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Abstract 
Despite successful combination antiretroviral therapy (cART), persistent low-grade immune activation 
together with inflammation and toxic antiretroviral drugs can lead to long-lasting metabolic adaptation 
in people living with HIV (PLWH). The successful short-term cART reported abnormalities in the 
metabolic reprogramming in PLWH, but the long-term consequences are unknown. This study 
investigated alterations in the plasma metabolic profiles by comparing PLWH and matched HIV-
negative controls (HC) from Cameroon and India. We used untargeted and targeted LC-MS/MS-based 
metabolic profiling in PLWH with long-term (>5years) successful therapy in a trans cohorts’ approach. 
Advanced statistical and bioinformatics analyses showed altered amino acid metabolism, more 
specifically to glutaminolysis in PLWH with therapy than HIV-negative controls that can lead to 
excitotoxicity in both the cohorts. A significantly lower level of neurosteroids was observed in both 
cohorts and could potentiate neurological impairments in PLWH. The modulation of cellular 
glutaminolysis promoted increased cell death and latency reversal in pre-monocytic HIV-1 latent cell 
model U1, which may be essential for the clearance of the inducible reservoir in HIV-integrated cells. 
Our patient-based metabolomics and in vitro study, therefore, highlight the importance of altered 
glutaminolysis in PLWH that can be linked accelerated neurocognitive aging and metabolic 
reprogramming in latently infected cells.  
 
Introduction 
Combination antiretroviral therapy (cART) can effectively block replication of human 
immunodeficiency virus type-1 (HIV). However, persistent low-grade immune activation together with 
inflammation, despite successful long-term treatment, and toxic antiretroviral drugs can lead to long 
lasting metabolic flexibility and adaptation in people living with HIV (PLWH) (1-3). Metabolic 
alterations have earlier been reported in HIV infection in treated and non-treated PLWH (1, 4-6). 
Furthermore, the metabolic adaptations associated with HIV infection are highly representative of 
immune dysregulation and inflammation related to accelerated aging (7, 8). However, there is a dearth 
of evidence about metabolic dysregulation due to long-term successful treatment in PLWH.  
HIV regulates two essential immuno-metabolic pathways in the cell, namely glycolysis and 
glutaminolysis, to sustain the availability of biomolecules needed for viral replication in a cell-type 
dependent manner (9).  The immune system is also adversely affected by HIV persistence and cell-to-
cell spread that permits viral replication, despite on cART(10). This can further trigger transient or 
persistent metabolic changes that drive immune-senescence and accelerated aging in PLWH. Moreover, 
studies have shown altered glutaminolysis with high plasma glutamate levels in PLWH and that the 
modified glutaminolysis is responsible for the late immune recovery following cART (4). 
In our recent untargeted metabolomics study on the COCOMO cohort from Denmark, we reported 
alterations in the amino acid (AA) metabolism as a central characteristic of PLWH with median of 13 
years of therapy. This alteration was also more prominent in PLWH with metabolic syndrome (MetS) 
(3). However, reproducibility of metabolomic studies is challenging due to variability in metabolites 
linked with environmental factors and population-based heterogeneity in diet, gut microbiome, and 
lifestyle choices such as smoking or alcohol that have crucial impacts on individual metabolite 
composition and concentration (11-13). Finally, pre-analytical sampling errors, methodological errors, 
and informatics can influence the overall outcome and lead to cohort-specific effects. 
This study investigates alterations in the plasma metabolic profiles by comparing PLWH on long-term 
cART and matched HIV-negative controls (HC) in two cohorts from low- and middle-income countries 
(LMIC), Cameroon and India, respectively, using untargeted metabolomics. We performed advanced 
statistical, bioinformatics and machine learning algorithms to identify the commonality between the 
cohorts associated with the cART in PLWH. We also used targeted metabolomics in a larger sample 
size of treatment naïve and experienced PLWH and HC from Cameroon and India to further validate 
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our findings. Finally, to identify the metabolic state of the lymphocytic and pro-monocytic HIV-1 latent 
cell models, we performed in vitro studies by modulating the critical metabolic pathways identified in 
PLWH on cART in the presence and absence of the cART regimens. Our study provides a 
comprehensive metabolic profile of PLWH on cART, while HIV-latency in cellular models can shed 
light on the metabolic reprogramming in long-term successfully treated HIV infection and its potential 
role in accelerated aging in PLWH. 
 

 
 

