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Abstract 

Modern predictive models require large amounts of data for training and evaluation, absence 

of which may result in models that are specific to certain locations, populations in them and 

clinical practices. Yet, best practices for clinical risk prediction models have not yet 

considered such challenges to generalizability. Here we ask whether population- and group-

level performance of mortality prediction models vary significantly when applied to hospitals 

or geographies different from the ones in which they are developed. Further, what 

characteristics of the datasets explain the performance variation? In this multi-center cross-

sectional study, we analyzed electronic health records from 179 hospitals across the US with 

70,126 hospitalizations from 2014 to 2015. Generalization gap, defined as difference between 

model performance metrics across hospitals, is computed for area under the receiver operating 

characteristic curve (AUC) and calibration slope. To assess model performance by the race 

variable, we report differences in false negative rates across groups. Data were also analyzed 

using a causal discovery algorithm “Fast Causal Inference” that infers paths of causal 

influence while identifying potential influences associated with unmeasured variables. When 

transferring models across hospitals, AUC at the test hospital ranged from 0.777 to 0.832 (1st-

3rd quartile or IQR; median 0.801); calibration slope from 0.725 to 0.983 (IQR; median 

0.853); and disparity in false negative rates from 0.046 to 0.168 (IQR; median 0.092). 

Distribution of all variable types (demography, vitals, and labs) differed significantly across 

hospitals and regions. The race variable also mediated differences in the relationship between 

clinical variables and mortality, by hospital/region. In conclusion, group-level performance 

should be assessed during generalizability checks to identify potential harms to the groups. 

Moreover, for developing methods to improve model performance in new environments, a 

better understanding and documentation of provenance of data and health processes are 

needed to identify and mitigate sources of variation. 
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Author Summary 

With the growing use of predictive models in clinical care, it is imperative to assess failure 

modes of predictive models across regions and different populations. In this retrospective 

cross-sectional study based on a multi-center critical care database, we find that mortality risk 

prediction models developed in one hospital or geographic region exhibited lack of 

generalizability to different hospitals or regions. Moreover, distribution of clinical (vitals, labs 

and surgery) variables significantly varied across hospitals and regions. Based on a causal 

discovery analysis, we postulate that lack of generalizability results from dataset shifts in race 

and clinical variables across hospitals or regions. Further, we find that the race variable 

commonly mediated changes in clinical variable shifts. Findings demonstrate evidence that 

predictive models can exhibit disparities in performance across racial groups even while 

performing well in terms of average population-wide metrics. Therefore, assessment of sub-

group-level performance should be recommended as part of model evaluation guidelines. 

Beyond algorithmic fairness metrics, an understanding of data generating processes for sub-

groups is needed to identify and mitigate sources of variation, and to decide whether to use a 

risk prediction model in new environments. 

 

Introduction 

Validation of predictive models on intended populations is a critical prerequisite to their 

application in making individual-level care decisions since a miscalibrated or inaccurate 

model may lead to patient harm or waste limited care resources (1). Models can be validated 

either on the same population as used in the development cohort, named internal validity, or 

on a different yet related population, named external validity or generalizability (or 

sometimes transportability) (2). The TRIPOD (Transparent Reporting of a multivariable 

prediction model for Individual Prognosis Or Diagnosis) Statement strongly recommends 
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assessing external validity of published predictive models in multiple ways including testing 

on data from a different geography, demography, time period, or practice setting (3). 

However, the guidelines do not specify appropriate external validity parameters on any of the 

above factors. At the same time, recent studies in the computer science and biomedical 

informatics literature have indicated that sub-group performance of clinical risk prediction 

models by race or sex can vary dramatically (4,5), and clinical behavior can guide predictive 

performance (6). Within the statistics literature are several methods for computing minimum 

sample size and other best practices for assessing external validity of clinical risk prediction 

models (7–9). However, the assessment of sub-group-level performance and data-shifts are 

not explicitly considered in such guidance (10). Moreover, recent analyses have shown that 

clinical prediction models are largely being developed in a limited set of geographies, 

bringing significant concern regarding generalizability of models to broader patient 

populations (11). Amidst such rising challenges, an understanding of how differences among 

population and clinical data impact external generalizability of clinical risk prediction models 

is imperative.  

