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Abstract

Gene-based tests are valuable techniques for identifying genetic factors in complex
traits. Here we propose a novel gene-based testing framework that incorporates data on
long-range chromatin interactions, several recent technical advances for region-based tests,
and leverages the knockoff framework for synthetic genotype generation for improved gene
discovery. Through simulations and applications to GWAS and whole-genome sequencing
data for multiple diseases and traits we show that the proposed test increases the power over
state-of-the-art gene-based tests in the literature, identifies genes that replicate in larger
studies, and can provide a more narrow focus on the possible causal genes at a locus by
reducing the confounding effect of linkage disequilibrium. Furthermore, our results show
that incorporating genetic variation in distal regulatory elements tends to improve power
over conventional tests. Results for UK Biobank and BioBank Japan traits are also avail-
able in a publicly accessible database that allows researchers to query gene-based results
in an easy fashion.
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Significance: Gene-based tests are important tools for elucidating the genetic basis of com-
plex traits. Despite substantial recent efforts in this direction, the existing tests are still limited
owing to low power and detection of false positive signals due to the confounding effects of
linkage disequilibrium. In this paper we describe a novel gene-based test that attempts to
address these limitations by incorporating data on long-range chromatin interactions, several
recent technical advances for region-based testing, and the knockoff framework for synthetic
genotype generation. Through extensive simulations and applications to multiple diseases and
traits, we show that the proposed test increases the power over state-of-the-art gene-based tests
and provides a narrower focus on the possible causal genes involved at a locus.

1 Introduction
Gene-based association tests are commonly used to identify genetic factors in complex traits.
Relative to individual variant or window-based tests they have appealing features, including
improved functional interpretation and potentially higher power due to lower penalty for mul-
tiple testing. Due to the recent advances in massively parallel sequencing technologies, a large
number of gene-based tests have been proposed in the literature to test for association with
genetic variation identified in sequencing studies1–6. One important limitation of the current
gene-based tests is that they often fail to incorporate the epigenetic context in noncoding re-
gions. Moreover, how to best analyze the noncoding part of the genome to increase power
remains unclear. Recently, several sliding window approaches have been proposed to scan the
genome with flexible window sizes, and appropriate adjustments for multiple testing while ac-
counting for correlations among test statistics7,8. However, these approaches are essentially
scanning the genome in a one-dimensional (1D) fashion and fail to take into account the three
dimensional (3D) structure of the genome9,10. Furthermore, because they scan the genome ag-
nostically, the burden of multiple testing is high which may lead to low power to identify true
associations. These 1D approaches also suffer from interpretability issues similar to genome-
wide association studies (GWAS) and therefore require follow-up analyses to be performed in
order to identify the target genes. Several existing tests such as MAGMA, H-MAGMA and
STAAR-O11–13 attempt to link variants to their cognate genes based on physical proximity or
chromatin interaction data. We will compare our proposed tests to these existing approaches
both conceptually and empirically, and we will show that our tests are more flexible and power-
ful than these existing tests. Furthermore, when individual level data are available, the proposed
tests can produce a more narrow list of associated genes at a locus by reducing the confounding
effect of linkage disequilibrium (LD), a unique aspect of our gene-based test.

A related and popular gene-based strategy are the transcriptome-wide association studies
(TWAS)14,15 that use GWAS data for a specific trait combined with genetic variation-gene ex-
pression repositories such as GTEx16 to perform gene-based association tests. However, TWAS
are limited to eQTLs being present in the reference datasets, and the majority of genetic asso-
ciations cannot be clearly assigned to existing eQTLs17,18. Therefore they may have reduced
power to identify the relevant genes for the trait of interest.

Regulatory elements, including enhancers and promoters, play an important role in control-
ling when, where, and to what degree genes will be expressed. Most of the disease associated
variants in GWAS lie in non-coding regions of the genome, and it is believed that a majority of
causal noncoding variants reside in enhancers19. However, identifying enhancers and linking
them to the genes they regulate is challenging. A number of methods have emerged in recent
years to identify promoter-enhancer interactions. These techniques range from 3C (chromatin
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conformation capture), which is limited to the detection of a single interaction, to 4C (which can
detect all loci that interact with a single locus), to many-to-many mapping technologies possible
using targeted enrichment (e.g. ChIA-PET, HiChIP, and PLAC-seq). Hi-C maps the complete
DNA interactome and elucidates the spatial organization of the human genome20–23. Hi-C pro-
vides direct physical evidence of interactions that may mediate gene regulatory relationships
and can aid in identifying putative regulatory elements for a gene of interest. However, due to
the prohibitive sequencing costs of the Hi-C experimental technique it is challenging to obtain
high resolution (e.g. 1 Kb) Hi-C data in a large number of cell-types and tissues at multiple
developmental times.

