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Abstract

We compare different methods of estimating the basic reproduction number, R0, focusing
on the early stages of an epidemic, and considering weekly reports of new infecteds. We
study three standard epidemiological models: SIR, SEIR, and SEAIR and examine the
sensitivity of the estimators to the model structure. As some methods are developed
assuming specific epidemiological models, our work adds a study of their performance
in both the well- and miss-specified settings. We focus on parameters matching various
types of respiratory viruses, although the general approach is easily extendable to other
scenarios.

1 Introduction

The basic reproduction number, R0, (also called the basic reproductive ratio) is defined
as the expected number of new infections produced by a single (typical) infectious individual,
when introduced into a totally susceptible population. R0 is used in epidemiological studies of
infectious diseases to gauge how contagious/transmissible an infectious disease is: if R0 < 1,
the disease will die out, and if R0 > 1 infection can increase in the population. It is also
used to determine how effective vaccination or other disease mitigation strategies need to be
in order to protect populations from infection.

At the outset of an infectious disease outbreak, an immediate goal is to determine R0,
so that public health and healthcare decision makers can be informed. At the debut of the
COVID-19 pandemic, reports of R0 estimates were plentiful (for examples, see Zhao et al.
(2020); Tuite and Fisman (2020); Knight and Mishra (2020); Mellan et al. (2020); Hilton
and Keeling (2020); Price et al. (2020)). In the recent MERS-COV, 2009 H1N1, and 2003
SARS epidemics, there were also numerous studies of R0 globally (see Nishiura et al. (2010);
Chowell et al. (2011); Tuite et al. (2010); Paine et al. (2010); Fraser et al. (2009); Pourbohloul
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et al. (2009); Chowell et al. (2014); Hsieh (2015); Cauchemez et al. (2014); Riley et al. (2003);
Anderson et al. (2004); Wang and Ruan (2004); Dye and Gay (2003) for a small snapshot).

There are many statistical and mathematical methods that can be used to estimate
R0 (Heffernan et al., 2005; Diekmann et al., 1990, 2010; van den Driessche and Watmough,
2002; Vegvari et al., 2021; Heesterbeek and Dietz, 1996; Blumberg and Lloyd-Smith, 2013;
Gallagher et al., 2020; Farrington et al., 2001; White et al., 2021). Typical studies of R0 will
thus employ a comparison of several estimators to provide increased certainty in R0 values.
Different estimators also, however, can be constructed on different assumptions related to
disease characteristics i.e., serial interval, infectious period, and thus may ignore the effects
of different stages of infection. For example, many R0 estimators have been constructed to
work within a Susceptible-Infectious-Recovered (SIR) disease modelling framework. Infectious
diseases, however, can include periods of infection that are not infectious. The infectious
period can also be split into various stages of asymptomatic and symptomatic infection,
which ultimately affect the case reporting rate to public health. Therefore, methods that are
based on the SIR modelling framework can project erroneous estimates of R0, and differences
in R0 estimates may simply reflect poor estimator structure or application to data that has
been misspecified. These aspects make it difficult to compare R0 estimates to gain increased
certainty.

A recent study by Gallagher et al. (2020) has discussed several nuances of different es-
timator methods that can affect R0 estimates. The effect of data misspecification is only
touched on briefly. Herewithin, we provide a detailed analysis of misspecified data using six
different R0 estimators. The current study is organized as follows. We first provide an intro-
duction to three compartmental infectious disease models that we use to generate data. Six
R0 estimators are then introduced, including a discussion of their underlying compartmen-
tal model structure assumptions. We then apply each estimator to data generated from the
three compartmental models. We employ parameter values representative of respiratory virus
epidemics, and in particular, influenza Cowling et al. (2009); Vink et al. (2014); Park and
Ryu (2018). We note that while daily data may be sometimes available during an infectious
disease outbreak, it may not be complete and can include a reporting delay. We thus have
chosen to use weekly case reports. Weekly case report data is also typical to outbreaks of
influenza, a respiratory virus, and our chosen pathogen of study.

Table 1: Contact rate notation in epidemiological models

parameter

model β σ ρ γ

SIR S → I : βI(t)/N I → R : γ
SEIR S → E : βI(t)/N E → I : σ I → R : γ

SEAIR S → E : βI(t)/N E → A : σ A→ I : ρ I → R : γ
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Table 2: Summary of epidemiological model properties. To obtain the serial distribution, let
Y1, Y2, Y3 be independent exponential random variables with mean one.

model θ R0 = R0(θ) serial distribution

SIR (β, γ) β/γ Y1/γ
SEIR (β, γ, σ) β/γ Y1/γ + Y2/σ

SEAIR (β, γ, σ, ρ) β/γ + β/ρ Y1/γ + Y2/σ + Y3/ρ

2 Methods

2.1 Epidemiological models

We focus on three compartmental epidemiological models, the Susceptible-Infectious-
Recovered (SIR), Susceptible-Exposed-Infectious-Recovered (SEIR), and Susceptible-Exposed-
Asymptomatic Infectious-Symptomatic Infectious-Recovered (SEAIR) models (model equa-
tions are provided in the Appendix A.1). All models are considered without inclusion of
demography, i.e. birth and death. The total population is denoted by N with initial values
of S0 and I0 for S and I populations, respectively, such that N is approximately equal to S0.
That is, for the SIR model, for all t ≥ 0 it holds that S(t) + I(t) + R(t) = S0 + I0 = N .
Similarly, S(t) + E(t) + I(t) + R(t) = N for the SEIR model and for the SEAIR model,
S(t)+E(t)+A(t)+ I(t)+R(t) = N . We use the notation θ = (β, σ, ρ, γ) to denote the vector
of parameters for the models, see Table 1. For each model, the associated formulas for R0

and the serial distribution are listed in Table 2.
Data is generated using the SIR, SEIR, and SEAIR compartmental model structures

using a stochastic agent-based modelling framework implemented in C++. The simulations
progress at the level of individual hosts in the applicable model disease status compartments.
The simulation moves forward using “event times” that are assigned to each infected individual
in the population, whereby the event times correspond to the disease model compartment of
which they are currently a member. Such event times correspond to infection events, when
an infected individual transmits the infection to a susceptible, and times at which infected
individuals progress to the next stage of infection or recover. The C++ model is based on
previous work Heffernan and Wahl (2005, 2006). 1000 simulations are conducted for each of
the SIR, SEIR, and SEAIR frameworks with parameters (β, σ, ρ, γ) = (5/9, 1, 1, 1/3), giving
R0 values of 5/3 for the SIR and SEIR models, and 20/9 for the SEAIR model (see Table 2
for formulas). For each epidemic, the population size N is set to 10, 001 where S(0) = 10, 000
and I(0) = 1.