 
Results 

Clinical Characteristics  
We used a cohort of PLWH in Cameroon on cART (n=24, with a median duration of treatment of 11 
years [IQR 8.00-13.25]) and HIV-negative controls (HC, n=24) (Table 1). All the patients were on a 
TDF/3TC/EFV-based regimen, non-smokers and omnivores. The only clinical parameter that achieved 
statistically significant difference (p = 0.007) between HC and cART patients was exercise. 
Impaired amino acid metabolism in PLWH on cART in the Cameroon Cohort: 
In plasma untargeted metabolomics, a total of 841 metabolites were detected, of which 46% (390/841) 
were lipids, 22% (188/841) were amino acids (AA) and 17% (143/841) were xenobiotics (Figure 1A). 
A low percentage of the metabolites were shown to be associated with environmental factors; diet, 
genetics, microbiome, lifestyle, and time of sampling as reported [11] (Figure S1). Out of all the 
detected metabolites, 122 metabolites differed significantly between PLWH on cART and HC (Mann-
Whitney U test, p<0.05) of which 48% belonged to lipids (59/122) and 20% to AA (24/122). After 
correcting for multiple comparisons, 42 metabolites were statistically significant between PLWH on 
cART and HC (False discovery rate, FDR<0.1) (Figure 1A). Dimensionality reduction using these 42 
metabolites showed an apparent clustering between HC and cART patients (Figure 1B). Among the 42 
metabolites, 45% (19/42) were less abundant in PLWH on cART compared to HC. To identify 
mechanisms associated with HIV and cART, the differentially abundant metabolites having a Human 
Metabolome Database (HMDB) annotation (herein Mann-Whitney U test, p<0.05) were submitted to 
metabolite set enrichment analysis (MSEA) using Ingenuity Pathway Analysis (IPA). Based on the IPA 
(Z-score >2, FDR<0.05), the top identified pathways were concentration of lipids (n=15), synthesis of 
lipids (n=13), and production of reactive oxygen species (ROS) (n=12) (Figure 1C). The commonality 
of these pathways was the presence of glutamate while other AA such as arginine, cystine, and 
methionine were present in at least one pathway. These results showed a shift in lipid biosynthesis, 
immune activation of blood cells, and altered oxidative stress [production of reactive oxygen species 
(ROS) and hydrogen peroxide]. Metabolites within lipid metabolism exhibited the largest difference in 
PLWH on cART compared to HC (FDR<0.1) (Figure 1D). In this cluster, the changes appeared 
heterogeneous with a higher abundance of 7 metabolites and lower abundance of 12 metabolites in 
PLWH. Furthermore, AA, energy, and nucleotide metabolism were highly interlinked and upregulated 
in PLWH compared to HC. To complement the MSEA results, a balanced Random Forest (RF) 
algorithm was trained to predict HC and cART status of each metabolite based on Metabolon terms. 
Then, a permutation feature importance was applied to this machine learning technique. This analysis 
identified AA followed by lipids as the top pathways (Figure 1E) thereby confirming the importance of 
AA during cART in PLWH. 
Altered neurosteroids as a common factor for the two cohorts from LMIC. 
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To identify common biomarkers associated with HIV status and the impact of cART and strengthen our 
study, we combined the data from our Cameroon cohort with untargeted metabolomics analysis from an 
Indian cohort. The study design of the Indian cohort was similar using advanced bioinformatics and 
statistical analysis. Initially, we took the overlapping result of a linear classification model (PLS-DA), a 
machine learning model, RF and Mann-Whitney U test, performed in the two cohorts separately. The 
two separated RF models had a predictive accuracy of 97.9% in Cameroon and 100% in Indian cohort 
(Figure S2) after 10-fold cross-validation. We identified 14 (Mann-Whitney), 9 (PLS-DA) and 6 (RF) 
biomarkers differing between HC and ART in both Cameroon and Indian cohorts (Figure 2A). The 
overlap between all three methodologies identified six common metabolites to all methods (Figure S3).  
After removing the antiviral drug efavirenz, five metabolites were overlapping between the two 
cohorts: 5α−androstan−3α,17β−diol monosulfate, androsterone sulfate, epiandrosterone sulfate, 
metabolonic lactone sulfate, and methionine sulfone (Figure 2B). All the identified metabolites 
exhibited a similar trend between HC and cART in both cohorts thereby confirming their relevance. 
Furthermore, after correcting for confounders using multivariate linear regression, all metabolites were 
statistically significant (Figure S4, Table S4-S5). To further investigate the interactions of the 
metabolites related to HIV status, we performed a metabolite co-abundance network analysis in the 
Cameroon cohort based on significant positive pairwise correlation (Spearman, FDR<0.05) and used 