We propose here comprehensive gene-based association tests for common and rare genetic
variation in both coding and noncoding, putative regulatory regions, and which incorporate
several recent advances for region-based tests, including (1) scanning the genic and regula-
tory regions with varied window sizes, (2) the aggregated Cauchy association test to combine
p-values from single variant, burden and dispersion (SKAT) tests, (3) incorporation of multi-
ple functional annotations, and (4) the saddlepoint approximation for unbalanced case-control
data24–27. To further improve the power and the ability to prioritize putative causal genes at
significant loci when individual level data are available, we leverage a recent development in
statistics, namely the knockoff framework for knockoff genotype generation28 that helps con-
trol the false discovery rate (FDR) under arbitrary correlation structure, and attenuates the con-
founding effect of LD. One can think of the knockoff genotypes as synthetic, noisy copies of the
original genotypes which resemble the original data in terms of LD structure but are condition-
ally independent of the trait of interest, given the original genotypes. Although conventional
methods such as the Benjamini-Hochberg procedure are also designed to control the FDR29,
they cannot guarantee FDR control at the target level with arbitrarily correlated p-values. Fur-
thermore, unlike the knockoff framework implemented here, the conventional methods do not
naturally account for correlations due to LD.

We evaluate the performance relative to existing methods using simulations and applica-
tions to multiple studies, including GWAS studies for neuropsychiatric and neurodegenerative
diseases, whole-genome sequencing studies for Alzheimer’s Disease from the Alzheimer’s Dis-
ease Sequencing Project (ADSP), and for lung function from the NHLBI Trans-Omics for Pre-
cision Medicine (TOPMed) Program. We also provide results of applications to UK Biobank
and BioBank Japan binary and continuous traits.

2 Results

2.1 Overview of the proposed gene-based association tests
We provide here a brief overview of the proposed gene-based tests that aim to comprehensively
evaluate the effects of common and rare, coding, proximal and distal regulatory variation on a
trait of interest. A workflow depicting the overall gene-based testing approach proposed here is
shown in Figure 1. Briefly, we build our final test, GeneScan3DKnock, progressively, starting
with a test focused on scanning the gene body region (i.e. the interval between the transcription
start site and the end of 3’ UTR) with varied window sizes. We refer to this test as GeneScan1D.
We extend this test by incorporating genetic variants residing in putative regulatory elements
such as promoters and enhancers. In particular, we use chromatin immunoprecipitation se-
quencing (ChIP-seq) peak data extracted from the ChIP-Atlas database to identify promoter
regions, and data from the GeneHancer database to link enhancers to their target genes30. We
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also use the activity-by-contact (ABC) model to predict functional enhancer-gene connections
for 5 cell types and tissues31. This is the GeneScan3D test. Finally, when individual level data
are available, we implement the knockoff framework for a more powerful gene discovery and
fine-mapping approach, and refer to this test as GeneScan3DKnock.

We take advantage of recent advances in region-based tests for sequencing data4,24,26 to
perform computationally efficient and comprehensive tests with genetic variation in a gene
(including variants located in proximal and distal regulatory elements), while scanning the gene
with a range of window sizes for improved power. The framework allows for the incorporation
of a variety of functional genomics annotations as weights for individual variants included in
the tests. Furthermore, a novel aspect of our testing framework is the derivation of knockoff

statistics based on the generation of knockoff (synthetic) genetic data that resemble the original
genotypes in terms of correlation structure but are conditionally independent of the outcome
variable given the true genotypes8,28,32. The knockoff genotypes are essentially noisy copies
of the original genotypes and serve as negative controls for the original genotype data; they
help select important genes while controlling the FDR. GeneScan3DKnock computes for each
gene a knockoff statistic W that measures the importance of each gene (similar to a p-value),
and then uses the knockoff filter to detect genes that are significant at a specified FDR target
level28. We also compute a q-value for each gene. A q-value is similar to a p-value, except
that it measures significance in terms of FDR rather than FWER, and already incorporates
correction for multiple testing. The knockoff version of the gene-based test has unique features
relative to the standard gene-based tests, including improved power and ability to prioritize
causal genes over associations due to LD. The details on these specific tests can be found in the
Methods section.

