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Abstract 

Background 

During the ongoing COVID-19 pandemic, the immediate threat of illness and mortality is 

not the only concern. In the United States, COVID-19 is not only causing physical suffering to 

patients, but also great levels of adverse sentiment (e.g., fear, panic, anxiety) among the public. 

Such secondary threats can be anticipated and explained through sentiment analysis of social 

media, such as Twitter. 

 

Methods 

We obtained a dataset of geotagged tweets on the topic of COVID-19 in the contiguous 

United States during the period of 11/1/2019 - 9/15/2020. We classified each tweet into 

“adverse” and “non-adverse” using the NRC Emotion Lexicon and tallied up the counts for each 

category per county per day. We utilized the space-time scan statistic to find clusters and a three-

stage regression approach to identify socioeconomic and demographic correlates of adverse 

sentiment. 

 

Results 

We identified substantial spatiotemporal variation in adverse sentiment in our study 

area/period. After an initial period of low-level adverse sentiment (11/1/2019 - 1/15/2020), we 

observed a steep increase and subsequent fluctuation at a higher level (1/16/2020 - 9/15/2020). 

The number of daily tweets was low initially (11/1/2019 - 1/22/2020), followed by spikes and 

subsequent decreases until the end of the study period. The space-time scan statistic identified 12 
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clusters of adverse sentiment of varying size, location, and strength. Clusters were generally 

active during the time period of late March to May/June 2020. Increased adverse sentiment was 

associated with decreased racial/ethnic heterogeneity, decreased rurality, higher vulnerability in 

terms of minority status and language, and housing type and transportation. 

 

Conclusions 

We utilized a dataset of geotagged tweets to identify the spatiotemporal patterns and the 

spatial correlates of adverse population sentiment during the first two waves of the COVID-19 

pandemic in the United States. The characteristics of areas with high adverse sentiment may be 

relevant for communication of containment measures. The combination of spatial clustering and 

regression can be beneficial for understanding of the ramifications of COVID-19, as well as 

disease outbreaks in general. 

 

Keywords 

Sentiment analysis, COVID-19, scan statistics 

 

Background 

  As of July 2021, The COVID-19 pandemic has caused over 184,000,000 confirmed cases 

and over 3,981,000 confirmed deaths globally since its onset in December 2019. In the United 

States (U.S.), over 33,000,000 cases were identified and over 605,000 deaths counted [1, 2, 3]. 

While vaccines have been developed and rolled out, various variants of the SARS-CoV-2 virus 
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continue to pose a threat to public health [4, 5]. Strategies to slow the spread have been 

successful at reducing cases and deaths, but may have negative consequences on mental health, 

the economy, and society in general [6, 7, 8]. 

Humans under duress from constraints, such as fear, lack of resources, and quarantine, 

can behave in irrational, and sometimes violent ways [9, 10].  These behaviors include 

intensified racial hate, hate crimes, and hate-based violence [11, 12]. Therefore, the immediate 

threat of falling ill from COVID-19 is not the only concern. In the U.S., the increasing spread of 

COVID-19 is not only causing physical suffering to patients and an increasing burden to the 

healthcare system, but also great levels of adverse sentiment (e.g., fear, panic, anxiety) among 

the public [13]. Such secondary threats can be anticipated and explained through sentiment 

analysis of social media, such as Twitter [14].  

Sentiment analysis (S.A.) “is the field of study that analyzes people’s opinions, 

sentiments, appraisals, attitudes, and emotions toward entities and their attributes expressed in 

written text.” [15]. Much S.A. research focuses on classifying written text, therefore it is 

considered part of the field of Natural Language Processing (NLP), even though it has been 

studied within the fields of Data Mining and Information Retrieval as well [15]. Applications of 

S.A. toward the COVID-19 pandemic include examinations of attitudes towards lockdowns [16], 

communication strategies of public health authorities [17], impacts of COVID-19 on mental 

health [18], and opinions towards vaccines [19], among others. The analysis of emotions is 

considered a subfield of S.A., as it focuses on revealing the psychological state of mind, e.g. of 

the author of a text document [20]. Emotions explicitly contain subjectivity, which distinguishes 

them from sentiments [21]. Words in context can be associated with basic emotions, such as joy, 

sadness, anger, fear, disgust, surprise, trust, and anticipation [22, 23]. This allows for 
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classifying text documents using word-emotion dictionaries, such as the NRC Emotion Lexicon 

[24].  