Figure 1 plots the number of individuals in compartment I for each model structure. The
grey lines plot the simulation outcomes while the black lines plot the mean of the simulation
data. Although the complete epidemic path is simulated, we assume that only the weekly
number of infectious people is actually available. The epidemics are followed for 15 weeks,
which covers the first 100 days of an outbreak. Simulation data is recorded at every event
time. Weekly data is extracted from each simulation and saved in a data file for use for all
of the R0 estimators employed here. The blue vertical line indicates the point of inflection,
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Figure 1: Plots of numbers of infectious individuals (y-axis) at time t in weeks (x-axis); from
left to right: SIR, SEIR, and SEAIR. Individual simulated outbreaks from 1000 simulations
are shown as grey lines, and their average is denoted as a black line. The blue vertical dashed
lines show the inflection points for each model.

Table 3: Summary of estimation methods

method

WP serial distribution can be assumed known or can be esti-
mated using MLE; method developed under branching pro-
cess model; simple method which yields real-time estimates

secB serial distribution assumed known (only the mean is used);
method developed assuming SIR model; simple method
which yields real-time estimates

ID/IDEA serial distribution assumed known (only the mean is used);
method developed assuming SIR model; simple method
which yields real-time estimates

plug-and-play serial distribution assumed unknown; method selects one of
SIR/SEIR/SEAIR model; implementations available though
not real-time (depending on input selection)

fullBayes serial distribution assumed unknown; method selects one of
SIR/SEIR/SEAIR model; not real-time

where the concavity of the black line changes. The inflection points were observed at 7, 12,
and 9 weeks respectively for the SIR, SEIR, and SEAIR models. These points are used to
determine appropriate time intervals for R0 estimation for each model since R0 estimates are
associated with early exponential growth and can be affected by decreases in the growth rate
as the epidemic continues towards and past the point of infection.
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2.2 Estimating R0

Many methods exist to estimate R0, and we refer to White et al. (2021) for a recent review. If
the transition rates in the models of Section 2.1 are known, then R0 can be easily calculated
using the formulas listed in Table 2. However, full transition rates are generally not known
in practice, and hence statistical estimation methods are required. The main difficulty in
estimation is that complete epidemic data is unavailable. Here, we consider six different
methods of estimating R0. These are detailed below. A summary of the methods and their
key properties is also given in Table 3.

The first four (WP, secB, ID, and IDEA) are real-time methods based on simplifications
of the full ODE epidemiological models. This simplification is necessitated by the fact that the
full data is unobservable. In these methods, estimation of R0 is coupled with either estimation
or prior knowledge of the serial distribution. The serial distribution is the distribution of the
random amount of time that an individual is infected. For example, in the SIR model,
the serial distribution is exponential with mean 1/γ (see Table 2 for other models). In the
literature, the serial distribution may also be referred to as the serial interval, although this
most often refers to the mean of the serial distribution, or alternatively, a range indicating
highly likely values from the serial distribution. As our focus here is the seasonal flu, it may
be reasonable to assume that the serial distribution is known apriori. For other situations,
such as new emerging diseases, such assumptions are less valid.

The two latter methods (plug-n-play and fullBayes) do not simplify the full epidemic
models, but handle the issue of unobservable data by Monte Carlo simulation (plug-n-play
method) or Bayesian priors with MCMC used to handle estimation due to model complexity
(fullBayes method). As such, these methods are more computationally intensive. These two
methods estimate the unknown transition rate parameter vector θ in the epidemic model.
They do not require any prior knowledge, including prior knowledge of the serial distribution.
Indeed, since the methods result in estimates of θ, these can then in turn be used to derive an
estimate of the serial distribution. Furthermore, the methods assume prior knowledge of the
epidemic model, in the sense that the user can decide whether the SIR, SEIR, or the SEAIR
model is more appropriate for the particular disease. In contrast, the first four methods all
rely on simplifications, and are not able to allow for such tailoring.

Although the last two methods are more computationally intensive and not considered
“real-time”, we note that modern day access to computational power is blurring this line of
distinction. Our implementations of fullBayes and plug-n-play were done on a non-specialized
desktop computer and without special consideration to computing time in the implementa-
tions. The time required to obtain the estimates was less than two minutes in both cases,
and we do not consider this to be prohibitive. Furthermore, more careful programming could
yield even faster estimates. A more detailed discussion is available in Section 3.1.

2.2.1 Maximum likelihood estimation of a branching model (WP method)

White and Pagano (2008) developed a straightforward estimation method whereby either
the distribution of the serial interval is known, or, the distribution of the serial interval is
estimated along with R0. The method assumes that only the number of infectious individuals
at discrete time points (e.g. daily or weekly) is observable. Both methods rely on maximum
likelihood. Using our notation, and assuming that the times t0 = 0, t1, t2, . . . , tk are integers

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.14.21260514doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.14.21260514
http://creativecommons.org/licenses/by-nc-nd/4.0/


which count, for example, the number of days or weeks, White and Pagano (2008) obtain the
log-likelihood

`(R0, p) = −
k∑
i=1

µ(ti) +
k∑
i=1

I(ti) logµ(ti),

where µ(t) = R0
∑min(κ,t)

j=1 I(t−tj)p(tj) and p is a vector denoting the distribution of the serial
interval on t1, . . . , tκ. If p is assumed known (notably, this includes knowing the value of tκ
which describes the support of p) then the maximum likelihood estimate of R0 is straight-
forward to compute. For example, in the SIR model, p(tj) = P (tj−1 < Y ≤ tj)/P (Y ≤ tκ)
where Y is an exponential random variable with mean 1/γ. If p is unknown, then White and
Pagano (2008) recommend assuming a parametric distribution to simplify estimation.