We compare with the nearest competitor gene-based tests in the literature, namely MAGMA/H-
MAGMA11,12, TWAS/FUSION15 and STAAR-O13. We also show comparisons with the re-
cently proposed window-based test KnockoffScreen8.

2.2 Simulation studies
Power and Type-I error rate evaluation for a single gene

We conducted simulation studies in order to (1) examine the Type-I error rates of the proposed
tests, GeneScan1D and GeneScan3D, under different significance levels and to (2) evaluate
the potential power gain by incorporating the regulatory elements. For power comparisons we
considered the nearest competitor gene-based tests, MAGMA/H-MAGMA and STAAR-O.

For Type-I error rate simulations, we use real COPDGene TOPMed whole-genome se-
quencing data, with n = 5, 593 for a continuous trait and n = 4, 450 for a binary trait. We
randomly select 10 genes (average gene length 25 Kb) and for each selected gene, we ran-
domly select R = 2 GeneHancer and ABC enhancers (average enhancer length 1.35 Kb). For
each selected gene and the corresponding enhancers, we use the real genotype data, while the
phenotype data are simulated as below:

• For a continuous trait: Yi = Zi + εi,

• For a binary trait: logit(P(Yi = 1| Zi)) = α0 + Zi,

where Zi ∼ N(0, 1) is a covariate and εi ∼ N(0, 1) is the standard normal error; Zi and εi are
independent. For binary trait, equal number of cases and controls are simulated. For GeneS-
can1D and GeneScan3D we use two window sizes, 1 Kb and 5 Kb to scan the gene region. All
variants, and common variants only are considered in the Type-I error rate simulation studies.
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To evaluate power and compare with existing tests such as MAGMA/H-MAGMA and
STAAR-O, we use the same whole-genome sequencing data. We randomly select 10 genes
(average length 25 Kb) and, for each selected gene, we randomly select R = 10 GeneHancer
and ABC enhancers (average enhancer length 1.87 Kb). Power is computed for each gene sep-
arately, and the average over the 10 genes is reported. We make use of the real genotypes for
the selected genes plus and minus a 5 Kb buffer region, and for the corresponding enhancers.
For each gene, the phenotype data are generated as follows:

• For a continuous trait: Yi = β1Gi1 + · · · βsGis + Zi + εi,

• For a binary trait: logit(P(Yi = 1| Zi,Gi)) = α0 + Zi + β1Gi1 + · · · βsGis,

where Gi j denotes the genotypes of randomly selected causal variants and β j’s are the corre-
sponding effect sizes. For binary trait, equal number of cases and controls are simulated. We
set 2% of the variants in the gene and buffer region to be causal, all within a 2 Kb signal win-
dow. For each enhancer, we set 2% (uniformly distributed) variants to be causal. The effect
size of the causal variant j is assumed to be β j = c|log10MAF j|. We assume c = 0.25 for the
continuous trait and c = 0.6 (e.g. OR = 6.05, when MAF = 0.001) for the binary trait.

For GeneScan1D and GeneScan3D we use three window sizes for scanning, 1 Kb, 5 Kb and
10 Kb. We apply MAGMA on the gene plus and minus 5 Kb buffer region. For GeneScan3D
and H-MAGMA we incorporate R = {2, 5, 10} enhancers. We also conduct STAAR-O gene-
centric analyses on (1) the entire gene body and (2) the same R = {2, 5, 10} enhancers, and then
combine the STAAR-O p-values for these elements using the Cauchy combination method.
As detailed in the Methods section, to allow for fair comparisons, for STAAR-O we use the
same weighting and MAF/MAC thresholds as used for the proposed tests. For the sake of
completeness, we also run the default setting of STAAR-O gene-centric analyses focused on
rare variants. Finally, we adjust for 10 principal components of ancestry.

Type-I error rate. We conducted 107 replications to examine the empirical Type-I error rate
under both continuous and binary traits (Table S1). For continuous traits, the Type-I error rates
were well controlled in all analyses under moderate significance levels 10−3, 10−4 and 10−5.
Even for a stringent significance level of 2.5 × 10−6, the Type-I error rates fall within the 95%
confidence interval: (1.52 × 10−6, 3.48 × 10−6). For binary phenotypes, the Type-I error rates
are slightly conservative at different levels.