Understanding the geographic and temporal patterns of public sentiment, as well as its 

socio-demographic correlates, amid the COVID-19 pandemic, may allow public administrators 

to identify potential areas for proactive measures to prevent and mitigate social problems, as well 

as to optimize message targeting, government assistance, and overall communication strategies 

[25]. However, traditional survey or questionnaire-based data collection for assessing public 

sentiment may be difficult to implement in a timely manner during the pandemic. Instead, social 

media data such as geo-tagged tweets provide a feasible way to gain such information in near 

real-time [26, 27]. Social media usage has increased manyfold among American adults since 

2005 [28], leading to a volume of 500 million tweets per day in 2017 [29]. Twitter has become 

an established data source in geographic research with applications in epidemiology [30], 

mobility pattern analysis [31], and disaster management [32], among others.  

In this study, we use a curated dataset of geotagged tweets to analyze the spatiotemporal 

distribution of adverse sentiment toward the rapid spread of COVID-19 in the contiguous U.S. 

We identify spatiotemporal clusters of elevated adverse sentiment and present results in graphic 

and tabular form. In addition, we analyze the spatial correlates of adverse sentiment using a 

three-stage regression approach. This paper is structured as follows: The Methods section 

elaborates on the methods for tweet data collection, sentiment classification, spatiotemporal 

clusters, and the spatial correlates of adverse sentiment. This is followed by the Results section, 

which has two sub-sections that present the spatial and spatiotemporal distribution and the 

spatial correlates of adverse sentiment, respectively. Lastly, the Discussion and Conclusions 
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sections contain a summary, assumptions and weaknesses, as well as relevance of this study 

within a broader context.      

 

Methods 

Twitter data 

We obtained 6,080,400 tweets, which fulfilled the following selection criteria: 1) written 

in English, 2) geotagged, 3) sent from the contiguous United States, 4) sent between 11/1/2019 

and 9/15/2020, 5) presence of COVID-19-related keywords (Table A1). Because this was a 

purchased dataset from Twitter, we were provided the entire set of requested tweets, rather than a 

sample, as provided as a free service through connection to the Twitter API. Geotagged tweets 

provide the user location if location services are enabled on the device. Depending on the quality 

of the global positioning system (GPS) signal, the geographic location of tweets may be exact or 

approximated to either cities, states, or nations. 83.67% of our tweets were geolocated at the city 

level, fulfilling the desired spatial granularity level of our analyses, and therefore retained for 

further processing. We then conducted a series of preprocessing steps to the tweet body: 1) 

removal of URLs and emojis, 2) removal of punctuation and other symbols (e.g. “@”, “&”), and 

3) conversion of all letters to lower case.   

 

Sentiment classification 

We classified our tweets using the word-emotion classification lexicon of the National 

Research Council Canada (NRC) [24]. The NRC Emotion Lexicon scores documents according 

to 8 different emotions (joy, sadness, anger, fear, trust, disgust, surprise, anticipation), based on 
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the presence of emotional terms. For instance, the word “abandoned” is associated with the 

emotions of anger, fear, and sadness. Following the methodology of Karmegam & Mappillairaju 

[33], we considered the emotions of sadness, anger, fear and disgust as negative, and coded 

tweets that contained at least one of these emotions as “adverse”, whereas the remaining tweets 

are “non-adverse”. We used R for all data processing [34, 35], and specifically the “syuzhet” 

library to implement tweet classification [36]. In addition, we obtained the 2018 county polygon 

geometries as TIGER/Line shapefiles from the United States Census Bureau and used the “sf” 

library [37] to aggregate adverse and non-adverse tweets for each county within the contiguous 

United States (N = 3108), for each day within our study period (N = 238).      