The WP method assumes an underlying branching process, which is neither of the SIR/-
SEIR/SEAIR models from which our data sets are generated. This model assumes, in partic-
ular, that throughout the population size “available” to be infected remains constant, which
does not hold for our simulated ODE models. As such, estimates should only really be consid-
ered early on in the epidemic. In our simulations presented below, we highlight the inflection
point of each epidemic, and the WP method should only really be considered valid before this
time.

The method has been implemented in Obadia and Boëlle (2015), see also Obadia et al.
(2017). In our simulations, we found this implementation to have some numerical instability
issues, which is most likely caused by the particular parameters of our simulated data sets.
This instability was particularly profound when p was assumed unknown, and most often the
algorithm would not yield a solution. For this reason, we programmed our own implementa-
tion, for which we used a simple grid search. The built-in alternative optimization function in
R uses the bisection method, and was very sensitive to the starting value (a small change in
the starting value could change the R0 estimate by orders of a thousand). In comparison, the
grid search approach performed better, although it was still not ideal. The likelihood surface
is very flat, which resulted in a non-unique MLE (we report only a default value). This prop-
erty of the likelihood surface is most likely what also causes the issues in the implementation
of Obadia et al. (2017).

Although not reported with our main results (which use the gamma assumption sug-
gested by White and Pagano (2008)), we also tried other approaches to estimating the SD
distribution. The easiest to implement (via a one-dimensional grid search) is the assumption
that the serial distribution is any distribution with a support of at most two weeks. In Figure 2
we compare this assumption with the assumption that the serial distribution is gamma but
still unknown. We also compare this with two cases where the serial distribution is known.
Here, the serial distribution is exponential with either a mean of five days or a mean of three
days. The true serial distribution under the SIR model is exponential with a mean of five
days in our simulations, so the second setting is misspecified. Due to the weekly nature of
the data and resulting discretization on the serial distribution in the WP method, the effect
of this misspecification is very mild.

Furthermore, note that the log-likelihood assumes that the serial distribution is discrete,
and that this discretization matches the observed data. That is, if data is observed weekly,
the serial distribution is only known on a weekly timescale. This discretization can affect the
serial distribution considerably, particularly if the timescale is quite coarse. We also note that
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Figure 2: WP method for SIR data with four different assumptions on the serial distribution:
known and correct (top left), known and incorrect (top right), unknown gamma (bottom left),
unknown discrete (bottom right). The inflection point for the epidemic is marked in blue,
and the true R0 is marked as a horizontal red line.

the implementation of Obadia and Boëlle (2015) automates the discretization, and therefore
we suggest that care is taken when using their built-in parametric distribution functions.

2.2.2 Sequential Bayes estimation using an SIR approximation (secB method)

Bettencourt and Riberio (2008) developed a Bayesian approach used to estimate R0. As
above, it is assumed that infectious counts are observed at periodic times such as days or
weeks. The basic idea is to start with a mildly informative prior on R0 and then update
sequentially. The approach is based on the SIR model, and assumes that the mean of the
serial distribution is known (under the SIR model, this is equivalent to knowing the parameter
γ which is the inverse of the mean of the serial distribution). Bettencourt and Riberio (2008)
note that under the SIR model

I(tj+1) = I(tj) exp

[
γ

∫ tj+1

tj

(
R0
S(s)

N
− 1

)
ds

]
≈ I(tj) exp [(tj+1 − tj)γ(Rt − 1)] ,

where Rt = R0S(t)/N ≈ R0 at the beginning of an infection. Using this result, seqB
assumes that the conditional distribution of I(tj+1)|I(tj), R0 is Poisson with mean λ =
I(tj) exp{(tj+1 − tj)γ(R0 − 1)}. In the approach, γ is known, and a prior is placed on R0.
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With N0 also assumed known, posterior estimates are found using a hierarchical or sequen-
tial Bayes approach. Note that the method cannot handle data sets where there are no new
infections observed in some time interval tj+1− tj (as this results in a Poisson mean of zero).
Therefore, the times at which infectious counts are observed must be sufficiently coarse so
that all counts are non-zero (e.g. weeks instead of days). The method would also be inappro-
priate for situations where long intervals between cases are observed in the initial stages of
the epidemic. This was observed, for example, in Canada for the first cases of Covid19.

Although the above development is based on the SIR model, the resulting approximation
behaves similarly to a branching process, much like the WP method. We therefore again
consider this estimator valid only in the early stages, which for our simulations translates to
times prior to the inflection points of the epidemic.

The posterior distribution of R0 will have the same support as the prior, and placing a
discretized prior on R0 makes computations relatively straightforward, since the normalizing
constant of the posterior is easy to implement. In the R implementation in Obadia et al.
(2017), the initial prior on R0 is assumed to be uninformative. Their package focuses on the
posterior mode, and much like their implementation of the WP method, uses a discretized
version of the serial distribution (which could affect the input value of γ). We again chose to
use our own implementation, and report the posterior mean which minimizes the Bayes’ risk.

2.2.3 Least square estimation using incidence decay approximations (ID and
IDEA methods)

Fisman et al. (2013) introduced two simplified models describing the relationship between
R0 and other epidemic parameters in the SIR model. The first of these is the incidence decay
(ID) model where

Ĩ(s) = Rs0. (1)

In the model, time is measured in units re-scaled based on the serial distribution. Recall that
under the SIR model the serial distribution is exponential with mean 1/γ. We then have the
relationship in (1) that Ĩ(s) = I(γs). As (1) is only valid for a short (and unknown) period
of time, Fisman et al. (2013) proposed a second alternative formulation, where a decay factor
was introduced in order to reflect the often observed outbreak decline. In the incidence decay
and exponential adjustment (IDEA) model, the relationship becomes instead

Ĩ(s) =

(
R0

(1 + d)s

)s
. (2)

Under the ID model, we can solve (1) to obtain

R0 = Ĩ(s)1/s.