the Indian cohort for validation of the results. The network contained six communities found using 
Leiden algorithm (Figure 2C). The most central community (community 5, with the highest mean 
degree) showed 110 metabolites where the majority were lipids (85%), showing potential lipid 
dysregulation in cART (Figure 2D). Interestingly, four neurosteroids out of the five potential 
biomarkers; 5α−androstan−3α,17β−diol monosulfate, androsterone sulfate, epiandrosterone sulfate and 
metabolonic lactone sulfate, were in the same community (community 4) containing a total 123 
metabolites. Metabolites from this community were less abundant in PLWH on cART compared to HC 
while community 6, containing glutamate, showed higher abundance. To validate the robustness of our 
complement biomarkers discovery approach, we used the biomarkers and their first neighbors from the 
co-expression network to separate HC and PLWH on cART in the Cameroon cohort. Based on 
hierarchical and consensus clustering, segregation of HC and PLWH on cART was observed in the 
Cameroon cohort (Figure 2E, left, Figure S5). As an independent validation, we performed a similar 
clustering in the Indian cohort (Figure 2E, right) using the same metabolite set and found an even better 
separation between HC and PLWH on cART than in the Cameroon cohort. Therefore, our data 
identified a set of correlated biomarkers, mainly neurosteroids, that were associated with PLWH on 
cART in two independent cohorts that could be linked to potential neurological impairments. 
Targeted metabolomics in a larger cohort identified altered amino acid metabolism in two 
independent cohorts with differential mechanisms. 
To validate the importance of AA (as observed in Figure 1), we performed targeted metabolomics for 
AA in 90 PLWH on cART, 78 HC, and 45 untreated HIV-infected patients with viremia from 
Cameroon (n=123) and India (n=90). Even though the samples were run together, there was a clear 
cohort effect (Figure S6). Therefore, the subsequent analyses were performed on the cohorts separately. 
Eight AA were altered in the Cameroon cohort and 13 AA were altered in the Indian cohort between 
PLWH on cART and HC. Among these, 6 AA were overlapping between both the cohorts (Figure 3A, 
Figure S7), of which five essential AA including methionine, phenylalanine, threonine, valine, and 
tryptophan were significantly lower (FDR < 0.1) in PLWH on cART (Figure 3B-F). Only glutamate 
was significantly higher in PLWH on cART compared to HC in both cohorts. Interestingly, glutamate 
was significantly higher in untreated HIV-infected PLWH than HC in the Indian cohort but not in the 
Cameroon cohort (Figure 3G). Taken together these results indicate the importance of glutamate and 
AA in PLWH on cART. To assess the size of the difference over significance, the effect size calculation 
was performed based on sample mean difference (ART-HC) using Glass delta (D) (Table S6). Overall, 
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similar direction of the effect was observed in both cohorts (Figure 3H-I). Glutamate tests were 
medium (D = 0.62) and small (D = 0.25) in Cameroon and Indian cohort, respectively,  and showed a 
greater mean in ART compared to HC. The largest effect sizes were observed in the Indian cohort on 
tryptophan (D = -1.07), serine (D = -0.84) and methionine (D = -0.81) (Figure 3I). Overall, these results 
indicate alterations in glutaminolysis as a common phenomenon in long-term treated individuals and 
that glutamate, glutamine and GABA plays an important role in metabolic reprogramming. 
Role of altered glycolysis and glutaminolysis in HIV-latency cell models  
We observed alterations in the AA metabolism in PLWH on cART. Therefore, we aimed to study the 
effect of glycolysis and glutaminolysis during HIV latency, both of which are important for supplement 
and utilization of AA and energy production by the TCA cycle (Figure 3E). During cART, HIV persists 
in latent reservoirs both from monocytic and lymphocytic lineages. Earlier studies have shown how 
metabolic regulation may be a key factor regulating HIV infection where alterations in glycolysis have 
a large effect (14, 15). To characterize alterations in cellular metabolism during the steady-state of 
latent HIV infection, we performed quantitative proteomic analysis using LC-MS/MS in pro-monocytic 
latent cell model U1, and lymphocytic latent cell model J-lat10.6 together with their respective 
uninfected parental cell lines, U937 and Jurkat. The steady-state modifications in the cell lines upon 
entering HIV latency showed significant alterations in the biosynthesis of AA and TCA cycle (Figure 
4A). First, we used 6-diazo-5-oxo-L-norleucine (DON) and 2-deoxy-D-glucose (2-DG) to block 
glutaminolysis and glycolysis respectively, followed by a latency reversal agent prostratin to 
understand the roles of these pathways during latency reversal in J-Lat10.6 and U1 cell lines. Both 
