e. evidence of 
past infection) and then restrict the analysis to individuals who had not previously been infected. 
In the fourth analysis, we both restrict to those without evidence of previous infection and also 
control for risk. In the primary analyses, we assume perfect sensitivity and specificity of the 
serologic test for prior infection, but we relax these assumptions in sensitivity analyses. We 
examine lower sensitivity for cases and controls and lower specificity for cases only, as 
antibodies detected could reflect either current or prior infection.  

Cohort / randomized controlled trial design 

As a comparison to the TND, we repeat the same four analyses to estimate VE using a cohort 
design, where the time of symptomatic infection is known for the 5000 people under follow-up. 
We again examine different lengths of follow-up for this study design. We assume no 
unmeasured confounding: that is, no common causes of vaccination and infection, as would be 
true with adequate control for confounders. In practice, this study could be done using an 
electronic health records database using stratification, matching, or modeling for example to 
control for confounding factors such as occupation, age, insurance, and other factors affecting 
both vaccination and the likelihood of infection given vaccination. Because there is no 
unmeasured confounding and vaccination is random in these simulations, this design is 
comparable to a randomized controlled trial (RCT) in which all symptomatic cases are identified.     

Sensitivity analyses 

We vary key parameters of interest to examine their impact on the results. First, we vary the 
reduction in susceptibility conferred by past infection, using a value of 70% (24) reduction 
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compared to the baseline parameter of 95% reduction. Next, we vary the proportion of the 
population that is high risk, examining a scenario in which only 10% of the population is high 
risk, with five times higher risk than lower risk individuals. Finally, we vary the proportion of 
infections that are symptomatic, using a higher value of 0.8 (23) compared to the baseline of 
0.5.  

Ethics: This activity was reviewed by CDC and was conducted consistent with applicable federal law 
and CDC policy. 
 
Results 
 
In scenario 1 with high VES and VESP, we find that for most time points, all four TND analyses 
return estimates of VESP  close to the true value of 0.95 (Figure 1). However, in the simulations 
with R=1.5, the first two analyses that do not exclude prior infection result in downward biases 
for days further from vaccination (i.e. as low as 0.89 200 days from vaccination). This bias 
occurs at later dates and in the higher transmission scenarios (i.e. when more cases have 
occurred) due to differential depletion of susceptibles between vaccinated and unvaccinated 
individuals over time; the bias is alleviated by excluding those with prior infection from the 
analysis. Similar results are found in an additional analysis with the same VESP but different VES 

and VEP (Figure S1). Note, in these and other simulations with high VE, when the number of 
cases is very low at either the beginning or end of the epidemic, imprecision can result in VE 
estimates of 1 (if all cases are by chance unvaccinated).  
 
In scenario 2, with a lower value of VES and VESP of 0.7, the first and second analyses that do 
not exclude prior infection are biased further downwards than in scenario 1 (i.e. as low as 0.36 
225 days from vaccination when R = 1.5); this bias also occurs earlier than in scenario 1 and for 
both R values (Figure 2) because the epidemic is larger due to lower VE. In addition, in this 
scenario, the third analysis that excludes those with prior infection but does not control for risk 
has a more pronounced bias (lowest value of 0.64 compared to true VESP  of 0.7 on day 225 
when R=1.5) than in scenario 1 (lowest value of 0.94 compared to true VESP  of 0.95 on day 200 
when R=1.5).  
 