Of course, this relationship is not valid for real data across all values of s as Ĩ(s) is stochastic.
To obtain an estimate of R0 least squares is an obvious option, and hence the ID estimator is
the minimizer of

k∑
j=1

(
logR0 −

1

sj
log Ĩ(sj)

)2

,
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which yields

exp

1

k

k∑
j=1

1

sj
log Ĩ(sj)

 . (3)

As noted above, the number of infectious people decreases rapidly at the beginning of an
outbreak, so a method based on (1) is expected to underestimate R0. The IDEA model was
introduced to overcome this issue. As in the ID model, we solve (2)

R0 = Ĩ(s)1/s(1 + d)s,

and use least squares estimation to obtain its estimate. The IDEA estimator is defined then
as the minimizer of

k∑
j=1

(
logR0 −

1

sj
log Ĩ(sj)− sj log(1 + d)

)2

.

Unlike in the ID model, we also need to obtain a minimizer of d to solve the optimization
problem, and hence we require k ≥ 2. Minimizing, we obtain

exp

∑k
j=1 s

2
j

∑k
j=1

1
sj

log Ĩ(sj)−
∑k

j=1 sj
∑k

j=1 log Ĩ(sj)

k
∑k

j=1 s
2
j − (

∑k
j=1 sj)

2

 . (4)

Details of these calculations are given in the Appendix. Note that the formula is not valid for
k = 1.

Both the ID and IDEA methods are straightforward and estimate R0 directly, as long
as the mean of the serial distribution is known. The model was built under the SIR assump-
tion, however. In our simulations we examine the effect of misspecification of the underlying
epidemic model.

2.2.4 Maximum likelihood using sequential Monte Carlo for partially observed
epidemics (plug-n-play method)

Maximum likelihood is one of the more popular approaches used to estimate unknown param-
eters in a statistical model. The general idea is to find the parameter set θ which maximizes
the likelihood (probability model) evaluated at the observed data. The difficulty for our set-
ting is that our epidemiological models (Section A.1) rely on data which is unobservable. In
particular, the models require that the exact times of infections are known while we observe
only daily or weekly counts of infectious individuals. The WP method (White and Pagano,
2008), which also uses maximum likelihood, gets around this issue by creating a simplified
model with a likelihood which relies only on observable data. Another alternative, discussed
in He et al. (2010), is to maximize the full likelihood and fill in the unobservables using many
Monte Carlo simulations in a way which matches the fixed observable data points. Such an
approach is often referred to as “plug-n-play”.

The plug-n-play inferential method of He et al. (2010) is based on likelihood inference
using sequential Monte Carlo of partially observed Markov processes (POMP), also known
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as hidden Markov models or state-space models. The plug-and-play terminology comes from
the fact that inference is based on Monte Carlo simulations from the model and does not
require explicit expressions of the transition probabilities, which can be quite complicated.
The algorithm for this method has been implemented in Nguyen et al. (2016). This software
package can be accessed from the comprehensive R archive network (CRAN), see King et al.
(2017). As mentioned previously, the basic idea is to generate complete epidemic data in a way
which matches the observed weekly infectious observations. To simplify the implementation,
complete continuous-time data is not generated but rather an approximation is generated with
observations of all components at a discretized time-scale ∆t (selected by the user). These
discretized epidemics are generated using sequential Monte Carlo methods. An estimate
of θ is then obtained via maximum likelihood using iterated filtering. The implementation
in Nguyen et al. (2016) allows for the selection of the model SIR, SEIR, or SEAIR. The
algorithm requires initial values for the rate parameters θ, the number of ‘particles’ J used in
the sequential Monte Carlo method, choice of the time scale ∆t, while the iterated filtering
requires some further choice of algorithm settings. We refer to He et al. (2010) and Nguyen
et al. (2016) for additional details. The algorithm returns estimates of θ, as well as an estimate
of R0 derived via the formula

R0 = β
∆t

1− e−∆t γ
,

regardless of the epidemiological model. We refer to the estimate thus obtained as the plug-
n-play estimator. R code detailing our simulations and choices of input values is given in
Appendix A.2.

2.2.5 Bayesian inference for partially observed epidemics (fullBayes method)

Similarly to the plug-n-play approach of the previous section, this is a simulation approach
in which the incomplete observed data is replaced with complete data via simulations. The
main difference is that the complete data is generated by placing a prior on its distribution
in a Bayesian inferential approach. Some examples of epidemiological inference under the
Bayesian paradigm are described in O’Neill and Roberts (1999).

In order to describe the method we need first to introduce some additional notation. We
do this for the SEAIR model, as all other models are simplifications of this case. Recall that
we have observed infection counts I(t1), . . . , I(tk) at times t1, . . . , tk. Let m denote the vector
with jth element given by mj =

∑j
i=1 I(ti). As such, m describes the entirety of the observed

data. For a time interval [0, T ] the complete epidemic includes much more information. Let
τEi , i ≥ 2 denote the individual times of exposure. Similarly, τAi , i ≥ 2; τ Ii , i ≥ 2, τRi , i ≥ 1
denote the individual times of transitions into the asymptomatic, infectious, and recovered
states, respectively. We assume that m0 = 1. We also assume that all people who are infected
in week j will recover in week j + 1. Furthermore, we assume that the number of exposed
and asymptomatic people in week j is also equal to mj −mj−1. We let τ denote the epidemic
path which contains all of this information.

As in O’Neill and Roberts (1999), the first infection τ I1 is treated separately as a pa-
rameter of the model. Hence a prior πI(τ

I
1 ) is placed on this variable. An independent

prior is also placed on θ, π(θ), and samples from the posterior distribution π(θ, τ I1 , τ |m) ∝
L(θ, τ I1 |τ,m)π(θ)πI(τ

I
1 ) are obtained. The marginal distribution of π(θ, τ I1 , τ |m) is π(θ|m),
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which is the posterior distribution of θ given the observable data, and the distribution we are
interested in.

We now calculate the likelihood L(θ, τ I1 |τ,m) for the SEAIR model.

L(τ,m|θ, τ I1 )

=

{
mk∏
i=2

βS(τEi )

N

(
I(τEi ) +A(τEi )

)}{mk∏
i=2

σE(τAi )

}{
mk∏
i=2

ρA(τ Ii )

}{mk−1∏
i=1

γI(τRi )

}

× exp

{
−
∫ tk

τI1

[βS(t) (I(t) +A(t)) /N + σE(t) + ρA(t) + γI(t)] dt

}
.