latency cell models, J-Lat10.6 and U1 exhibited a decrease in viability when treated with 2-DG or 
DON compared to Jurkat and U937 cells (Figure 4B). As expected, prostratin, a protein kinase C 
agonist, activated the latent reservoir in both cell lines (Figure 4C, 4D). Interestingly, blocking 
glutaminolysis using DON alone was able to activate the latent reservoir in U1 cells (Figure 4D) but 
not in J-Lat10.6 cells (Figure 4C). To further explore the alterations concomitant with blocking 
glutaminolysis, we performed quantitative proteomic analysis using LC-MS/MS in U1 and U937 cells 
following treatment with DON, prostratin, and DON+prostratin. Because differences in the steady-state 
protein levels are observed between the two cell lines, we corrected the effect of U937 in U1 cells and 
performed differential abundance analysis and protein set enrichment analysis (Figure 4E). Addition of 
prostratin alone in U1 cells showed alterations in KEGG metabolism pathways such as carbon 
metabolism, TCA cycle and AA metabolism (p<0.1, Figure S8), which could be linked to latent HIV 
reservoir activation. Exposure to DON showed dysregulation of several metabolic pathways including 
glycolysis/gluconeogenesis, TCA cycle, sulfur metabolism, valine, leucine, isoleucine degradation and 
oxidative phosphorylation (OXPHOS). Several proteins of OXPHOS complexes I, III and IV, displayed 
lower abundance in U1+DON compared to U1 control cells (Figure 4F). To confirm this, we performed 
western blot using human OXPHOS antibody cocktail that detects the components of complex-V 
(ATP5a), complex-III (UQCRC2), complex-II (SDHB), complex-IV (COX II) and complex-I 
(NDUFB8). Since we could not differentiate complex -I and -IV in all our western blots, we considered 
them together in our analysis. While we did not observe any statistically significant differences in the 
protein levels of the OXPHOS complexes, visible decrease in expression of complexes -III, -II, -I and -
IV but not complex-V were observed upon DON treatment both in presence and absence of prostratin 
(Figure 4H). Overall, our experimental data correlated with the proteomics data and is suggestive of 
suppression of OXPHOS upon blocking glutaminolysis in HIV latently infected promonocytic cells. 
Since changes in OXPHOS are often linked to unbalanced redox homeostasis, we measured the total 
cellular ROS levels in U1 cells following treatment with prostratin, DON and DON+prostratin. We 
observed a decrease in cellular ROS levels in the presence of prostratin compared to the control. 
However, inhibition of glutaminolysis by DON did not alter ROS levels compared to control cells 
(p>0.05, ns).  Conclusively, it can be postulated that inhibition of glutaminolysis can compensate for 
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the effect of HIV latency by altering oxidative stress. Therefore, ROS may not be the obligate driver of 
the metabolic reprogramming in the cell models of HIV-latency. 
2-DG and DON modulates intracellular metabolite levels independent of ART regimens in U1 
cells 
Thereafter, we sought to evaluate the effect of 2-DG and DON during latency reversal in the presence 
of cART regimens; tenofovir disoproxil fumarate (TDF) + lamivudine (3TC) + efavirenz (EFV) 
(TDF+3TC+EFV), and zidovudine (AZT) + 3TC + EFV (AZT+3TC+EFV) prevalently used in low-
income countries. Cellular cytotoxicity of cART regimen was evaluated using Alamar blue assay 
(Figure S8). In our promonocytic latency model, U1, prostratin increased HIV gag protein expression 
independent of the cART regimens. However, both 2-DG and DON in combination with prostratin 
reduced the expression of gag (Figure 5A). The increased gag expression by DON alone, as observed 
earlier, was detected independently of cART. Furthermore, to understand how 2-DG and DON 
modulate intracellular metabolite levels we used metabolite measurement kits to measure glucose, 
lactate, and glutamate levels during latency reversal under cART pressure in U1 cells (Figure 5B). 
Similar trends could be seen for the measured metabolites both in the presence and absence of cART 
(Figure 5C). Intracellular glucose levels decreased during prostratin treatment while 2-DG and DON 
increased glucose levels both with and without prostratin compared to control. Intracellular lactate 
levels were reduced during prostratin treatment both with and without the inhibitors compared to 
control. Interestingly, when treating U1 with prostratin and DON, lactate levels significantly increased 
compared to DON alone, independent of cART. Furthermore, prostratin increased intracellular 
glutamate levels both alone and with 2-DG or DON in absence of cART while under cART pressure the 
increase was only seen using prostratin or 2-DG alone. As 2-DG reduced glutamate levels, this increase 
could be caused by restitution of glutamate levels by prostratin.  