 

Spatiotemporal clusters of adverse sentiment 

Using the county-level, daily counts of adverse and non-adverse tweets, we employ the 

retrospective space-time scan statistic [38] with Bernoulli model [39] to find clusters of adverse 

sentiment. This method identifies the most likely circular clusters out of a set of candidate 

clusters (a.k.a. “windows”), which are centered on the county centroids and defined by varying 

spatial and temporal search distances. We restricted the clusters spatially to include a maximum 

of 5% of all tweets, and temporally to last no longer than half of the study period. 

Parameterization has a substantial impact on the size of the resulting clusters, as less restrictive 

parameter choices typically lead to larger clusters [40], necessitating careful optimization [41]. 

Our parameter choices are geared towards policymakers at the state-level, where the decisions on 

pandemic response are made [42], and therefore result in medium-sized clusters. The space-time 

scan statistic with Bernoulli model is used in a case-control scenario, such as adverse tweets vs. 
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non-adverse tweets and employs a likelihood ratio test for each candidate cluster. The likelihood 

function is given in Equation 1 [43]: 

(
𝑐

𝑛
)
𝑐

(
𝑛−𝑐

𝑛
)
𝑛−𝑐

(
𝐶−𝑐

𝑁−𝑛
)
𝐶−𝑐

(
(𝑁−𝑛)−(𝐶−𝑐)

𝑁−𝑛
)
(𝑁−𝑛)−(𝐶−𝑐)

        (1) 

 

Where C is the total number of adverse tweets, c is the number of adverse tweets within the 

current candidate cluster, N is the total number of tweets within the entire study area/period, and 

n is the total number of tweets within the candidate cluster. The candidate with the highest value 

of the likelihood function is the strongest cluster, as it is a measure of risk within vs outside the 

cluster. We assess cluster significance using 999 Monte Carlo simulation runs, where tweet 

counts are randomized among the counties and days. Following the approach of [44, 45, 46], we 

map clusters together with the county-level proportion of adverse tweets. In addition, we report 

the following characteristics of statistically significant clusters at the p < 0.05 level: 1) the 

duration (start and end date), the number of counties contained within the cluster (# of counties); 

the relative risk (RR), which, similar to the likelihood function, is the ratio of the probability of 

observing an adverse tweet inside the cluster vs. outside; the observed number of adverse tweets 

(Obs); the expected number of adverse tweets (Exp) under the assumption that the number of 

adverse tweets (cases) follows the number of non-adverse tweets (controls); and the total number 

of tweets observed in the cluster (Total tweets).     

 

Spatial correlates of adverse sentiment 

To understand the drivers of adverse population sentiment, we collected 9 county-level 

predictor variables from various sources (Table 1). The variables allow for a place-based 
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description of counties in terms of the socioeconomic and demographic characteristics of the 

population. In addition, our predictor variables cover topics such as the rural-urban continuum, 

political views, social vulnerability, access to health care, and the severity and timing of the 

Covid-19 pandemic.  

The variables include: 1) The Rural-Urban Continuum Codes (RUCC) [47], which 

distinguish counties according to their population and proximity to metro areas. We reclassified 

the original 9 code values into metropolitan and non-metropolitan counties. 2) The Racial/Ethnic 

Heterogeneity Index (Ethnic) using the methodology by [48]: 

𝐸𝑡ℎ𝑛𝑖𝑐 = 1 − ∑ 𝑝𝑖
2

𝑖        (2) 

 

Where pi is the proportion of the county population of the given group. For calculation of the 

index, we included the racial and ethnic categories: Latino/Hispanic, American Indian and 

Alaska Native, Asian, Black or African American, Native Hawaiian or Pacific Islander, and 

Non-Hispanic White [49]. The index ranges between 0-1, whereas a value of 1 indicates 

maximum heterogeneity. Conversely, a value of 0 indicates the presence of only one group. 3) 

The proportion of votes for Joseph R. Biden Jr. (Biden) in the 2020 election [50] as an indication 

of political views. The pandemic and its outcomes have been grossly politicized, and we suspect 

that political views have a substantial effect on adverse sentiment expressed in social media. 4) 