In scenario 3, which models an all-or-nothing vaccine mechanism instead of a leaky 
mechanism, excluding prior infections results in a bias upward away from the true VESP of 0.9 
(Figure 3), with some values approaching 1. This bias is more pronounced in the higher R 

simulations, on later days, and for lower values of VESP; for example, on day 200 in the R=1.5 
simulations, the VESP from the analysis excluding prior infection and adjusting for risk is 0.84, 
compared to the true value of 0.7 (Figure S2)  
 
In scenario 4, we see that the degree of spurious waning bias increases with the number of 
cumulative cases since vaccination (Figure 4). This trend occurs because the bias is driven by 
differential depletion of susceptibles between vaccinated and unvaccinated individuals. In the 
simulations with 0% prior infection at the time of vaccination, the epidemic and vaccination 
begin simultaneously; thus, when evaluating VE at later dates, because the vaccine reduces risk 
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of infection, those who have been infected prior to the date of interest are more likely to be 
unvaccinated, causing bias. Assuming prior infection doesn’t affect the decision to be 
vaccinated, in the simulations where the epidemic begins prior to vaccination, the distribution of 
vaccination status among those infected becomes more balanced because the infections prior 
to vaccination are expected to be evenly split between vaccinated and unvaccinated individuals. 
This is why the bias increases with cumulative cases since vaccination began, rather than with 
overall cumulative cases (i.e. before and after vaccination). The cumulative cases since 
vaccination is a function of many variables, including timing of vaccination relative to the 
epidemic, force of infection, and VE values.  
 
In the cohort study analysis, which under our assumptions is equivalent to an RCT, we find 
similar trends to those observed in the TND (Figures 5-7); however, the cohort studies that do 
not exclude those with prior infection are less biased than equivalent TND studies for each 
scenario. In scenario 1, with the highest VESP, the bias is negligible. The bias is smaller 
because in cohort studies and RCTs, those with past symptomatic infection are censored at the 
time of infection, meaning fewer people are incorrectly treated as still at risk in the analysis.  
 
In sensitivity analyses, we relax assumptions of perfect tests for prior infection and examine 
lower sensitivity for both cases and controls and lower specificity for cases. We find that while 
lower sensitivity results in slight downward biases of the estimates, which are more pronounced 
in scenario 2 than scenario 1 (Figures S3-S4), lower specificity for cases does not induce a bias 
(Figure S5). This is because imperfect specificity only reduces the sample size, but we assume 
it does not do so differentially by vaccination status. A study of breakthrough infections in Israel 
found antibody levels on day of diagnosis were not greatly impacted by the current infection, 
suggesting imperfect specificity may not be a large concern (25).  
 
Finally, in analyses that vary the parameters for reduction in susceptibility following infection and 
the proportion of the population at high risk, we find similar results to the baseline scenario 
(Figures S6-7). In analyses with a higher proportion symptomatic, we find less bias as expected 
given that a smaller proportion of cases will go undetected (Figure S8); we focus here on the 
cohort/RCT designs in which all symptomatic cases are identified and therefore the proportion 
symptomatic is a key parameter of interest.   

 
 
Discussion  
 
We find that in scenarios with high baseline VE, differential depletion of susceptibles creates 
minimal bias in VE estimates and in the time trend of these estimates; therefore, there is little 
suggestion of spurious waning from comparing later to earlier VE estimates. While it is important 
to control for known predictors of risk, estimates that do not account for prior infection status will 
likely not be far off from the truth. In fact, without knowledge of the vaccine mechanism (i.e. 
leaky or all-or-nothing), it may be better to not condition on prior infection status: if the vaccine is 
leaky, the baseline estimates may be slightly underestimated, but if the vaccine is all-or-nothing, 
the adjusted estimates will overestimate the true VE. This upward bias occurs because 
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excluding people with past infection with an all-or-nothing vaccine removes people for whom the 
vaccine did not work at all and focuses the analysis on those for whom the vaccine may be 
effective; with leaky vaccines, the individuals who are removed in the adjusted analysis are 
random (after accounting for risk factors). Evaluating how the estimates from different analyses 
change over time could give potential insight into the type of vaccine mechanism.  
 