 
Discussion  
Our study identified altered plasma AA profiles in two HIV cohorts of PLWH, from Cameroon and 
India, on successful cART. The common factor in this trans-cohort study was lower level of essential 
AAs methionine, phenylalanine, threonine, valine, and tryptophan and elevated glutamate in PLWH on 
cART compared to HC. Significantly lower levels of neuro-steroids like 5α−androstan−3α,17β−diol 
monosulfate, androsterone sulfate were observed in both cohorts. Modulation of cellular glutaminolysis 
increased cell death and latency reversal in promonocytic HIV latency cell model U1. Therefore, our 
study highlights the importance of altered glutaminolysis in PLWH that can be linked to accelerated 
neurocognitive aging and metabolic reprogramming in latently infected cells.    

The metabolic network of AA is co-regulated and highly complex. Therefore, we conducted a trans-
cohort metabolic profile analysis using cutting-edgestatistical analysis, machine learning algorithms, 
together with network analysis to identify metabolic features in PLWH. Our findings indicated an in-
depth dysregulation of AA metabolism in long-term treated PLWH. Earlier studies on untreated and 
short-term treated PLWH (up to 36 months) on smaller cohorts from USA, Netherlands, and Spain 
have shown disruption of AA metabolism during infection (16-18). In our study, we showed that AA 
dysregulation is a persistent feature even with more than five years of treatment. This result is in line 
with our recent large-scale metabolomics study from the Copenhagen Comorbidity in HIV-infection 
(COCOMO) cohort with a median duration of 13 years treatment. In the COCOMO cohort we 
observed altered AA metabolism in PLWH both with and without metabolic syndrome (MetS) 
compared to the HC. Alterations in AA such as tryptophan, glutamine, glutamate, phenylalanine, 
arginine, aspartate, and threonine have been closely linked to HIV and cART-induced metabolic 
complications as well as oxidative stress (19, 20). 
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In our current study, we observed increased plasma levels of glutamate in PLWH on cART compared to 
HC in both cohorts while it was only in the Indian cohort that treatment naive PLWH had increased 
glutamate levels. Interestingly, in the Cameroon cohort treatment naive PLWH had median glutamate 
levels like HC. One of the potential reasons could be that pre-therapy PLWH from India had a much 
lower CD4 count [median (IQR): 300.5 (213.2-527.0) cells/uL] compared to Cameroon cohort [median 
(IQR): 495.0 (382.0-558.0) cells/uL]. Possibly a severe depletion of CD4+ T-cells can influence the 
metabolic environment and cause detrimental effects. This hypothesis is further supported by our 
earlier studies showing PLWH with MetS have significantly lower nadir CD4+ T-cell count (3).   
Glutamate displays remarkable metabolic versatility in several metabolic pathways including both AA 
synthesis as well as degradation. However, glutamate-mediated excitotoxicity is the primary 
contributor to age-related neurodegenerative disorders (21). Elevated plasma glutamate in PLWH may 
cause loss of lymphocyte and macrophage function (22). The primary source of extracellular glutamate 
in HIV infection includes release of intercellular glutamate due to cell death, macrophages/microglia 
activation, and disrupted neurotransmitter clearance (23). Metabolic tracer experiments demonstrated 
considerable changes in the glutamine metabolism with increased secretion of glutamine-derived 
glutamate from HIV-infected CD4+ T-cells (24). An earlier study also reported that HIV infection 
enhances glutamate production in human monocyte-derived macrophages that may be an important link 
to HIV-associated dementia (25). In pre-clinical studies of EcoHIV Murine Model of HIV-associated 
neurocognitive disorders (HAND), the inhibition of the glutaminase (GLS) with DON or a DON 
prodrug JHU083 reversed the impaired cognitive function, indicating the role of the glutaminolysis in 
HAND (26, 27). In our study, we observed increased plasma glutamate in both the cohorts and low 
neuroactive steroids in PLWH with therapy compared to the HC. A recent study in PLWH with high 
and low depressive symptoms also reported a reduced level of neuroactive steroids in participants with 
high depressive symptoms (28) indicating that depression severity associate with lower levels of 
neuroactive steroids. Interestingly, neuroactive steroids have been shown to regulate glutamatergic 
neurotransmission (can bind to receptors for glutamate) as well as behavioral actions (29). Taken 
together, it can be hypothesized that increased plasma glutamate and decreased neurosteroids in PLWH 
following successful therapy have the potential to develop neurocognitive impairment and depressive 
disorders that may need the clinical intervention.  
Metabolic reprogramming occurs to ensure energy availability and to elicit an appropriate immune 
response upon pathogen encounter. Susceptibility to HIV is partially regulated by activation stage and 
the metabolic activity of a cell where elevated OXPHOS and glycolysis favors infection in 
lymphocytes (30, 31). Even as the main HIV reservoir is believed to reside in long-lived lymphocytic 
cells, latently infected monocytes and macrophages can persist over time and facilitate spread during 
cART. In this study, we show the effect of inhibition of glutaminolysis on latent reservoir in monocytic 
cells. On a metabolic level, this results in a reduction of proteins involved in OXPHOS while 
increasing proteins involved in glycolysis, proteinogenic branched-chain AA degradation (valine, 
leucine, and isoleucine) and TCA cycle. Previous studies have shown increased glutamine metabolism 
in latently infected cells (32-34). Specifically, latently infected macrophages use glutaminolysis as a 
primary energy source in addition to fatty acid and glucose used by their uninfected counterparts (35). 
Furthermore, macrophages carrying latent HIV have a compromised TCA cycle that induces lipid 
accumulation and OXPHOS and enlarged mitochondrion (35). In our study, glutaminolysis inhibition is 
accompanied by altered metabolite levels with increased intracellular glucose and reduced glutamate 
and lactate levels irrespective of cART treatment. Uptake of glucose through Glut1 regulates 
susceptibility of HIV-1 and lymphocytes carrying latent HIV-1 have also been proposed to express 
OX40 together with Glut1 (36, 37). Elevated glycolytic activity, Glut1 expression and immune 
activation are also seen in people living with HIV and factors needed for virion production (38, 39). 
Herein, we did not see any effect on latency reversal when inhibiting glycolysis. Therefore, while 
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glycolysis is an important factor for HIV-1 entry and replication, latency reversal is somewhat 
dependent on glutaminolysis. Furthermore, proteins involved in mitochondrial respiration were more 
abundant in latent monocytic U1 cells than the parental U937 cell line indicating that OXPHOS 
proteins may play a role in HIV persistence. Therefore, a unique metabolic environment may be 
induced by the virus to maintain a transcriptionally inactive state. By inhibiting glutaminolysis, cellular 
metabolism can be altered and thereby force transcriptional activation of latent HIV-1. 
In conclusion, our present study based on cohorts (India and Cameroon) indicated altered AA 
metabolism and more potentially a switch in glutaminolysis as the alternative pathway for energy 
production following a long-term antiretroviral therapy, corroborating our earlier study (3). Altered 
glutaminolysis with long-term treatment and its association with metabolic syndrome (3), diminished 
immune recovery (4), and glutamate excitotoxicity mediated neuro-cognitive impairments can lead to 
increased co-morbidities and accelerated aging in PLWH with successful therapy.In addition, a 
decrease in neurosteroids causes major depressive syndrome (28) leading to diminished quality of life 
despite successful treatment. Our study also provided evidence displaying the cross-talk between 
glutaminolysis, TCA cycle and OXPHOS in HIV-latent cell model being more specific to pro-
monocytic U1 cells that potentially is linked with apoptosis as well as latency reversal. Increased 
knowledge about the co-regulation of interconnected metabolic pathways in the context of HIV 
infection and therapy can provide new targets for future therapeutic interventions both for improving 
metabolic health as well as other metabolic disorders in PLWH. It can also reveal a potential for 
clearing the latent reservoir by modulating the cellular metabolic pathways as a novel strategy for 
functional cure.  
 