 

When a model fails to generalize for specific patient groups (such as racial or gender 

identities), using it to guide clinical decisions can lead to disparate impact on such groups. 

This raises questions of equity and fairness in the use of clinical risk prediction models, for 

which performance on diverse groups has been repeatedly lacking (12–14). Predictive 

discrimination quantifies how well a model can separate individuals with and without the 

outcome of interest (we study mortality prediction here). Calibration quantifies how well the 

predicted probabilities match with the observed outcomes. These measures can be used to 

check for aggregate model performance across a study sample or within groups, but do not 

illuminate variation across groups. Hence, in assessment of generalizability, we add another 

set of measures to our analyses which we refer to as “fairness” metrics, following the 
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algorithmic fairness literature (15–17). Such performance checks are important, especially 

given the evidence on racial bias in medical decision-making tools (4,13,14). 

 

The primary objective of this study is to evaluate the external validity of predictive models for 

clinical decision making across hospitals and geographies in terms of the metrics – predictive 

discrimination (area under the receiver operating characteristic curve), calibration (calibration 

slope) (18), and algorithmic fairness (disparity in false negative rates and disparity in 

calibration slopes). The secondary objective is to examine the possible reasons for 

performance changes via shifts in the distributions of different types of variables and their 

interactions. We focus on risk prediction models for in-hospital mortality in ICUs. Our choice 

of evaluation metrics are guided by the use of such models for making patient-level care 

decisions. We note that similar models (e.g., SAPS and APACHE scores) (19,20) are widely-

used for other applications as well such as assessing quality-of-care, resource utilization, or 

risk-adjustment for estimating healthcare costs (19–21), which are not the focus of this study. 

Recently, prediction models for in-hospital mortality have been prospectively validated for 

potential use (22), or in case of sepsis, have even been integrated into the clinical workflow 

(23). With access to large datasets through electronic health records, new risk prediction 

models leveraging machine learning approaches have been proposed, which provide 

considerable accuracy gains (24). Being flexible, such approaches might overfit to the 

patterns in a particular dataset, thus, raising concerns for their generalization to newer 

environments (25). We use the eICU dataset (26) as a test bed for our analyses. Past studies 

have employed the dataset for evaluating mortality prediction models (27,28). As the dataset 

was collected from multiple hospitals across the US, it allows us, in a limited way, to test 

external validity across hospitals, diverse geographies, and populations. 
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Materials and Methods 

Analyses are based on data obtained from the publicly-available eICU Collaborative Research 

Database (26), designed to aid remote care of critically-ill patients in a telehealth ICU 

program. The database is composed of a stratified random sample of ICU stays from hospitals 

in the telehealth program where the sample is selected such that the distribution of the number 

of unique patient-stays across hospitals is maintained (26). Data on 200,859 distinct ICU stays 

of 139,367 patients with multiple visits across 208 hospitals in the US between 2014 and 

2015 are included. We followed the Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) reporting guideline (29). 

 

Data Preprocessing 

We follow the feature extraction and exclusion procedures including the exclusion criteria 

used by Johnson et al (27) which removes patient stays conforming to APACHE IV exclusion 

criteria (20) and removes all non-ICU stays. APACHE IV criteria excludes patients admitted 

for burns, in-hospital readmissions, patients without a recorded diagnosis after 24 hours of 

ICU admission, and some transplant patients (26). Only patients 16 years or above are 

included. Age of patients above 89 years (which is obfuscated to adhere to HIPAA 

provisions) is coded as 90. After pre-processing, the dataset consists of 70,126 stays from 179 

hospitals. For analyses, data is grouped at two levels – by individual hospitals and by U.S. 