The joint prior distribution of the unknown rate parameters θ is made up of independent
gamma distributions given by Γ(α, k) with mean k/α. We assume that α is the same for the
parameters β, σ, ρ, γ, while k varies and if appropriate will be denoted by kβ, kσ, kρ, kγ . In the
simulations we take α = 1 and kβ = kσ = 3, kρ = 2, kγ = 5. The prior distribution on −τ I1
is exponential with rate one, and this is independent from the θ vector. Calculations given
in the Appendix (see Section A.4) give the posterior marginal distributions for π(τ I1 |θ, τ,m)
and π(θ|τ,m, τ I1 ) all of which have gamma distribution with closed form expressions for the
parameters. Some sensitivity analysis to the prior distributions was conducted in Section A.6,
and changing the prior did not visibly affect the results.

The general approach we take is now described using the following steps.

1. Use Markov chain Monte Carlo (MCMC) to simulate from π(θ, τ, τ I1 |m).

2. From Step 1, we obtain a sequence of samples (τl, θl, τ
I
1,l) for l = 1, . . . , b + B from the

posterior distribution π(θ, τ I1 , τ |m). Here, b denotes the burn-in period for the MCMC
results. To obtain an estimate of θ, from the samples l = b+ 1, b+ B, one option is to
simply average the values θl. Instead, we treat each (τl, θl, τ

I
1,l) a sample from the full

posterior model, and calculate the posterior mean of θl, using the formulas given in the
Appendix.

3. Average the posterior means θl, l = b+ 1, . . . , b+B to obtain an estimate of θ.

The final reported estimate is obtained from the estimate of θ in Step 3 using the appropriate
formula in Table 2. In our simulations, we take b = 100 and B = 1000, and refer to the
estimator as fullBayes.

The MCMC algorithm we use is the Metropolis-within-Gibbs. Namely, there are three
main components to the posterior distribution θ, τ, and τ I1 . In the Appendix, the posterior
distributions for π(θ|τ, τ I1 ,m) and π(τ I1 |θ, τ) = π(τ I1 |θ) are obtain in closed form. Given one
observation of (θl, τl, τ

I
1,l), the algorithm generates the next observation as follows.

1. Sample τ I1,l+1 from the posterior π(τ I1 |θl).

2. Sample θl+1 from the posterior π(θ|τl, τ I1,l+1,m)

3. Sample τl+1 using a Metropolis step:

(a) Propose a new τ : For each i = 1, . . . , k
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i. τEj is IID uniformly distributed on [ti−1, ti] for j = mi−1, . . . ,mi

ii. τAj is IID uniformly distributed on [ti−1, ti] for j = mi−1, . . . ,mi

iii. τ Ij is IID uniformly distributed on [ti−1, ti] for j = mi−1, . . . ,mi

iv. τRj is IID uniformly distributed on [ti−1, ti] for j = mi−2, . . . ,mi−1

(b) Accept the proposal with probability min{1, α} where

α =
π(τ |θl+1, τ

I
1,l+1,m)g(τ |τl)

π(τl|θl+1, τ
I
1,l+1,m)g(τl|τ)

=
L(τ |θl+1, τ

I
1,l+1,m)

L(τl|θl+1, τ
I
1,l+1,m)

,

noting that with the proposal distribution in (a), we have that g(τ |τl)/g(τl|τ) = 1.
Details are provided in Appendix A.4

The chain is initialized by sampling θ from its prior distribution.

3 Results

The goal of our simulations is to study accuracy of estimation in the well-specified but also
in the misspecified settings, including misspecification of the model and serial distribution.
For all models we therefore consider data coming from SIR, SEIR, and SEAIR settings. We
then study the methods as follows

1. WP method assuming
– SD is known and set to exponential with mean of 5 days (correct assumption under

SIR model)
– SD is unknown and estimated from a gamma distribution with unknown mean and

variance (using a grid search algorithm)

2. seqB method assuming
– SD has a mean of 5 days (i.e. γ = 7/5)
– SD has a mean of 3 days

3. ID and IDEA methods assuming
– SD has a mean of 5 days (i.e. the serial interval is 5/7 in the language of Fisman et al.

(2013))
– SD has a mean of 3 days

4. plug-n-play and fullBayes methods developed assuming
– SIR
– SEIR
– SEAIR

In our set-up, the outbreaks were all followed for 15 weeks, and this is the timeline given
in our results. This timeline is presented only as a comparison to what is happening at the
earliest stages. It also, however, improves the comparison between methods. Our comments
below focus only on the time period before the inflection point (denoted as a vertical blue line
for all methods).

Side-by-side boxplots summarizing our simulation results are given in Figures 3-8. Recall
that the seqB method cannot handle data sets where zero values are present. We have thus
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removed simulations with zero values (3 SIR, 41 SEIR, and 76 SEAIR epidemics) from the
1000 samples for seqB method. They are included for the other methods. In comparing the
efficacy of the methods, we look at two main factors: bias and variability.

Figures 3 and 4 study the methods assuming that the correct model assumption is used.
In Figure 3 we also include the seqB method with incorrect serial distribution for reference.
Considering both bias and variance, of the methods with known SD, seqB performs best when
consider the SIR model (Figure 3, second row, left column). For the SEIR and SEAIR models
(Figure 4), and of the methods with unknown SD for the SIR model (Figure 3), fullBayes
seems best. Although plug-n-play has small bias, in our view this is overshadowed by the
extremely large variability of the method. In general, these observations carry forward into
our misspecification studies.

Figure 5 focuses on methods which assume SIR and known SD, and considers misspec-
ification of the serial distribution. Note that here the mean of the serial distribution was
incorrect by only two days. Notably, in comparing the left and right columns of this figure,
WP does not appear very sensitive to a change to incorrect mean, while the other methods
are more sensitive.

Figures 6, 7 and 8 study model misspecification. In Figure 6 the model assumed is SIR
while the data is SEIR. In Figure 7 the model assumed is SIR while the data is SEAIR.
Finally, in Figure 8 the model is SEIR while the data is SEAIR. Note that only plug-n-play
and fullBayes can assume the SEIR model. In Figures 6 and 7, WP with known SD performs
well. With unknown SD, the estimate quality decreases in both bias and variability. In all
cases fullBayes when the serial distribution is unknown performs very well.