Methods 

Study population: This study included three groups of individuals in Cameroon: HIV-1 infected 
individuals on combination ART (cART, n=50), untreated HIV-1 infected individuals with viremia 
(treatment-naive, n=25) and HIV-negative individuals (HC, n=50). The study groups are age- and BMI- 
matched with comparable gender proportions between males and females. Whole blood and plasma 
were collected from Yaounde University Teaching Hospital, Cameroon. Additionally, participants from 
an Indian cohort were included PLWH on cART (n=41), treatment naïve (n=20), and HC (n=30), as 
reported earlier (2). 
Cell lines: For this study latency cell models J-Lat10.6 (AIDS reagent program) and U1 (AIDS reagent 
program) were used together with their respective parental cell lines Jurkat (AIDS reagent program) 
and U937 (Kindly provided by Helena Jernberg Wiklund, Uppsala University). 
Untargeted and targeted metabolomics: Plasma untargeted metabolomics was performed at 
Metabolon, Inc. (North Carolina, USA) on a selection of individuals from the Cameroon cohort 
including HC (n=24) and cART (n=24), as previously described (1, 40). In a larger cohort targeted 
metabolomics for amino acids was performed using LC-MS/MS method with reference amino acids as 
control at the Swedish Metabolomics Centre (Umeå, Sweden). For detailed method and quality control 
please see supplementary method. Untargeted proteomics was performed at the Proteomics 
Biomedicum facility, Karolinska Institutet as described by us recently (41).  
Bioinformatics and statistical analysis:  
Statistics: The Non-parametric Mann-Whitney U, Spearman correlations as well as linear regression 
were performed using R (https://www.r-project.org/). Machine learning models were built using R 
packages Boruta for feature selection (42), randomForest with 10-fold cross validation, and python 
scikit-lean (43) and verified using confusion matrices and the Area under the Receiver Operator Curve 
(ROC). PLD-DA plot was made using ropls (44). For proteomics, preprocessing was performed as 
described previously (41) and differential abundance analysis using R package LIMMA (45) using 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.14.21260539doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.14.21260539
http://creativecommons.org/licenses/by-nc-nd/4.0/


following design : [~ cell*p + cell*don + cell:p:don]. False discovery rate (FDR) was applied for 
multiple comparisons correction. Effect sizes were calculated using the d_glass function from the R 
package effectsize to compensate for relevant differences in the standard deviations. 
Pathways and clustering analysis: Pathway Analysis software (IPA) software (QIAGEN Inc., 
https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis) and Metabolon terms 
were used in metabolomics data for pathway analysis. For proteomics, curated Metabolic KEGG 
Human 2019 libraries and enrichr function from gseapy python package were applied (version 0.10.3; 
https://github.com/zqfang/gseapy). Cutoff for pathways were set to FDR<0,05. For association 
analysis, significant positive correlations network (Spearman, FDR < 0.05) was built using python 
igraph (https://igraph.org/python/). Community analysis was done using Leiden algorithm and most 
central community found using mean degree (46). Complete methodology was described before (41). 
Cluster analysis was conducted using R package ConsensusClusterPlus with following metrics [algo : 
hierarchical clustering, distance : spearman, pitem : 0.8, reps : 1000](47). 
Visualization: Dimensionality reduction was performed using UMAP (48). R package ggplot2 (49), 
ggalluvial (50), nVennR (51), VennDiagram (52), UpsetR (53) and Complexheatmap (54) were used to 
generate figures. Cytoscape ver 3.6.1 was used for network representation (55). 
Laboratory Experiments: 
Cytotoxicity assays: Toxicity of cART regimens (TDF+3TC+EFV and AZT+3TC+EFV) or 2-DG and 
DON were evaluated using AlmarBlue assay (Invitrogen) over the course of five days, and 48h, 
respectively, according to the manufacturer's protocol. 
Flow cytometry: Activation from latency was measured using GFP (J-Lat 10.6) or HIV-1 core antigen-
FITC, KC57 (Beckman Coulter) staining (U1) complemented with Near-IR viability (Invitrogen). 
Cellular ROS was measured using CellROXTM Deep red Flow Cytometry Assay Kit (Invitrogen), 
according to the manufacturer's protocol. Experiments were run on Fortessa flow cytometer (BD 
Bioscience) and analyzed using FlowJo 10.6.2 (TreeStar Inc).  
Intracellular metabolite measurement: Intracellular metabolites were measured using Glucose-
GloTM Assay, Lactate-GloTM Assay, and Glutamate-GloTM Assay (Promega) according to the 
manufacturers protocol.  
Determination of Mitochondrial OXPHOS: 
U1 and U937 cells (seeding density: 10x106 cells/well) were either left untreated for 48h or treated with 
DON (12.5µM for 48h), prostratin (untreated for 24h followed by 6µM prostratin for 24h), or 
DON+Prostratin (12.5µM DON for 48h and 6µM prostratin for last 24h). At 48h, activation of HIV 
was measured by intracellular staining of HIV-1 core antigen-FITC, KC57 as mentioned earlier. Cells 
were harvested, washed in PBS, and centrifuged. Cell pellets were processed for mitochondrial 
extraction using Mitochondria Isolation Kit for Cultured cell (Thermo Scientific) using reagent-based 
method as per manufacturers guidelines, followed by measuring the OXPHOS suing the total OXPHOS 
Human WB antibody cocktail (Abcam) with mitochondrial loading control VDAC using the antibody 
VDAC clone B-6 (Santa Cruz Biotechnology). Relative protein quantification was performed using 
ImageLab version 6.0.1 (Bio-Rad Laboratories Inc), results analyzed using Mann-Whitney U test or 
unpaired t-test and visualized using GraphPad Prism 8.4.3 (significance p<0.05). All laboratory 
experiments were performed in three independent replicates. Analysis was performed using un-paired t-
test or Mann-Whitney U test and visualized using GraphPad Prism 8.4.3 (significance p<0.05). 
Study approval : The Cameroon study was approved by the Cameroon National Ethics Committee for 
Human Research with Ethical clearance NO2019/08-198-CE/CNERSH/SP. The Indian study was 
approved by the Institutional Ethics Committee of the National Institute for Research in Tuberculosis 
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(NIRT IEC No: 2015023) and the Institutional Review Board of the Government Hospital for Thoracic 
Medicine (GHTM-27102015) Chennai, India. Ethical approval by Etikprövningsmyndigheten 
(Sweden) was waived off because of the anonymized data (Dnr 2019-05086). Written informed consent 
was obtained from all study participants prior inclusion and kept at the respective sites. 
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Figures and Tables 
 