The 2018 Social Vulnerability Index (SVI) [51], which quantifies social vulnerability to natural 

hazards or disease epidemics. The SVI ranks counties according to four themes, which we use as 

variables in our modelling efforts: 1) socioeconomic status, 2) household composition, 3) 

race/ethnicity/language, and 4) housing/transportation. 5) The number of primary care physicians 
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per county (PCP), which approximates access to healthcare [52]. The ease of receiving care may 

influence people’s feelings about the pandemic. Lastly, 6) The daily number of COVID-19 cases 

per 100,000 people (Case rate) using data from the John’s Hopkins Center for Systems 

Engineering [3]. As the temporal trend of the virus differs across counties, we took the day of the 

first observed death and calculated the number of days passed since the beginning of the study 

period (1st death). The COVID-19-related variables are dynamic, as they vary through space and 

time, whereas the remaining variables are static, only varying through space. 

 

Table 1. Predictor variables. 

Variable Source Description 

RUCC [47] Rural-Urban Continuum Codes 

Ethnic 
[48] 2018 5-year ACS 

Estimates 
Ethnic Heterogeneity Index 

Biden [50] % Biden votes 2020  

SVI 2 

[51] 

Social Vulnerability Index Theme 2 

SVI 3 Social Vulnerability Index Theme 3 

SVI 4 Social Vulnerability Index Theme 4 

PCP [52]  # primary care physicians per person 

Case rate 
[3] 

COVID-19 cases per 100,000 people 

1st death # of days since 1st death 

 

 

To establish the correlates of adverse sentiment, we used ordinary least squares (OLS) 

regression, with the proportion of adverse tweets among all tweets as the dependent variable. We 

employed time flattening of our dynamic variables, including the dependent variable. This means 

for each county, we calculated the average of the time-series of our variables, effectively 

reducing a spatiotemporal dataset to a purely spatial one. We computed the variable correlation 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.15.21260543doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.15.21260543
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 11  
 

matrix to circumvent multicollinearity. Lastly, we ensured that variable inflation factor (VIF) 

values of our predictor variables remained below an acceptable level of 2.5 [53]. We checked for 

heteroskedasticity using residual vs. fitted values and Q-Q plots. Further, we checked for spatial 

autocorrelation of model residuals using Moran’s I [54]. Since our data is highly zero-inflated 

(many rural counties have zero adverse tweets), we ran zero-inflated beta regression [55] with 

the variables we determined through OLS.  

Due to the locational uncertainty associated with geotagged tweets, and to address zero-

inflation of the county-level tweet counts, we built an additional model with a smoothed 

response variable using kernel density estimation, as in Equation 3:  

𝑓(𝑦) = 𝑛−1∑ ℎ(𝑥𝑖)
−2𝐾((𝑦 − 𝑥𝑖) ℎ(𝑥𝑖)⁄ )𝑛

𝑖=1     (3) 

 

Here, xi refers to the ith observation (county), h(x) is the bandwidth function, and K(.) is the 

kernel function. We used adaptive bandwidths due to the variable spacing of county centroids 

across the United States (counties in the western United States are larger in general than counties 

in the east). The variable bandwidths are governed by specification of a smoothing multiplier 

(a.k.a “global bandwidth”), calculated using the oversmoothing principle [56]. We weighted the 

resulting densities by adverse/total tweet count separately, and computed the relative risk 

function, as in Equation 4: 

𝑟 = 𝑙𝑜𝑔(𝑓𝑑 𝑔𝑑⁄ )       (4) 

 

where fd and gd refer to the densities of adverse and total tweets, respectively. The log 

transformation allows for symmetric treatment of the two densities [57, 58]. Since the county 
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centroids are the geographic representation of all our observations, we extracted the resulting risk 

values at their locations. We employed the kernel density routines implemented in the “sparr” 

library in R [59, 60, 61].   