Power. We evaluated the empirical power at significance level 2.5×10−6 using 10,000 replica-
tions (Figures 2(a) and S1(a)). As shown, GeneScan3D and STAAR-O have important power
advantages relative to H-MAGMA, likely due to their better tolerance of noisy variation, as
also demonstrated below. GeneScan3D also exhibits higher power than STAAR-O, likely due
to the sliding window scanning implemented in GeneScan3D. The 3D tests overall tend to be
more powerful than the 1D tests, with the relative benefits diminishing as the number of sig-
nal enhancers decreases. STAAR-O with the default settings (focused on rare variants only)
has lower power performance (Figure S2(a)) as expected given that our simulations include
common causal variants, in addition to rare causal variants.

Robustness to noisy enhancers. When performing the 3D analyses, it is likely that some of
the putative regulatory elements do not contain any signal variants. We conducted additional
power simulation studies to evaluate the performance when only R = {2, 5} enhancers of a
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total of 10 enhancers for a gene contain any signal variants. We compared with the power of
the oracle approach, i.e. when only the signal containing enhancers are included in the analy-
ses (Figures 2(a), S1(a) and S2(a)). GeneScan3D and STAAR-O exhibit negligible power loss,
suggesting that they are robust to inclusion of noisy enhancers, unlike H-MAGMA which is less
robust in such realistic settings. This empirical observation is consistent with the theoretical
expectation; while GeneScan3D/STAAR-O combine signal from individual enhancers using
the Cauchy p-value combination method and hence are expected to maintain strong power in
the presence of noisy enhancers, H-MAGMA is based on a principal component regression ap-
proach and hence combines genetic variants across multiple enhancers, rendering it less robust
in the presence of noisy enhancers.

Power and false-discovery rate (FDR) evaluation with multiple causal genes

One novel aspect of the proposed knockoff-based test is that it allows for selecting signifi-
cant genes by controlling the FDR in the presence of complex correlations due to LD. For the
knockoff-based test, GeneScan3DKnock, we evaluate the empirical FDR and power assuming
multiple causal and noise genes. We randomly select 10 causal genes, and 250 noise genes
(gene length 10 Kb - 100 Kb, average length 39 Kb) as follows. Among the noise genes, some
are selected to be physically close to the causal genes, i.e. within ± 2 Mb region, and others are
randomly selected across the genome. For each gene we only include the corresponding Gene-
Hancer and ABC enhancers that fall within a 150 Kb region (± 75 Kb from the gene midpoint).
This restriction to a 150 Kb region is done for computational reasons and only for these power
simulations. On average, there are 10 enhancers for each gene, with an average length of 1.25
Kb. We generate multiple knockoff genotypes for 250-Kb regions spanning each gene (± 50
Kb on either side of the 150 Kb region) as detailed in the Methods section. Note that to avoid
enhancer sharing across genes and too strong LD among causal and noise genes (which leads
to false discoveries for all the statistical tests considered here) we select the genes such that the
corresponding 150 kb regions are disjoint.

For each replicate, we randomly select a 10 Kb causal window in each causal gene plus
and minus 5 Kb buffer region, and set 3.5% variants in the window to be causal. We also set
3.5% variants in all enhancers to be causal. We generate the continuous/binary traits using the
selected causal variants as follows:

• For a continuous trait: Yi = Zi + β1Gi1 + · · · + βsGis + εi,

• For a binary trait: logit(P(Yi = 1| Zi,Gi)) = α0 + Zi + β1Gi1 + · · · + βsGis.

As above, Zi ∼ N(0, 1) is a covariate and εi ∼ N(0, 1) is the standard normal error; Zi and εi

are independent; α0 is chosen such that the prevalence is 10%. Again, we set the effect size
β j = c|log10MAF j| for the j-th causal variant, with c = 0.2 for the continuous trait and c = 0.6
for the binary trait.

The empirical power and FDR for GeneScan3DKnock are averaged over 100 replicates. We
present results for single knockoff, as well as multiple knockoffs (M = 3 and 5). We calculate
the original and knockoff p-values from the GeneScan3D test (for all variants and common
variants), adjusting for 10 principal components of ancestry. We compute q-values for 10
causal and 250 noise genes in order to identify significant genes using the GeneScan3DKnock
test at different target FDR levels, up to 0.15. The empirical power is defined as the proportion
of causal genes being identified; the empirical FDR is defined as the proportion of detected
genes that are noise. We show that GeneScan3DKnock can control the FDR at the target level,
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and using multiple knockoffs can improve power substantially, especially at lower levels of
target FDR where the single knockoff approach has very low power as expected (Figures 2(b)
and S1(b)).