 
Figure 1: Untargeted metabolomics in the Cameroon Cohort highlight substantial metabolic 
alterations in cART compared with healthy controls (A) Bar plots representing the proportion of 
super pathways and number of associated metabolites in total detected metabolites (n=841), 
metabolites with differential abundance between HC and PLWH on ART with p<0.02 (Mann-Whitney 
U Test, n=122) and FDR<0.1 (Mann-Whitney U Test, n=42). (B) UMAP visualization of 48 samples 
using metabolites differing between HC and PLWH on ART (Mann-Whitney U Test, FDR<0.1, n=42). 
Samples are colored by condition (light blue=HC; dark blue=cART). (C) Sankey Plot illustrating the 
most important contribution to the flow of glutamate associated pathways together with metabolites 
that are altered in cART patients. (D) Network of the metabolites significantly differing between HC 
and cART (Mann-Whitney U Test, FDR<0.1, n=42). Colored rectangular nodes represent super 
pathways, grey circles subpathways and colored circles single metabolites. The color gradient was 
applied depending on log2FC for each metabolite from green (decreased in cART) to red (increased in 
cART). The size of the bubble is proportional to log2FC. Edges connect each metabolite to its 
respective subpathway and each subpathway to their respective super pathway. (E) Bubble plot 
showing importance of Metabolon pathways in the prediction of metabolite association with cART 
status (left). Terms represented at the top of the figure are the most important for prediction. (RF, 
estimators: 500, class weight: balanced). Associated confusion matrix and classifier metrics are 
represented on the right. 
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Figure 2: Identification of biomarkers associated with HIV-status and impact of cART compared 
to HC. (A) A 4-dimensional, quasi-proportional Venn diagram showing the number of overlapping 
metabolites (N = 6) differing HC/cART from three methodologies (Mann-Whitney U Test, RF and 
PLS-DA) in Indian and Cameroon cohort. Analysis was performed separately in Indian and Cameroon 
cohorts. (B) Boxplots of significant biomarkers shared by Indian and Cameroon patients: androsterone 
sulfate, epiandrosterone sulfate, metabolomic lactone sulfate, 5-α-androstan-3α,17β-diol monosulfate 
and methionine sulfone. In all the comparisons FDR<0.001 (C) Global association analysis network 
and identified communities. Potential biomarkers and glutamate are indicated. (D) Bar plots 
representing proportion of super pathways and number of associated metabolites in communities 
(n_c1=165, n_c2=145, n_c3=143, n_c4=123, n_c5=110, n_c6=91). (E) Consensus matrices of potential 
biomarkers and first neighbors in HC and cART. Data were log-transformed and z-score transformed. 
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Figure 3: Targeted amino acid in the larger HIV-1 cohorts from Cameroon and India. (A) Venn 
diagram representing the overlap of AA significantly differing in HC compared to cART between 
Cameroon and Indian cohort. (B-G) Box plots showing the abundance of six significant AA between 
HC and cART (Mann-Whitney U test, FDR<0.1) (* FDR<0.1, ** FDR<0.05, *** FDR < 0.01): 
methionine (B), phenylalanine (C), threonine (D), tryptophan (E), valine (F), and glutamate (G) in HC, 
and PLWH on cART and treatment-naive patients from Cameroon and Indian cohorts. (H and I) 
Scatter plot of AA mean difference by effect size (Glass d) in Indian (H) and Cameroon (I) cohorts. 
Dots are colored based on effect size (red = large, green = medium, blue = small). (J) Schematic 
representation of the altered AA linked with the key metabolic pathways. 
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Figure 4: Effect on cellular metabolism in latency cell models. (A) Steady-state metabolic 
alterations in the HIV-latency cell models, J-Lat10.6 and U1, compared to Jurkat and U937, 
respectively. MSEA using the KEGG Metabolism with FDR<0.05 shown as bubble plots. Size of the 
bubble represents the number of proteins and the number, the rank of the pathway based on FDR. (B) 
Viability of latency cell models J-Lat10.6 and U1 compared to respective parental cell lines Jurkat and 
U937 during 48h DON or 2-DG treatment measured using flow cytometry. (C, D) HIV latency 
activation using prostratin (6μM) together with DON (6.25μM) or 2-DG (10mM) in J-Lat10.6 cell line 
(C) and DON (12.5μM) or 2-DG (1.25mM) in U1 cell line (D). (E) Upset plot of proteins with 
differential abundance between control vs. DON (C/DON-Ctrl), control vs. prostratin (Pros-Ctrl), 
prostratin vs. DON+prostratin (P/DON-Pros) and DON+prostratin vs. DON (P/DON-C/DON) in U1 
cells corrected for U937 cells. (F) Network of the proteins differing significantly between U1 and DON 
treated U1 (FDR<0.1, n=758). Color gradient was applied on log2FC from green (decreased in U1-
DON) to red (increased). (G) Heatmap showing OXPHOS proteins levels in U1 treated with DON and 
prostratin (n=18). Proteins were selected based on comparison U1 vs U1-DON (LIMMA, FDR<0.1) 
and their associated with OXPHOS KEGG pathway. Proteins were separated based on their complexes 
(from I to V). (H) Western blot analysis of OXPHOS proteins during DON treatment in U1 cells (left). 
Representative blot of three independent experiments is shown here. Quantification of western blot 
represented as bar graphs represented with mean±SEM (right). (I) Measurement of ROS in latency cell 
model U1 during DON treatment. Statistical analysis was performed using unpaired t test or Mann-
Whitney U test (* p<0.05, and ** p<0.001) and represented with mean±SEM. All experiments were 
performed in three independent replicates. 
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Figure 5 Effect of cART regimens on HIV activation during inhibition of glutaminolysis: Effect of 
cART regimens (TDF+3TC+EFV and AZT+3TC+EFV) in combination with 2-DG and DON on HIV 
latency activation in U1 cells. (A) Production of HIV gag during cART treatment in the presence of 
metabolic blockers 2-DG or DON. (B) Schematic showing the effect of 2-DG and DON on metabolic 
processes. (C) Effect of cART regimens on intracellular glucose, lactate, and glutamate levels when 
treated with 2-DG or DON during latency activation. All experiments were performed in three 
independent replicates. Statistical analysis was performed using Mann-Whitney U test (* p<0.05, and 
** p<0.001) and represented as mean±SEM. 
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Table 1. Clinical and demographic information. 
 