Because the bias from failing to exclude prior infection in the analysis of a leaky vaccine with 
high initial VE is expected to be small under the null hypothesis of no waning VE, if the VE 
appears to wane substantially, this finding is likely not entirely due to bias. If true waning occurs, 
spurious waning bias may become a more relevant consideration (as in scenarios with a lower 
baseline VE); that is, estimates may reflect a combination of real and spurious waning. Six 
month efficacy results from the mRNA vaccine trials show mixed findings regarding waning, with 
Moderna showing consistent efficacy over time (26) and Pfizer’s estimates slightly declining 
(27). It is challenging to disentangle if this decline is due to lower effectiveness against variants, 
true waning, spurious waning, or some combination of these factors; given the minimal bias 
found in our RCT-like analysis of vaccines with high VE (Figure 5), our findings suggest the 
decline is likely not due to spurious waning alone. Similarly, spurious waning is likely not the 
only cause of the declines in effectiveness observed in Israel, given the high effectiveness 
estimated when vaccines were first given (19,20), the magnitude of the declines and that they 
occurred following a period of low incidence (28).  
 
If baseline VE is lower, the bias over time for leaky vaccines is larger and ideally should be 
corrected if the mechanism is known to be leaky. However, leaky and all-or-nothing 
mechanisms are two extremes; in reality, vaccines will fail to take in some individuals due to 
improper handling or injection so most vaccines are leaky vs. nothing. By examining both 
mechanisms, our analyses show the range of possible biases. In the absence of other sources 
of bias, conducting analyses both unadjusted and adjusted for past infection could give lower 
and upper bounds for the true VE. Studies of VE over time should therefore enroll individuals 
regardless of prior infection history but also collect information on this critical variable for use in 
the analysis; when possible, prior infection status should be assessed using serology as even 
an imperfect serologic test will improve sensitivity over self-report alone.  
 
This study has several limitations. First, we make many simplifying assumptions in the model. 
For example, we assume all individuals are grouped into one large community and do not 
examine the potential impact of geographic heterogeneity. Other studies have shown epidemic 
dynamics due to differences in geography are important to control for in vaccine (29) and 
serologic (5) studies. We also assume perfect sensitivity and specificity of virologic tests, as 
implications of these parameters have been explored in detail previously (30,31). There are 
many potential biases in studies of vaccine effectiveness, which are described in detail in World 
Health Organization guidance (30); here we focus specifically on spurious waning bias from 
differential depletion of susceptibles. While we incorporate heterogeneity in risk of acquiring 
infection, we do not model differences in risk of transmitting infection (e.g. due to host factors). 
Second, using serologic tests to identify prior infection is subject to error from imperfect test 
characteristics and waning of antibodies over time. However, we find only small biases in VE 
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estimates from imperfect sensitivity, and information on past infection can also be obtained 
through self-report or medical records. Third, as described above, we assume random 
vaccination and no unmeasured confounding; the strategies discussed here alone do not 
address most other sources of potential confounding, which are important to account for in 
analyses, particularly given that vaccine rollout in some cases prioritized those at highest risk to 
receive vaccines first. Fourth, we simulated epidemics with higher R values than much of the 
United States experienced during most of the pandemic to uncover scenarios where spurious 
waning might be of concern (32). These values should not affect the conclusions from the 
simulations, as we find that the main determinant of the extent and magnitude of bias is the 
proportion of the population that has been infected since vaccination, which is influenced by a 
combination of several factors, including R values, the point in the epidemic trajectory when the 
vaccine was introduced, and prevalence of high vs low risk individuals in the population. Finally, 
we assume no true waning or other reasons for decreased effectiveness, such as new variants; 
future research should explore methods for disentangling these potential explanations for 
observed declines in effectiveness over time.    
 