Based on the simulations, our recommendations are as follows. In general, we recommend
the fullBayes method assuming SIR, unless another model (e.g. SEIR, SEAIR) is preferred.
Although the method is not considered to be real-time, we feel the computational burden is not
overly onerous as estimates will be given in 1-2 minutes, depending on the computer’s power
and speed. In particular, fullBayes performs well even under some misspecification of the
empidemiological model, and does not require prior knowledge of the serial distribution. The
alternative option here is the WP method, which did not perform as well under the gamma
assumption for the serial distribution in our simulation study. Alternative assumptions (such
as the discrete distribution assumed in Figure 2) may also be considered, and numerical
stability should be checked before applying these algorithms. If the serial distribution is
known and the epidemiological model is SIR, we recommend the seqB method, but emphasize
the need for sensitivity analysis.

Practitioners, however, should consider their own preferences as to bias and variability
of the estimators. We note here that as this study is focused on data observed weekly, our
results may not be applicable to data observed, for example, daily, as the effect of the serial
distribution on the results may be different.

3.1 Computational time

Computational time is a crucial factor as real-time estimates are desirable. Table 4
shows computational time for the SEIR model for a single data set and using a 1.60GHz/8GB
RAM desktop PC. The results in this work are based on fullBayes with 1000 iterations and
plug-n-play with 1000 particles and 10 IF iterations, where IF stands for the iterated filter-
ing algorithm. The fullBayes method was implemented in R, and it is possible that faster
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Figure 3: R0 estimates assuming SIR model with SIR data (week on x-axis). True R0 is
given by the red dashed horizontal line, with the inflection point indicated by the blue dashed
vertical line.
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Figure 4: R0 estimates assuming SEIR model with SEIR data in the top row and SEAIR
model with SEAIR data in the bottom row (week on x-axis). True R0 is given by the red
dashed horizontal line, with the inflection point indicated by the blue dashed vertical line.
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Figure 5: R0 estimates assuming SIR model with SIR data (week on x-axis) for methods which
assume SD is known with correct (left column) and incorrect (right column) assumptions on
SD. True R0 is given by the red dashed horizontal line, with the inflection point indicated by
the blue dashed vertical line.
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Figure 6: R0 estimates assuming SIR model with SEIR data (week on x-axis). True R0 is
given by the red dashed horizontal line, with the inflection point indicated by the blue dashed
vertical line.
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Figure 7: R0 estimates assuming SIR model with SEAIR data (week on x-axis). True R0 is
given by the red dashed horizontal line, with the inflection point indicated by the blue dashed
vertical line.
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Figure 8: R0 estimates assuming SEIR model with SEAIR data (week on x-axis). True R0 is
given by the red dashed horizontal line, with the inflection point indicated by the blue dashed
vertical line.

Table 4: Computational time for the SEIR model for one data set

method time

fullBayes 1000 iterations 1.87 minutes
3000 iterations 3.88 minutes
10 IF iterations 3.73 minutes

plug-n-play (1000 particles) 100 IF iterations 40 minutes
1000 IF iterations 6 hours

implementations can be achieved using a different programming language.

4 Conclusion

The basic reproduction number, R0, is an important parameter for estimation early in
an epidemic so that public health interventions can be informed. As many estimators exist,
and the assumptions of the estimators as well as their dependency on particular biological
estimates i.e., the serial interval, vary between methods, it is expected that R0 estimates will
differ. It is thus important to understand what estimators provide better outcomes under
both true and misspecified conditions. Since respiratory viruses (especially influenza) affect
the global population every year, we have chosen to study the estimators of R0 for these
types of infections, which are typically modelled using SIR, SEIR and SEAIR compartmental
models. We have also chosen to consider weekly case data, as this is characteristic of influenza
and other respiratory infection outbreak reported data, globally.

We have considered six estimators that are commonly used when determining R0 for
any infectious disease outbreak. The advantages and disadvantages of each method are dis-
cussed here, including dependencies on proper estimates of the serial distribution, and the
computational resources needed to run each estimator. Briefly, we find that the WP method
can provide close estimates to the true R0 value if the SD is known, but that the method
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suffers numerical instability in cases when the SD is unknown for the type of data considered
here; the seqB method performs well given SIR data but greatly underperforms if there is any
misspecification; the ID and IDEA methods, although useful for other purposes due to their
simplicity, do not outperform any of the methods studied here in terms of estimating R0; the
plug-n-play method estimates include large confidence intervals, so do not provide precise R0

estimates; the fullBayes method is the least sensitive to model structure and misspecification.
Considering both bias and variability, as well as misspecification, we find that the perfor-
mance of the fullBayes estimator is best, providing estimates of R0 that are closest to the
true value under both correctly specified and misspecified cases. The approach also does not
require prior knowledge of the serial distributions. We note that the choice of R0 estimator
is ultimately up to the practitioner. Our strong recommendation, however, is that if simpler
methods are chosen, a full sensitivity analysis considering the misspecifications studied here,
should be employed so that confidence in an R0 estimate can be acquired.

In our analysis we have shown that some R0 estimators can be greatly affected by even a
small level of misspecification. Given that biological certainty may be lacking at the beginning
of an infectious disease outbreak, the number of disease stages needed in a model and a proper
distribution of the serial interval may not be known. This means that a range of R0 results
will ensue, and the accuracy of the estimates will be unclear. We therefore recommend that
the fullBayes method be included in any suite of estimators used to estimate R0 as it does
not require knowledge of the serial distribution and provides close to true estimates under
different model structures quickly.

Daily case reporting data has been available for the most recent COVID-19 pandemic.
Daily data was not provided during the 2009 H1N1 pandemic, however. Furthermore, there
may be issues with daily reporting (such as periodicity, reporting delay) whereby public
health may choose to use weekly reporting data over daily data as the weekly data would
be more reliable. We have thus only considered weekly case reporting data in this study
as it is expected that weekly case reporting data can be expected in many future epidemics
and pandemics. It is important to note that First Few Hundred (FF100) studies, whereby
the first few hundred cases of a new virus are followed in detail at the beginning of an
infectious disease outbreak, have been implemented during the 2009 H1N1 and COVID-19
pandemics Black et al. (2017); World Health Organization and others (2020); McLean et al.
(2010); Boddington et al. (2020); van Gageldonk-Lafeber et al. (2012); England (2009); Ghani
et al. (2009); Pandemic Influenza (2014). In these cases the serial distribution, and the need
to consider exposed and/or asymptomatic periods of infection can be quickly determined,
enabling realization of earlier and more certain estimates of R0 early on. Given that First
Few Hundred protocols are not implemented in much of the globe, weekly case report data
however may still be considered the norm for future pandemics.