geographic regions (Northeast, South, Midwest, West) (30).  Hospital-level analyses are 

restricted to the top 10 hospitals with the most stays, all of which have at least 1631 stays, to 

ensure enough examples for model training and evaluation. Data is split into ten separate 

datasets using a hospital identifier for hospital-specific analyses and into four separate 

datasets using a region identifier for region-specific analyses. The outcome label is in-hospital 
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mortality (binary). Mortality rates differed in the range of 3.9%-9.3% (1st-3rd quartile) across 

hospitals. Summary statistics by hospital and region are included in Table S1 and Table S2. 

 

Mortality Prediction Model 

Features from the SAPS II risk scoring model (19) from the first 24 hours of the patient-stay 

starting from ICU admission were extracted and are summarized in Table S3. These include 

12 physiological measurements (vitals and labs), age, and an indicator for whether the stay 

was for an elective surgery. For features with multiple measurements, their worst values 

determined using the SAPS II scoring sheet (Table 3 in Le Gall et al (19)) are extracted. For 

example, for Glasgow Coma Score, we take the minimum value among the measurements. As 

previously employed for mortality prediction (27), we use logistic regression with ℓ� 

regularization using the implementation in scikit-learn v0.22.2 package with default 

hyperparameters (31). Missing values in features are imputed with mean values computed 

across the corresponding columns of the full dataset. We experimented with other imputation 

methods as well, specifically imputation with mean or median across the train datasets and 

single imputation with a decision tree (77), however, the conclusions did not change. Features 

are then standardized to zero mean and unit variance using statistics from the train datasets. 

As sample size used in training models can affect generalizability, we control for this factor 

by fixing the number of samples used for training and testing. We use 1631 (or 5000) samples 

from each hospital (or region) while training and testing models. For model development, 

each dataset (for a hospital or region) is randomly split with the training set comprising 90% 

of samples and the validation set comprising the remaining 10%. The test set comprises all 

samples from the hospital (or region) different from the one included in the training set. 
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Statistical Analysis 

Performance Metrics: Discrimination ability of the models is assessed using area under the 

receiver operating characteristic curve (AUC). For binary outcomes, calibration slope (CS) is 

computed as the slope of the regression fit between true outcomes and logits of the predicted 

mortality, with a logit link function. A perfectly calibrated model has a CS of 1. A value 

lower than 1 indicates that the risk estimates are extreme, i.e. overestimation for high risk 

patients and underestimation for low risk patients, and suggests overfitting of the model (32). 

Hence, a value close to 1 is desirable. In addition to reporting AUC and CS computed on the 

test sets, we also report how much the metrics differ from their values computed on the 

validation set. This difference, known as the generalization gap, provides a quantitative 

measure of generalization performance (e.g. Jiang et al (33)). If this difference is high, i.e. the 

test metrics are worse than the train metrics, the model is said to lack generalizability. The 

allowable difference between test and train depends on the application context. Studies 

typically report confidence intervals around the difference and/or the percentage change 

relative to the train performance (34). To measure fairness of model predictions, we use the 

racial/ethnic attributes to form two groups – African American, Hispanic, and Asian as one 

group and the rest as another. These will be referred to as minority and majority groups. Note 

that the racial/ethnic attributes are used only for the purposes of fairness analysis, these are 

not part of the model building process. We acknowledge that aggregating multiple groups 

does not represent an exposition of which groups are advantaged in the models. Based on the 

available dataset sizes, this approach serves to illustrate differences that would ideally be 

unpacked in detail in future work addressing such issues. Disparity in false negative rates 

(DisparityFNR), and disparity in calibration slope (DisparityCS) are computed as the 

difference between the respective metric’s value for the minority and the majority group. 