 

Results 

Spatial and temporal distribution of adverse sentiment 

Adverse sentiment expressed in tweets varies substantially throughout our study period (Figure 

1). The temporal pattern of adverse sentiment is characterized by an initial period of fluctuation 

at a low level (~30% - 37%) from 11/1/2019 - 1/15/2020, followed by a steep increase and 

subsequent fluctuation at a higher level (~40% - 48%) from 1/16/2020 - 9/15/2020. The total 

number of daily tweets remained around zero from 11/1/2019 - 1/22/2020, followed by an 

increase to up to 80,000 daily tweets around 3/15/2020. The number of tweets subsequently 

decreases and remains relatively stable at around 10,000 – 15,000 until the end of the study 

period.    
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Figure 1. Temporal distribution of total tweets (red line) and the proportion of adverse tweets (blue line). 

 

Using the retrospective space-time scan statistic with Bernoulli model, we identified 12 

clusters of elevated adverse sentiment, as expressed in tweets (Figure 2, Table 2). The clusters 

are spread across the entire contiguous U.S., except for portions of the Midwest and Pacific 

Northwest regions. The clusters exhibit substantial variation in size, as their radii range from 765 

km (Cluster 4) to 31 km (Cluster 2). All clusters are active during the distinct period from late 

March to May/June 2020. Cluster 1 includes 136 counties of California, Oregon, Idaho, Nevada, 

Wyoming, Utah, Colorado and Arizona and contains 69,842 adverse tweets (Obs, Table 1), 

whereas only 64,155 are expected (Exp). The total number of tweets for Cluster 1 is 141,413 

(Total tweets), therefore the relative risk (RR) is elevated at 1.09. Cluster 2 is much smaller than 

Cluster 1 as it merely encompasses 4 counties of the New York City area. The observed and 
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expected number of adverse tweets are lower (46,607 and 42,209, respectively), but the RR is 

higher (1.11). Similar to Cluster 2, Cluster 3 is small, as it consists of only 2 counties in 

Vermont. Expectedly, the Total tweets are low (2,667). However, it has an RR of 1.55, which is 

the highest value across all clusters. The largest cluster (Cluster 4) includes 237 counties in 

Texas, Arizona and New Mexico, and has an RR of 1.08. Cluster 5 consists of 111 counties in the 

lower Michigan peninsula, Ohio, Indiana and Illinois. It includes the cities of Chicago and 

Detroit and has the highest Total tweets among all clusters (148,807). Cluster 6 consists of 128 

counties in New York, Pennsylvania, New Jersey, Virginia and Ohio, has an RR of 1.07 and is of 

medium size. Cluster 7 has a total of 421 counties, which is the highest number among all 

clusters, but an RR of 1.06, which puts it in the lower third. Cluster 8 consists of 4 counties in 

southern California which include the Los Angeles and San Diego metro areas. Cluster 9 is in the 

Appalachian Mountains around Georgia, the Carolinas, Tennessee, Kentucky and West Virginia. 

Encompassing 320 counties, it is the second highest in that category. Cluster 10 includes 53 

counties surrounding the Chesapeake Bay in Maryland and Delaware. Cluster 11 covers the 

southern half of Florida, including large cities of Miami, Tampa, and Orlando. Finally, Cluster 

12 includes 79 counties of Colorado, Kansas, Nebraska, South Dakota and Wyoming. 
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Figure 2. Spatial distribution of adverse tweets augmented by clusters resulting from the space-

time scan statistic. 

 

Table 2. Clusters from the space-time scan statistic (corresponding to Figure 2). 

ID 
Cluster duration # of 

counties 

Adverse tweets 
RR 

Total 

tweets 
start end Obs Exp 

1 3/20/2020 6/3/2020 136 69,842 64,155 1.09 141,413 

2 3/24/2020 6/2/2020 4 46,607 42,209 1.11 93,038 

3 3/16/2020 7/11/2020 2 1,863 1,210 1.54 2,667 

4 3/21/2020 5/3/2020 237 54,120 50,165 1.08 110,575 

5 3/21/2020 6/8/2020 111 71,910 67,510 1.07 148,807 

6 3/28/2020 6/5/2020 128 60,167 56,143 1.07 123,752 
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7 3/25/2020 5/17/2020 421 54,274 51,295 1.06 113,066 