  Control PLWH on cART p-value 
Number 24 24  
Age in years, mean (95% CI) 48.00 (45.59-50.41) 47.54 (42.54-52.5) 0.86* 
Gender   1** 
Male, n (%) 12 (50) 12 (50)  
Female, n (%) 12 (50) 12 (50)  
CD4 current, median (IQR)  753.5 (540.5-827.8) - 
CD8, median (IQR)  754.0 (483.2-955.0) - 
Viral load, <40 copies/mL. n 
(%)  

 24 (100) - 

Duration of the current 
regime in years, median 
(IQR) 

 11.00 (8.00-13-25) - 

Alcohol consumption, n (%) 15 (62.50) 17 (70.83) 0.75** 
Exercise, n (%) 4 (16.67) 14 (58.33) 0.007** 
BMI, mean (95%) 27.88 (26.47-29.29) 26.66 (23.90-29.41) 0.42* 

*Student t-test, **Chi-square test,  
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Figure  S1: Bar  plot  representing  the  number  of  detected  metabolites  associated
significantly with each environmental category in Cameroon (a) and India (b) cohorts.
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Figure S2: Confusion matrices for Cameroon (A) and India (B) random forest models.
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Figure   S3: Upset plot of metabolites with differential abundance between HC and ART 
patients identified by 3 different methods in Cameroon (A) and Indian (B) cohorts. 
Horizontal bars show the number of metabolites found with each method. Vertical bars 
display intersects between methods as indicated in the matrix below the graph.
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Figure S4: Linear regression coefficients in Cameroon (a) and Indian (b) cohorts.
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Figure S5: Heatmaps of potential  biomarkers  and first  neighbors  in  HC and ART in
Cameroon  (a)  and  Indian  (b)  cohorts.  Data  were  log-transformed  and  z-score
transformed.
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Figure  S6: UMAP  visualization  of  AA  (targeted  metabolomics)  for  samples  from
Cameroon and Indian cohorts together.
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Figure S7: Heatmap targeted metabolomics (amino acids) for Cameroon and India
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Figure S8: Dot plot representing pathway analysis for all comparison in U937 and U1
corrected  for  U937  cells.  For  each  cell  line,  pathways  for  comparisons  Control  vs
Prostatin  (C-P),  Control  vs  DON(CON-C),  Prostratin  vs  Prostratin  + DON(PDON-P),
DON vs Prostratin + DON(PDON-CDON. Size of the bubble represents the number of
proteins and the number, the rank of the pathway based on FDR.
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Figure S9: Cytotoxicity of antiretroviral regimens TDF+3TC+EFV and AZT+3TC+EFV
in monocytic cell lines, U937 and U1. 
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Table S1: IPA Input list Cameroon.

Table  S2: Mann  Whitney  U  Test  untargeted  metabolomics  (Cameroon  and  Indian
cohort).

Table S3: Mann Whitney U Test targeted metabolomics (Cameroon and Indian cohort).

Table S4: Linear regression models adjusted for socio-economic background, exercise
and gender showing the association of 6 biomarkers with ART status in the Cameroon
cohort.

Table S5: Linear regression models adjusted for age and gender showing the association
of 6 biomarkers with ART/HC status in the Indian cohort.

Table S6: Effect sizes observed between HC and ART (Glass delta).

Table S7: Differential protein abundance analysis in U937 and U1 cells using LIMMA.

Supplementary data S1: Normalized untargeted metabolomics data (Cameroon and India)
(Metabolon).

Supplementary  data  S2:  Proteomics  data  after  normalization  and  batch  correction
(Monocytes).

Supplementary  data  S3:  Proteomics  data  after  normalization  and  batch  correction
(Lymphocytes).
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