Assessing duration of protection from COVID-19 vaccines is important for anticipating future 
dynamics of this pandemic. Here we have outlined circumstances under which bias can arise in 
these estimates and identified approaches to alleviate these biases.  
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Table 1. Parameters and associated values used in network model simulations 

Parameter Value(s) 

Population size 20,000 

Average degree (number of connections in network) 36, 43, 58 

Average beta (probability of infection per contact) 0.005 

Reproduction number (R) 1.25, 1.50, 2.00 

Proportion symptomatic 0.5, 0.8 (33) 

Number of initial cases 10, 20 

Incubation period (days) 5 (34) 

Infectious period (days) 7 

Proportion at high risk 0.5, 0.1 

Relative beta for high risk 1.5, 3.57 

Relative beta for low risk 0.5, 0.71 

Days with complete protection from past infection 90 (10) 

Relative beta for those recovered after 90 days 0.05, 0.3 (11,24)  

Proportion of population vaccinated 0.125 

Proportion previously recovered at start of simulation 0, 0.1, 0.2, 0.3 
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Table 2. Scenarios the network model evaluated to assess the potential for spurious waning 
 

 Type Reproduction 
number 

Proportion 
previously 
infected and 
recovered 
on day 1 

Vaccine 
efficacy 
against 
symptomati
c disease 
(VESP) 

Vaccine 
efficacy 
against 
susceptibilit
y to 
infection 
(VES) 

Vaccine 
efficacy 
against 
progression 
to 
symptoms 
(VEP) 

Main scenarios 

Scenario 1 Leaky 1.25, 1.50 0 0.95 0.90 0.50 

Scenario 2 Leaky 1.25, 1.50 0 0.70 0.70 0 

Scenario 3  All-or-nothing 1.25, 1.50 0 0.90 0.90 0 

Scenario 4 Leaky 2.0 0, 0.1, 0.2, 
0.3 

0.95 0.90 0.50 

Supplemental scenarios 

Scenario 5 Leaky 1.25, 1.50 0 0.95 0.65 0.86 

Scenario 6 All-or-nothing 1.25, 1.50 0 0.70 0.70 0 
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Figure 1.  
Vaccine efficacy against symptomatic disease for scenario 1 with a test-negative design. Columns are days since vaccination, and rows are 
values of R. Median and IQR of 100 simulations shown. Number of cases refers to the median number of people with COVID-19 included in that 
day’s analysis. Cumulative number refers to the median total number of cases of COVID-19 by that day since vaccination (denominator 5000). 

  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted September 7, 2021. ; https://doi.org/10.1101/2021.07.15.21260595doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.15.21260595


14 

Figure 2 
Vaccine efficacy against symptomatic disease for scenario 2 with a test-negative design. Columns are days since vaccination, and rows are 
values of R. Median and IQR of 100 simulations shown. Number of cases refers to the median number of people with COVID-19 included in that 
day’s analysis. Cumulative number refers to the median total number of cases of COVID-19 by that day since vaccination (denominator 5000). 
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Figure 3 
Vaccine efficacy against symptomatic disease for scenario 3 with a test-negative design. Columns are days since vaccination, and rows are 
values of R. Median and IQR of 100 simulations shown. Number of cases refers to the median number of people with COVID-19 included in that 
day’s analysis. Cumulative number refers to the median total number of cases of COVID-19 by that day since vaccination (denominator 5000). 
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Figure 4 
A) Vaccine efficacy against symptomatic disease for scenario 4 with a test-negative design. Columns are days since vaccination, and rows 

are the proportion infected before vaccination. Median and IQR of 100 simulations shown. Number of cases refers to the number of 
people with COVID-19 included in that day’s analysis. Cumulative number refers to the total number of cases of COVID-19 by that day 
since vaccination (denominator 5000). 