Differences in these two metrics have been employed in recent studies for bias analysis 

(16,17). FNR quantifies the rate at which patients with the observed outcome of death were 
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misclassified. Thus, a high FNR for the score may lead to an increase in undertreatment, and 

high DisparityFNR (in absolute value) highlights large differences in such undertreatment 

across groups. For the prediction threshold for FNR we use the mortality rate at the test 

hospital (assuming it is known beforehand). This threshold can be chosen in a more principled 

way, for example, based on decision-curve analysis (18), which will depend on the 

application context. We further acknowledge that there are myriad ways to define fairness 

that will depend on the context of the risk prediction’s use and inputs from stakeholders (35). 

 

Dataset Differences: To address our secondary objective of studying external validity-specific 

performance changes, we test for dataset shifts across hospitals and geographies (i.e. whether 

the distributions of two datasets differ), and use causal graph discovery to explore the reasons 

for these differences. Dataset shifts are measured using squared maximum mean discrepancy 

(MMD2) (36). We perform the two-sample tests under the null hypothesis that the 

distributions are the same and threshold the resulting p-values at the significance level of 

0.05. Details of the MMD2 metric and the hypothesis test are included in Method S1. To 

explain the shifts we leverage the recently introduced framework of Joint Causal Inference 

(37) which allows constructing a single graphical representation of how variables relate to 

each other, in the form of a causal graph. We use the Fast Causal Inference (FCI) algorithm 

(38) for constructing the causal graph as it is methodologically well-developed and requires 

fewer assumptions on the data generating process as it allows for the presence of unobserved 

variables affecting the observed variables in the data (i.e. unobserved confounders). We also 

include race as an indicator in the datasets, before running FCI, to study the causes of 

unfairness with respect to the race variable. Details of the causal modeling are included in 

Method S2. Note that we use causal graphs as a compact representation of (conditional) 

independencies in the datasets. These are not meant to make statements about the causal 
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effect of treatments on physiological variables, for which randomized controlled trials and 

other methods may be used to gather better evidence. 

 

The metrics of interest – AUC, CS, DisparityFNR, DisparityCS, p-value, and MMD2 – are 

averaged over 100 random subsamples of the datasets (i.e. resampling without replacement). 

While aggregating across hospitals (or regions), we report the median, 1st, and 3rd quartiles 

across all train-test set pairs which includes the 100 random subsamples in each pair. 

[Figure 1 here] 

 

Results 

Figure 1 demonstrates the highly varied external validity of models across hospitals based on 

AUC, CS, generalization gap in AUC and in CS, DisparityFNR, and DisparityCS. Across all 

train-test hospital pairs, median AUC is 0.801 with 1st-3rd quartile range (IQR) as 0.778 to 

0.832, and CS is 0.853 (IQR 0.725 to 0.983). AUCs are lower than the typical values for 

mortality risk prediction models of around 0.86 (19,22), although AUCs in the same range 

(around 0.8) have been observed in other studies (albeit in different populations) and were 

considered acceptable (39–41). CS of around 0.8, as observed in our case, is considered to 

indicate overfitting (7). Transferring a model trained on hospital ID 73, which is the hospital 

with the most samples, to other hospitals results in a median gap in AUC of -0.087 (IQR -

0.134 to -0.046) and a median gap in CS of -0.312 (IQR -0.502 to -0.128). In aggregate, we 

observe a decline in the performance on the test hospitals relative to that on the train hospitals 

(Figure 1a). Across all train-test hospital pairs, the median generalization gap in AUC is -

0.018 (IQR -0.065 to 0.032) and the median generalization gap in CS is -0.074 (IQR -0.279 to 

0.121). Figure 1b shows that the majority of models have CS of less than 1, indicating 

consistent miscalibration of mortality risk at test hospitals. This conforms with the typical 
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observation of good discriminative power but poor calibration of SAPS II models (39,41–43). 