8 3/23/2020 5/17/2020 4 34,368 32,253 1.07 71,092 

9 3/29/2020 5/7/2020 320 42,613 40,413 1.06 89,080 

10 3/26/2020 6/4/2020 53 17,225 16,072 1.07 35,426 

11 3/27/2020 6/2/2020 26 52,550 50,912 1.03 112,221 

12 3/28/2020 6/6/2020 79 8,533 8,020 1.06 17,677 

 

 

Spatial correlates of adverse sentiment 

Figure 3 illustrates the spatial distributions of our predictor variables, which exhibit some 

patterns worth noting: the Ethnic variable exhibits high values in the coastal and southern regions 

of the United States, whereas the central and northern regions are more homogeneous. The 

RUCC variable traces metropolitan regions, which are predominantly found on the coasts, 

whereas rural counties cover most of the Midwest and West. Support for Joseph R. Biden Jr. in 

the 2020 election (Biden) mostly came from urban regions. Notable exceptions include the 

“black belt” in the Southeast [62] and rural counties in Arizona, Colorado and New Mexico.     
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Figure 3. Predictor variable maps. 

 

All chosen variables are significant in the multivariate OLS model (Table 3). It shows that higher 

adverse sentiment is associated with counties that are less heterogeneous (Ethnic variable), less 

rural (RUCC1), had higher support for Joseph R. Biden Jr. (Biden) in the 2020 election, are less 

vulnerable in terms of household composition and disability (SVI 2), but more vulnerable in 

terms of minority status and language (SVI 3), as well as more vulnerable in terms of housing 

type and transportation (SVI 4), have a lower number of primary care physicians (PCP), have a 

lower COVID-19 case rate (Case rate), and had their first death due to COVID-19 early on (1st 

death). The adjusted R-squared of the OLS model is 0.593, which indicates a good model fit. 

The zero-inflated (zi) beta regression model largely echoes the findings of the OLS model, as all 

variables are significant as well, but the estimates are generally higher, indicating a stronger 
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effect of the variables. The Akaike Information Criterion (AIC) for the OLS model is lower than 

for the zi beta regression model (-5711.43 vs. -1795.01), indicating a better fit of the zi model.   

  

Table 3. Multivariate models.  

 OLS zi beta regression 

  β 
Standard 

Error 
  β 

Standard 

Error 
  

Intercept 0.1264 0.0119 *** -2.0366 0.0952 *** 

Ethnic -0.052 0.018 ** -0.4212 0.139 ** 

RUCC1 -0.1102 0.0042 *** -0.6993 0.0345 *** 

Biden 0.2202 0.0137 *** 1.4427 0.1101 *** 

SVI 2 -0.0806 0.0067 *** -0.5355 0.0572 *** 

SVI 3 0.0999 0.0076 *** 0.6847 0.067 *** 

SVI 4 0.0594 0.0072 *** 0.3376 0.0617 *** 

PCP -2.2711 0.6439 *** -43.0811 15.0707 ** 

Case rate -0.0000 0.0000 *** -0.0001 0.0000 *** 

1st death 0.0004 0.0000 *** 0.0041 0.0003 *** 

 
Adjusted R-squared:  0.593  

AIC: -5711.43 

AIC: -1795.01  

 

Note: an asterisk next to a number indicates a statistically significant p-value (p < 0.01):  *** p < 

0.0001, ** p < 0.001, * p < 0.01, . p < 0.05. 

 

Both, the OLS model and the zi beta regression model suffer from trend in the residuals, as 

indicated in their residuals vs. fitted plots (Figure 4). The OLS model residuals exhibit a negative 

relationship with the fitted values (Figure 4 A), which indicates heteroskedasticity, a violation of 

OLS assumptions. The zi beta regression model residuals (Figure 4 C) show a decreasing 

variance with increasing fitted values, also indicating heteroskedasticity. Q-Q plots of both, the 

OLS model (Figure 4 B) and the zi beta regression model (Figure 4 D), show a deviation from 

normality, especially towards the tails of the distribution. In summary, the diagnostics of both, 
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the OLS and the zi beta regression models show violations of regression assumptions, hence the 

validity of the model coefficients presented in Table 3 is questionable.     