In our current study we have assumed perfect data with no unobserved infections, no
reporting delay, and no data collection bias. These issues are intuitively expected to affect R0

estimates. We venture to continue our study of R0 estimation while considering these aspects
in our epidemiological data sets.
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A Appendix

A.1 Disease models

We employ SIR, SEIR and SEAIR model structures, where S, E, A, I and R denotes
susceptible, exposed (infected, no symptoms, not infectious), asymptomatic infected (infected,
no symptoms, not infectious), symptomatic infected (infected, symptomatic, infectious), and
recovered individuals, respectively. The ODEs governing our models are given below.

A.1.1 SIR model

dS(t)

dt
= −βS(t)

I(t)

N
dI(t)

dt
= βS(t)

I(t)

N
− γI(t)

dR(t)

dt
= γI(t)

N = S(t) + I(t) +R(t)

A.1.2 SEIR model

dS(t)

dt
= −βS(t)

I(t)

N
dE(t)

dt
= βS(t)

I(t)

N
− αE(t)

dI(t)

dt
= αE(t)− γI(t)

dR(t)

dt
= γI(t)

N = S(t) + E(t) + I(t) +R(t)
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A.1.3 SEAIR model

dS(t)

dt
= −βS(t)

I(t) +A(t)

N
dE(t)

dt
= βS(t)

I(t) +A(t)

N
− αE(t)

dA(t)

dt
= αE(t)− ρA(t)

dI(t)

dt
= ρA(t)− γI(t)

dR(t)

dt
= γI(t)

N = S(t) + E(t) +A(t) + I(t) +R(t)

A.2 Least squares estimation for the IDEA method

From (2), our objective function is

Q =
k∑
j=1

(
logR0 −

1

sj
log Ĩ(sj)− sj log(1 + d)

)2

.

Let η = logR0 and ξ = log(1 + d) and note that both of these relationships are monotone
increasing. We minimize Q by setting ∂Q

∂η = 0 and ∂Q
∂ξ = 0, obtaining two equations

ξ =
kη −

∑k
j=1

1
sj

log Ĩ(sj)∑k
j=1 sj

,

ξ =
η
∑k

j=1 sj −
∑k

j=1 log Ĩ(sj)∑k
j=1 s

2
j

.

Solving for η = logR0 we thus find

R̂IDEA = exp

∑k
j=1 s

2
j

∑k
j=1

1
sj

log Ĩ(sj)−
∑k

j=1 sj
∑k

j=1 log Ĩ(sj)

k
∑k

j=1 s
2
j − (

∑k
j=1 sj)

2

 .

A.3 R code to implement plug-n-play estimation for SIR model

l i b r a r y (pomp)
s e t . seed (1 )
dat <− read . csv ( ”Weekly NewnumInf SIR . csv ” )
dat <− dat [ 1 , ]
dat <− as . numeric ( dat )
dat <− cumsum( dat )
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nc <− l ength ( dat )
rho <− 1 ## a l l c a s e s are repor ted
d i f f t <− 1/7 ## do f i l t e r i n g f o r every day

r e sbe ta <− rep (0 , nc )
resgamma <− rep (0 , nc )
R0e <− rep (0 , nc )
R0 <− rep (0 , nc )

f o r ( j in 1 : nc ){
data <− c (1 , as . numeric ( dat [ 1 : j ] ) )
date <− as . numeric ( seq (0 , j , 1 ) )
i n f d a t <− cbind ( date , data )
i n f d a t <− as . data . frame ( i n f d a t )
colnames ( i n f d a t ) <− c ( ”week” , ” ca s e s ” )

######## func t i on ###########
s i r . proc . sim <− f unc t i on (S , I , R, H, beta , gamma, d e l t a . t , . . . ) {

N <− sum(S , I ,R)
f o i <− beta ∗ I /N
trans <− c ( reulermult inom (n=1, s i z e=S , ra t e=f o i , dt=de l t a . t ) ,

reulermult inom (n=1, s i z e=I , r a t e=gamma, dt=d e l t a . t ) )
S = S−t rans [ 1 ]
I = I+trans [1] − t rans [ 2 ]
R = R+trans [ 2 ]
H = H+trans [ 2 ]
c (S=S , I=I , R=R, H=H)

}
f <− f unc t i on ( t , S , I , R, beta , gamma){

N <− sum(S , I , R)
f o i <− beta ∗ I /N
terms <− c (

S∗ f o i ,
I ∗gamma

)
terms <− unname( terms )
c (

S=−terms [ 1 ] ,
I=terms [1] − terms [ 2 ] ,
R=terms [ 2 ] ,
H=terms [ 2 ]

)
}
s i r dmeas <− f unc t i on ( cases , H, rho , log , . . . ) {

#case s = sum( i n f d a t [ , 2 ] )
dbinom ( x=cases , s i z e=H, prob=rho , l og=log )

}

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2021. ; https://doi.org/10.1101/2021.07.14.21260514doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.14.21260514
http://creativecommons.org/licenses/by-nc-nd/4.0/


s i r rmeas <− f unc t i on (H, rho , . . . ) {
ca s e s=rbinom (n=1, s i z e=H, prob=rho )

}
f l u . s i r <− pomp( data= in fdat ,

t imes=”week” ,
t0 =0,
params=c ( rho=1,gamma=mean(rgamma(n=20 ,1 ,5)) , beta=mean(rgamma(n=20 ,1 ,3)) ,

S .0=10000 ,R.0=0 , I .0=1 ,H.0=0) ,
rmeasure=s i r rmeas ,
dmeasure=s i r dmeas ,
r p r o c e s s=e u l e r ( s i r . proc . sim , d e l t a . t=d i f f t )