The median values of AUC and CS are negative, indicating that both of them decrease in 

majority of the cases upon transfer. For comparison, the generalization gap in AUC for the 

SAPS II score in the original study by Le Gall et al (19) was -0.02 (AUC decreased to 0.86 in 

validation from 0.88 in training data), which is the same as the median gap here. Thus, for 

more than half of the hospital pairs the AUC drop is worse than the acceptable amount found 

in the original SAPS II study. Percentage changes in AUC and CS from train to test set, 

reported in Table S4 also indicate substantial drop in performance (in the range of -2.5% to -

31.5% in AUC and -15.9% to -45.4% in CS). In some cases, for example for hospital ID 252, 

we observe an improvement in AUC (fourth row from bottom, Figure 1d). With regard to 

fairness metrics, DisparityFNR (absolute value) has median 0.093 (IQR 0.046 to 0.168), i.e. 

false negative rates across the racial groups differ by 4.6% to 16.8%. DisparityCS, i.e. the 

absolute value of difference in calibration across racial groups, is large as well (median 0.159; 

IQR 0.076 to 0.293). Considering that the ideal DisparityCS is 0, when CS is 1 for both the 

groups, the observed DisparityCS of 0.159 is large. There are both positive and negative 

values in the disparity metrics (Figures 1c, 1f), i.e. models are unfair to the minority groups 

for some pairs and vice versa for others. Note that disparity metrics for hospital ID 338 are 

considerably different from others (third column in Figures 1c, 1f) due to the skewed race 

distribution with only 74 (3.2%) samples from the minority groups (Table S1). We observe 

that the variation across hospitals in fairness metrics (DisparityFNR, and DisparityCS) is not 

captured by the variation in discrimination and calibration metrics (AUC and CS). Thus, 

fairness properties of the models are not elucidated by the standard metrics and should be 

audited separately. 

[Figure 2 here] 

Next, given concerns about the development of machine learning models in a limited set of 

geographies (11), we pool hospitals by geographic region, and validate models trained in one 
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region and tested on another (Figure 2). Performance in terms of AUC and CS across regions 

improves as a result of pooling hospital data. Overall, AUC varies in a small range (median 

0.804; IQR 0.795 to 0.813) as does CS (median 0.968; IQR 0.904 to 1.018). The same can be 

observed through generalization gaps in AUC and CS which are smaller – median 

generalization gap in AUC is -0.001 (IQR -0.017 to 0.016) and median generalization gap in 

CS is -0.008 (IQR -0.081 to 0.075). However, such pooling does not alleviate fairness metric 

disparities. DisparityFNR (absolute value) has a median value of 0.040 (IQR 0.018 to 0.074). 

This translates to, for example, a disparity between minority and majority groups of 6.36% 

(95% CI -7.66% to 17.42%) and 8.06% (95% CI -3.81% to 19.74%) when transferring 

models from Midwest to West and Northeast to West respectively (though CIs are large, both 

values are greater than 0%; one-sided one-sample t-test, p=10��). DisparityCS (absolute 

value) is still high with a median value of 0.104 (IQR 0.050 to 0.167). For example, 

transferring models from South to Northeast (the region with the least minority population 

size) has a high DisparityCS (median 0.108; IQR -0.015 to 0.216). Percentage change in the 

test set metrics relative to the train set is reported in Table S5 which shows significant 

changes in DisparityFNR (ranging from -33% to 65%) and DisparityCS (ranging from -52% 

to 67%). Apart from geography, differences across hospitals can also be due to differences in 

patient load and available resources. In Figure S2 we include results for more fine-grained 

pooling of hospitals based on their number of beds, teaching status, and region where we 

again find consistent lack of generalizability in fairness metrics. 