  

 

Figure 4. Model diagnostics. A. Residuals vs. Fitted plot of OLS model, B. Q-Q plot of OLS 

model, C. Residuals vs. Fitted plot of zi beta regression model, D. Q-Q plot of zi beta regression 

model.  

 

The smoothed response variable shows variation in risk (proportion of adverse tweets) across the 

study area (Figure 5). It is apparent that major urban areas like New York City, Chicago, Los 

Angeles and San Francisco are clusters of adverse sentiment. Conversely, rural areas in the 

Midwest, the Carolinas and in Maine show little adverse sentiment.   

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 19, 2021. ; https://doi.org/10.1101/2021.07.15.21260543doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.15.21260543
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 20  
 

 

Figure 5. Smoothed response variable. 

 

The OLS model with smoothed response variable shows some differences to the previous two 

models: The Biden and SVI 2 variables are not significant, indicating that political views and 

vulnerability in terms of household composition and disability do not have an effect on adverse 

sentiment. In addition, the PCP variable has reversed it sign from negative to positive compared 

to the previous two models. It means that counties with a higher number of primary care 

physicians observe a higher share of tweets classified as “adverse”. However, its standard error is 

quite high (0.1067) and the variable is only significant at the p < 0.01-level and would not pass a 

more rigorous significance test. The adjusted R-squared (0.1616) indicates a lower model fit, but 

with an AIC of -16886.21, it is preferable over the previous two models due to relatively less 

information loss. 
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Table 4. OLS model with smoothed response variable. 

 β  Standard Error    

Intercept -0.0083 0.0020 *** 

Ethnic -0.0251 0.0030 *** 

RUCC1 -0.0018 0.0007 ** 

Biden -0.0011 0.0023   

SVI 2 -0.0015 0.0011   

SVI 3 0.0254 0.0013 *** 

SVI 4 0.0044 0.0012 *** 

PCP 0.2263 0.1067 * 

Case rate -0.0000 0.0000 *** 

1st death 0.0000 0.0000 ** 

 

Adjusted R-squared:  0.1616 

AIC: -16886.21 

Note: an asterisk next to a number indicates a statistically significant p-value (p < 0.01):  *** p < 

0.0001, ** p < 0.001, * p < 0.01, . p < 0.05. 

 

Model diagnostics also show an improvement of the smoothed response variable over the 

previous models, as there is no apparent trend recognizable in the residuals vs. fitted plot (Figure 

6 A), and while residuals still deviate from normalcy, these deviations are found at the tails of 

the distribution. Because the Moran’s I of model residuals was 0.02 (p=0.04), which means 

barely significant light clustering, we omitted further investigation into spatial regression. In 

summary, the three models allow us to draw a valid picture of the spatial correlates of adverse 

sentiment. 

 

Figure 6. Model diagnostics: OLS model with smoothed response variable. A. Residuals vs. 

Fitted plot, B. Q-Q plot. 
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Discussion 

In this study, we analyzed a dataset of geotagged tweets with focus on adverse sentiment towards 

the spread of COVID-19. We identified spatiotemporal clusters of adverse sentiment in the 

contiguous U.S. at the county-level. In addition, we employed sentiment analysis to find the 

spatiotemporal distribution of adverse sentiment and identified spatial correlates using regression 

models. Our findings indicated that adverse sentiment is increased in counties that are 

racially/ethnically homogeneous, urban, vulnerable due to minority status and language, as well 

as housing type and transportation, have lower COVID-19 prevalence rates, and experienced 

mortality due to COVID-19 at an early stage of the pandemic. To our knowledge, this is the first 

study that uses sentiment analysis, clustering methods, and regression modeling to identify areas 

of adverse sentiment, and to identify associations of such sentiment with area socioeconomic and 

demographic characteristics. 