)
#################################### end func t i on ########################################

para <− c o e f ( f l u . s i r )
simpar <− c ( ” beta ” , ”gamma” )
f i t <− mif2 ( f l u . s i r , Nmif=5,

rw . sd=rw . sd ( beta =0.01 ,gamma=0.005) ,
c o o l i n g . f r a c t i o n .50=0.01 ,
Np=1000)

suppressWarnings ( f i t )
r e sbe ta [ j ] <− as . numeric ( c o e f ( f i t ) [ 3 ] )
resgamma [ j ] <− as . numeric ( c o e f ( f i t ) [ 2 ] )
IP <− d i f f t /(1−exp(− d i f f t ∗resgamma [ j ] ) )
R0e [ j ] <− r e sbe ta [ j ] ∗IP
R0 [ j ] <− r e sbe ta [ j ] /resgamma [ j ]

}

A.4 Posterior distributions

L(τ,m|θ, τ I1 )

=

{
mk∏
i=2

βS(τEi )

N

(
I(τEi ) +A(τEi )

)}{mk∏
i=2

σE(τAi )

}{
mk∏
i=2

ρA(τ Ii )

}{mk−1∏
i=1

γI(τRi )

}

× exp

{
−
∫ tk

τI1

[βS(t) (I(t) +A(t)) /N + σE(t) + ρA(t) + γI(t)] dt

}
.

First, we calculate the posterior distributions of each of the elements of θ. For ease of
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exposition, in each calculation we drop the subscript on the scale parameter k in the priors.

π(β|σ, ρ, γ, τ I1 , τ)

∝ L(τ,m|θ, τ I1 )π(β)

∝

{
mk∏
i=2

βS(τEi )

N

(
I(τEi ) +A(τEi )

)}
exp

{
−
∫ tk

τI1

βS(t) (I(t) +A(t)) /Ndt

}
βα−1 exp(−kβ)

∝ β(α+mk)−1 exp

{
−β

(
k +

∫ tk

τI1

S(t) (I(t) +A(t)) /Ndt

)}
.

Hence the posterior distribution for β is gamma with shape parameter α + mk and scale
parameter k +

∫ tk
τI1
S(t) (I(t) +A(t)) /Ndt.

π(σ|β, ρ, γ, τ I1 , τ) ∝ L(τ,m|θ, τ I1 )π(σ)

∝

{
mk∏
i=2

σE(τAi )

}
exp

{
−
∫ tk

τI1

σE(t)dt

}
σα−1 exp(−kσ)

∝ σ(mk+α)−1 exp

{
−σ

(
k +

∫ tk

τI1

E(t)dt

)}

Hence the posterior distribution for σ is gamma with shape parameter α + mk and scale
parameter k +

∫ tk
τI1
E(t)dt.

π(ρ|β, σ, γ, τ I1 , τ) ∝ L(τ,m|θ, τ I1 )π(ρ)

∝

{
mk∏
i=2

ρA(τ Ii )

}
exp

{
−
∫ tk

τI1

ρA(t)dt

}
ρα−1 exp(−kρ)

= ρ(α+mk)−1 exp

{
−ρ

(
k +

∫ tk

τI1

A(t)dt

)}

Hence the posterior distribution for σ is gamma with shape parameter α + mk and scale
parameter k +

∫ tk
τI1
A(t)dt.

π(γ|β, ρ, γ, τ I1 , τ) ∝ L(τ,m|θ, τ I1 )π(γ)

∝

{mk−1∏
i=1

γI(τRi )

}
exp

{
−
∫ tk

τI1

γI(t)dt

}
γα−1 exp(−kγ)

∝ γ(α+mk−1)−1 exp

{
−γ

(
k +

∫ tk

τI1

I(t)dt

)}

Hence the posterior distribution for γ is gamma with shape parameter α + mk and scale
parameter k +

∫ tk
τI1
I(t)dt.
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Lastly, we calculate the posterior distribution of −τ I1 , with a prior distribution of expo-
nential, rate one.

π(−τ I1 |θ, τ) ∝ L(τ,m|θ, τ I1 )π(−τ I1 )

∝ exp

(
−
∫ τI2

τI1

β

N
S(t)(I(t) +A(t)) + σE(t) + ρA(t) + γI(t)dt

)
exp(τ I1 ).

For τ I1 ≤ t < τ I2 , we have that S(t) = N , I(t) = 1, E(t), A(t) = 0, and hence∫ τI2

τI1

β

N
S(t)(I(t) +A(t)) + σE(t) + ρA(t) + γI(t)dt = (β + γ)(τ I2 − τ I1 ),

from which it follows that

π(−τ I1 |β, σ, ρ, γ, τ) ∝ exp
(
−(β + γ)(τ I2 − τ I1 ) + τ I1

)
∝ exp

(
(β + γ + 1)τ I1

)
,

and hence the posterior of −τ I1 is exponential with rate β + γ + 1. Note that this formula is
the same for all models.

A.5 Symmetric Proposal

We need to show that g(τ |τl)/g(τl|τ) = 1. To do this, we use the fact that g(τ |τl) does
not depend on τl. Moreover, g(τ) is a product of uniform distributions, so g(τ) also does not
depend on τ . Therefore g(τ |τl) = c for some constant c, and hence g(τ |τl) = g(τl|τ) = 1.

A.6 Sensitivity to Prior

As mentioned previously, the joint prior distribution of the unknown rate parameters
θ is made up of independent gamma distributions given by Γ(α, k) with mean k/α. In the
main text, we assume that α is the same for the parameters β, σ, ρ, γ, while k varies and if
appropriate will be denoted by kβ, kσ, kρ, kγ . In the simulations we took these to be α = 1 and
kβ = kσ = 3, kρ = 2, kγ = 5. The prior distribution on −τ I1 is exponential with rate one, and
this is independent from the θ vector. In Figure 9, we compare the results in the main text
with results repeating the method with a different prior distribution for the SIR/SEIR/SEAIR
data assuming SIR/SEIR/SEAIR models respectively. The modified prior for the comparison
is kβ = 9/4, kγ = 3. These were chosen as alternative reasonable parameters for the flu. The
plots show that there was very little change between the two versions.
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