To investigate reasons for these performance differences across hospitals and regions, we first 

consider whether the corresponding datasets differ systematically. Figure 3 shows results 

from statistical tests for dataset shifts across hospitals and regions. Shifts across all pairs of 

hospitals are significant. Some hospitals are considerably different from others like hospital 

ID 73 in the first column of Figure 3d, which has significantly lower mortality rate than the 

other hospitals (Table S1). 
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[Figure 3 and 4 here] 

Finally, we study explanations for the observed shifts in Figure 3a via individual features. The 

discovered causal graph is included in Figure S3 which shows the estimated causal 

relationships among clinical variables, and which of these variables shift in distribution based 

on hospital, geography and other factors (i.e. which variables have a direct arrow from the 

indicators like hospital or region). Figure 4 summarizes the shifts from the causal graph. From 

Figure 4, we note that the distribution of all fourteen features and the outcome are affected 

either directly or indirectly by the hospital indicator. However, restricting to direct effects of 

hospital (first row in Figure 4), we observe that shifts are explained by few of the features – 

demography (age and race), vitals (3 out of 6), and labs (3 out of 6). Not all vitals and labs 

change directly as a result of a change in hospitals; changes in 3 of the vitals and 3 of the labs 

are mediated through changes in other features. We attempt to further understand these 

changes across hospitals by including hospital-level contextual information, namely, their 

region, size (number of beds), and teaching status. We observe that there exists common 

features that explain shifts across the three attributes (different rows in Figure 4). Thus, some 

of the variation across hospitals is explained through its region, size, and teaching status. But, 

notably, the three attributes do not explain all variation among hospitals and more contextual 

information is required. For the fairness analysis, we observe the direct effects of the race 

variable (last row in Figure 4). There are direct effects from the race variable to most vitals (4 

out of 6), labs (4 out of 6), and indicator for elective surgery. These direct effects support past 

observations made on racial disparities, e.g. in access to specialized care (race → elective 

surgery) (44) and in blood pressure measurements (race → sysbp or systolic blood pressure) 

(45). Out of the 9 features that are directly affected by the race variable, 4 also vary across the 

hospitals. This suggests that the distribution of clinical variables for the racial groups differs 

as we go from one hospital to another. As a result, the feature-outcome relationships learnt in 
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one hospital will not be suitable in another, leading to the observed differences in model 

performance (as quantified by the fairness metrics) upon model transfer. 

 

 

Discussion 

We retrospectively evaluate generalizability of mortality risk prediction models using data 

from 179 hospitals in the eICU dataset. In addition to commonly-used metrics for predictive 

accuracy and calibration, we assessed generalization in terms of algorithmic fairness metrics. 

To interpret results, we investigated shifts in the distribution of variables of different types 

across hospitals and geographic regions, leading to changes in the metrics. Findings highlight 

that recommended measures for checking generalizability are needed, and evaluation 

guidelines should explicitly call for the assessment of model performance by sub-groups.  

Generalizability of a risk prediction model is an important criteria to establish reliable and 

safe use of the model even under care settings different from the development cohort. A 

number of studies have reported lack of generalizability of risk prediction models across 

settings such as different countries (46–49), hospitals (27,50–53), or time periods (54–56). 

For instance, Austin et al (57) study the validity of mortality risk prediction models across 

geographies in terms of discrimination and calibration measures. They find moderate 

generalizability, however, the hospitals considered belonged to a single province in Canada. 

More importantly, these works did not investigate generalizability for different groups in the 

patient cohorts. Results in Figure 1 show that the fairness characteristics of the models can 

vary substantially across hospitals. Prior work investigating algorithmic fairness metrics in a 

clinical readmission task (4) did not investigate changes in the metric when models are 

transferred across care settings. A recent study of a mortality prediction model showed good 

performance across 3 hospitals (1 academic and 2 community-based) as well as good 
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performance for subgroups within a hospital (22). However, the change in performance for 

the subgroups across hospitals was not explored.  

One strategy to tackle the lack of generalizability is to pool multiple hospital databases to 

potentially increase diversity of the data used in modeling (58). However, available databases 

may not faithfully represent the intended populations for the models even after pooling. A 

recent study (11) found that US-based patient cohorts used to train machine learning models 

for image diagnosis were concentrated in only three states. However, the effect of using 

geographically-similar data on generalizability and fairness had not been studied previously. 