Using the space-time scan statistic is attractive because it identifies four important cluster 

characteristics: 1) geographic location and extent, 2) temporal duration, 3) statistical 

significance, and 4) strength (relative risk). It retrospectively identifies areas of concern, which 

allows for evaluating policy to slow the spread of COVID-19, as well as communication 
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strategies of health authorities. The clusters we identified cover the entire spectrum of urban to 

rural areas. However, for some urban areas, the central county is not part of the cluster, while its 

surrounding suburban areas are. Examples include New York City, where New York County 

(Manhattan) is not within the cluster, but the neighboring counties are (Kings, Queens and Bronx 

and Nassau Counties). We observe the same pattern for Washington D.C., San Francisco, and 

Los Angeles. This points towards a disparity between central cities and their suburbs, which 

health authorities should be aware of.  

Our regression modelling approach allowed us to confirm robust relationships between 

adverse sentiment and various socioeconomic and demographic predictor variables. Some of the 

results seem counterintuitive at first: 1) the negative association of rurality and adverse sentiment 

was not expected. However, most tweets are sent from urban/suburban places, therefore they 

might not be as representative for population sentiment in rural areas. 2) The coefficients for the 

COVID-19 case rate are significant in our models, but too small to distinguish from zero, given 

the precision of our reporting. For instance, the coefficient for the COVID-19 case rate in the 

zero-inflated beta regression model is -0.0001, which means that adding 100,000 cases leads to a 

0.0001 decrease in the proportion of adverse tweets, a very small difference. Therefore, even 

though the coefficient is significant, we do not think this is a meaningful relationship. The same 

can be said about the timing of the first death, where adding one day leads to an increase of 

adverse tweets of 0.0041. 3) Support for Joseph R. Biden Jr. was not significantly associated 

with adverse sentiment in the final OLS model with smoothed response variable. This can 

possibly be explained by our sole focus on adverse sentiment, and not the subject of the adverse 

sentiment: people on both sides of the political spectrum may express their frustration and anger.  
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Despite the merits of our study, we want to point out the following weaknesses and future 

research directions: 1) While a major strength of the lexicon-based sentiment classification 

approach lies in its simplicity, this method does not allow us to identify more complicated 

language features, such as sentiment shifters (e.g., "I don’t like this car”, is negative, even though 

the word “like” is not; [15]); 2) Twitter users represent a younger demographic group, whose 

sentiments and opinions may not reflect those of the entire population. In addition, urban areas 

tend to be overrepresented in tweet samples [63]. We tried to partially address this issue by 

including the proportion of the population between 18 and 34 (the main demographic who uses 

Twitter) but discarded the variable during our modelling process due to unacceptably high 

correlations with other variables on our model. 3) Our regression modelling approach does not 

consider the temporal dimension (except for the 1st death variable), despite having a 

spatiotemporally complete dataset. Therefore, our current and future research efforts focus on the 

application of spatiotemporally explicit modelling using Bayesian statistics to address the spatial 

and temporal nature of our dataset [64]. Lastly, due to the real-time availability of data, such as 

tweets and various metrics on COVID-19, it is feasible to apply our methods and update the 

results of this study daily. For instance, the space-time scan statistic can be employed in a 

prospective fashion, which identifies current and emerging clusters exclusively [44, 45]. 

Similarly, the regression models can be updated as new data becomes available. 

 

Conclusions 

We utilized a dataset of geotagged tweets to identify the spatiotemporal patterns and the spatial 

correlates of adverse population sentiment during the first two waves of the COVID-19 

pandemic in the United States. We recommend that disease response in counties belonging to 
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clusters of adverse sentiment needs to consider the characteristics we identified in our regression 

modelling approach. The combination of spatial clustering and regression can be beneficial for 

understanding of the ramifications of COVID-19, as well as disease outbreaks in general. Except 

for the original tweets, all our data, software and code are publicly available through a GitHub 

repository1. The dissemination of reproducible research is crucial, as it allows other scientists to 

contribute to our knowledge about the COVID-19 pandemic. Geographers can play a vital role in 

understanding disease outbreaks, as well as their consequences for society. This study is one 

example out of many methods that can be applied in limited time to guide public health 

authorities in their response to spatial and spatiotemporal disease transmission dynamics.         

 
1 [hidden for peer-review] 
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