B) Median cumulative incidence proportion (symptomatic infection) over time since vaccination for the four values of the proportion recovered 
on vaccination day (black vertical line). Note the probability of symptoms for unvaccinated individuals is 50%.  
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Figure 5  
Vaccine efficacy against symptomatic disease for scenario 1 with a cohort/RCT study design. Columns are days since vaccination, 
and rows are values of R0. Median and IQR of 100 simulations shown. Cumulative number refers to the median total number of 
cases of COVID-19 by that day since vaccination (denominator 5000). 
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Figure 6 
Vaccine efficacy against symptomatic disease for scenario 2 with a cohort/RCT study design. Columns are days since vaccination, 
and rows are values of R0. Median and IQR of 100 simulations shown. Cumulative number refers to the median total number of 
cases of COVID-19 by that day since vaccination (denominator 5000). 
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Figure 7 
Vaccine efficacy against symptomatic disease for scenario 3 with a cohort study design. Columns are days since vaccination, and 
rows are values of R0. Median and IQR of 100 simulations shown. Cumulative number refers to the median total number of cases of 
COVID-19 by that day since vaccination (denominator 5000). 
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Figure S1 
Vaccine efficacy against symptomatic disease for scenario 5 with a test-negative design. Columns are days since vaccination, and rows are 
values of R. Median and IQR of 100 simulations shown. Number of cases refers to the median number of people with COVID-19 included in that 
day’s analysis. Cumulative number refers to the median total number of cases of COVID-19 by that day since vaccination (denominator 5000). 
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Figure S2 
Vaccine efficacy against symptomatic disease for scenario 6 with a test-negative design. Columns are days since vaccination, and rows are 
values of R. Median and IQR of 100 simulations shown. Number of cases refers to the median number of people with COVID-19 included in that 
day’s analysis. Cumulative number refers to the median total number of cases of COVID-19 by that day since vaccination (denominator 5000). 
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Figure S3 
Vaccine efficacy against symptomatic disease for scenario 1 with imperfect sensitivity for the test for prior infection with a test-negative design. 
Columns are days since vaccination, and rows are values of R. Median and IQR of 100 simulations shown. Number of cases refers to the median 
number of people with COVID-19 included in that day’s analysis. Cumulative number refers to the median total number of cases of COVID-19 by 
that day since vaccination (denominator 5000). 
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Figure S4 
Vaccine efficacy against symptomatic disease for scenario 2 with imperfect sensitivity for the test for prior infection with a test-negative design. 
Columns are days since vaccination, and rows are values of R. Median and IQR of 100 simulations shown. Number of cases refers to the median 
number of people with COVID-19 included in that day’s analysis. Cumulative number refers to the median total number of cases of COVID-19 by 
that day since vaccination (denominator 5000). 
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Figure S5 
Vaccine efficacy against symptomatic disease for scenario 2 with imperfect specificity for cases for the test for prior infection with a test-negative 
design. Columns are days since vaccination, and rows are values of R. Median and IQR of 100 simulations shown. Number of cases refers to the 
median number of people with COVID-19 included in that day’s analysis. Cumulative number refers to the median total number of cases of 
COVID-19 by that day since vaccination (denominator 5000). 
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Figure S6 
Vaccine efficacy against symptomatic disease for scenarios 1-3 with a test-negative design, with lower 
relative reduction in susceptibility following infection compared to baseline parameters. Columns are days 
since vaccination, and rows are values of R. Median and IQR of 100 simulations shown. Number of cases 
refers to the median number of people with COVID-19 included in that day’s analysis. Cumulative number 
refers to the median total number of cases of COVID-19 by that day since vaccination (denominator 
5000). 
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Figure S7 
Vaccine efficacy against symptomatic disease for scenarios 1-3 with a test-negative design, with lower 
proportion of the population at high risk compared to baseline parameters. Columns are days since 
vaccination, and rows are values of R. Median and IQR of 100 simulations shown. Number of cases 
refers to the median number of people with COVID-19 included in that day’s analysis. Cumulative number 
refers to the median total number of cases of COVID-19 by that day since vaccination (denominator 
5000). 
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Figure S8 
Vaccine efficacy against symptomatic disease for scenarios 1-3 with a cohort/RCT design, with higher 
proportion symptomatic compared to baseline parameters. Columns are days since vaccination, and rows 
are values of R. Median and IQR of 100 simulations shown. Number of cases refers to the median 
number of people with COVID-19 included in that day’s analysis. Cumulative number refers to the median 
total number of cases of COVID-19 by that day since vaccination (denominator 5000). 
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