Results in Figure 2 suggest that pooling data from similar geographies may not help mitigate 

differences in model performance when transferred to other geographies. This finding adds 

more weight to the concerns raised about possible performance drop when transferring 

models from data-rich settings to low-resource settings (59). 

Prior work has postulated multiple reasons for lack of generalizability (76) including 

population differences and ICU admission policy changes (46). In Davis et al (54), reasons 

including case mix, event rate, and outcome-feature association are assessed. However, 

specific variables which shift across clinical datasets have not been examined. Through an 

analysis of the underlying causal graph summarized in Figure 4, we identify specific features 

that explain the changes in data distributions across hospitals. Demographics (age and race) 

differ across hospitals which is aligned with population difference being the common reason 

cited for lack of generalizability (46,54). We find that vitals and labs differ as well but only a 

few change as a direct consequence of changes in the hospital setting. Often, the changes are 

mediated via a small number of specific vitals and labs. For understanding the root causes of 

the shifts, causal graph analysis helps to narrow down candidate features to analyse further. 

Significant differences found across ICUs in feature distributions and model performance 

calls for a systematic approach to transferring models. Understanding the reasons for the lack 

of generalizability is the first step to deciding whether to transfer a model, re-training it for 
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better transfer, or developing methods which can improve transfer of models across 

environments (60). Factors affecting generalizability can potentially be due to variations in 

care practices or may represent spurious correlations learned by the model. These findings 

reinforce calls to better catalog clinical measurement practices (61) and continuously monitor 

models for possible generalizability challenges (76). 

Beyond the descriptive analyses of dataset shifts with causal graphs, in Figure S1, we 

examine whether the shifts can predict lack of generalizability. We plot the generalization gap 

in AUC and CS against the amount of shift, as measured in MMD2
,
 and report the correlation 

coefficient. Although we find only low correlation, this suggests a need to develop better 

methods of quantifying dataset shifts that can predict future model performance. One such 

metric derived from a model trained to discriminate between training and test samples was 

found to explain the test performance well (focusing on environments that primarily differ by 

case-mix, without attention to specific clinical or demographic shifts) (62). We hope that 

current work motivates development and evaluation of such metrics on larger and more 

diverse populations and datasets. Recent work has also proposed methodological advances to 

ensure transferability of models across settings, for example, by pre-training on large datasets 

from related machine learning tasks (63,64) and with the help of causal knowledge about 

shifts (65–67). Better metrics for dataset shift can help practitioners decide whether to transfer 

a model to a new setting based on how large the shift is between hospitals, for example.  

Importantly, findings here showed that the race variable often mediated shifts in clinical 

variables. Reasons for this must be disentangled. As race is often a proxy variable for 

structural social processes such as racism which can manifest both through different health 

risk factors as well as different care (differences in health care received by patients’ racial 

group are well-documented) (68–71), shifts across hospitals cannot be mitigated simply by 

population stratification or algorithmic fairness metrics alone. Indeed, better provenance of 

the process by which data is generated will be critical in order to disentangle the source of 
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dataset differences (for example, if clinical practices or environmental and social factors are 

giving rise to different healthcare measures and outcomes). Following guidelines developed 

for documenting datasets (72) and models (73) in the machine learning community, similar 

guidelines should be established for models in healthcare as well (10). An example is the 

proposal for reporting subgroup-level performances in MI-CLAIM checklist (74). In sum, our 

findings demonstrate that data provenance, as described above, is needed in addition to 

applying algorithmic fairness metrics alone, to understand the source of differences in 

healthcare metrics and outcomes (e.g. clinical practice versus other health determinants), and 

assess potential generalizability of models. 

 

Limitations 

The main limitation of this study is that the results are reported for a collection of ICUs within 

the same electronic ICU program by a single provider. This collection captures only a part of 

the diversity in care environments that a mortality prediction model might be deployed in. 

Further, our investigation is limited to models constructed using the SAPS II feature set 

containing 14 hand-crafted features for the mortality prediction task. Though we employ 

widely-used methods, our analysis is limited by the specific methods used for computing 

dataset differences, building predictive models and causal graphs. For analyzing reasons for 

dataset shifts, we could only investigate explanations based on the 14 features along with 

limited hospital characteristics (such as geographic region, number of beds, and teaching 

status). Multiple factors are left unrecorded in the eICU database, such as patient load, budget 

constraints, and socioeconomic environment of the hospital’s target population, that may 

affect the care practices and outcomes recorded in the dataset. We do not investigate dataset 

shifts in time, which are common (75), as the eICU database includes patient records only for 

a year.  
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Conclusion 

External evaluation of predictive models is important to ensure their responsible deployment 

in different care settings. Recommended metrics for performing such evaluation focus 

primarily on assessing predictive performance of the models while ignoring their potential 

impact on health equity. Using a large, publicly-available dataset of ICU stays from multiple 

hospital centers across the US, we show that models vary considerably in terms of their 

discriminative accuracy and calibration when validated across hospitals. Fairness of models, 

quantified using their differential performance on racial groups, is found to be lacking as well. 

Furthermore, fairness metrics continue to be poor when validating models across US 

geographies and hospital types. Importantly, the pattern of out-of-sample variation in the 

fairness metrics is not the same as that in the accuracy and calibration metrics. Thus, the 

standard checks do not give a comprehensive view of model performance on external 

datasets. This motivates the need to include fairness checks during external evaluation. While 

examining reasons for the lack of generalizability, we find that population demographics and 

clinical variables differ in their distribution across hospitals, and the race variable mediates 

some variation in clinical variables. Documentation of how data is generated within a hospital 

where a model is developed specific to sub-groups, along with development of metrics for 

dataset shift will be critical to anticipate where prediction models can be transferred in a 

trustworthy manner.  
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Figure 3. Statistical tests for dataset shifts. 
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Figure 4. Shifts in variable distributions due to hospital, region, and other factors based on 

mortality causal graph. 
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Figures 

 

Figure 1. Generalization of performance metrics across individual hospitals. Results of 

transferring models across top 10 hospitals by number of stays. Models are trained and tested 

on a fixed number of samples (1631, the least in any of the 10 hospitals) from each hospital. 

Results are averaged over 100 random subsamples for each of the 10×10 train-test hospital 

pairs. All 6 metrics show large variability when transferring models across hospitals. 

Abbreviations: AUC, area under ROC curve; CS, calibration slope; FNR, false negative rate. 
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Figure 2. Generalization of performance metrics across US geographic regions. Results 

of transferring models after pooling hospitals into 4 regions (northeast, south, midwest, west). 

Models are trained and tested on 5000 samples from each region. Results are averaged over 

100 random subsamples for each of the 4×4 train-test hospital pairs. DisparityFNR and 

DisparityCS show large variability when transferring models across regions. Abbreviations: 

AUC, area under ROC curve; CS, calibration slope; FNR, false negative rate. 
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Figure 3. Statistical tests for dataset shifts. Results for two-sample tests with and without 

pooling of hospitals by region. Test results are plotted in (a,c) and test statistics are plotted in 

(b,d) to examine the test results in more detail. Since the order of hospitals considered in the 

two-sample test does not change the test statistic, we plot only the lower halves of the 

matrices. Results are averaged over 100 random subsamples. Feature distribution changes 

across all hospital and region pairs. 
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Figure 4. Shifts in variable distributions due to hospital, region, and other factors based on 

mortality causal graph. Each row represents (in red) the features which explain the shifts 

across each of the indicators labeling the row, i.e. the features with an edge from the indicator 

in the causal graph. For instance, shift across the hospital ID indicator (first row) is explained 

by shifts in the distributions of age, race, temp (or temperature), urine output, and so on. We 

observe that shifts are explained by changes in a few variables which are common across 

indicators. Full forms of the abbreviated feature names are added in Table S3. 
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