For comparisons, we evaluate the empirical power and FDR for competitor methods in-
cluding STAAR-O and H-MAGMA using the standard Benjamini-Hochberg (BH) procedure
for FDR control. A gene is significant if the corresponding q-value ≤ the target FDR level. The
results show that the conventional BH procedure may not control the FDR at the target level,
and therefore the proposed knockoff-based approach provides a valid alternative when FDR
control is desirable such as for polygenic traits with multiple underlying causal genes (Figures
2(b), S1(b) and S2(b)).

Although our main comparisons are with gene-based tests, we perform additional compar-
isons with the recently proposed window-based method KnockoffScreen8 in order to illustrate
the need for a gene-based knockoff filter when our interest is controlling the FDR at the gene
level. We apply KnockoffScreen by scanning each 150-Kb region using several window sizes
(1 Kb, 5 Kb and 10 Kb) and we compute the empirical power and FDR of KnockoffScreen
at both gene level and window level (Methods). Although KnockoffScreen can control the
window-level FDR as shown in Figure S3, the empirical gene-level FDR can be quite high,
suggesting that the proposed framework designed to control the FDR at the gene-level is more
appropriate for gene discovery. Essentially, as a window-based test, KnockoffScreen leads to a
larger number of rejections, i.e. higher power but also higher FDR at gene level (Figure S3).

2.3 Applications to individual level data from whole-genome sequencing
studies

Alzheimer’s Disease

We present results from an application to whole-genome sequencing data from the Alzheimer’s
Disease Sequencing Project (ADSP). The data include 3,085 whole genomes from the ADSP
Discovery Extension Study and 809 whole genomes from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI), for a total of 3,894 whole genomes (more details are available in the
Supplemental Material). We adjusted for age, age2, gender, ethnic group, sequencing center,
and the leading 10 principal components of ancestry. Seven tissue/cell-type specific GenoNet
functional scores33 related to brain are incorporated, including E071 (Brain hippocampus mid-
dle), E074 (Brain substantia nigra), E073 (Brain dorsolateral prefrontal cortex), E068 (Brain
anterior caudate), E067 (Brain angular gyrus), E069 (Brain cingulate gyrus) and E072 (Brain
inferior temporal lobe).

We show results for several tests including GeneScan1D and GeneScan3D tests, the pro-
posed knockoff-based approach, GeneScan3DKnock, based on 5 random knockoffs, as well as
existing tests including MAGMA/H-MAGMA, STAAR-O and TWAS. We do not include the
results from KnockoffScreen since we have shown in the simulations that at the gene-level it
can have inflated FDR. For all the tests except for the knockoff-based GeneScan3DKnock test
we identify significant genes using the Bonferroni method for FWER control, since as shown
in the simulations, the conventional Benjamini-Hochberg procedure does not control the FDR
at the target level. For GeneScan3DKnock we use the implemented knockoff filter procedure to
identify significant genes at an FDR threshold of 10%. We present results for common variants
only (those with MAF > 1/

√
2n where n is the sample size), and all variants (rare variant only

analyses are not well powered at these sample sizes).
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Overall, all tests considered identify the well-known signal at the APOE locus (Table S2,
Figures 3, and S4). The GeneScan3D, MAGMA-H and STAAR-O tests detect additional sig-
nificant genes on chromosome 19, mostly due to signals residing in the promoters and/or en-
hancers overlapping genes at the APOE locus (Figure 4). These results suggest that the APOE
region is a central nucleating point for loops that regulate expression of potentially Alzheimer’s
Disease associated genes. Therefore, it is possible that the strong signal observed at the APOE
locus can be linked to genes that are farther away (Figure 4 and Table S3).

GeneScan3DKnock has improved power and reduces false-positive associations relative
to existing tests. False positive signals can arise due to possible co-regulation of multiple
genes by the same ‘causal’ enhancers, or simply due to LD among causal and non-causal vari-
ants in genes or associated regulatory elements. The knockoff-based test GeneScan3DKnock
can not help eliminate false positives due to co-regulation, but can attenuate the effect of LD
induced confounding. We compute the knockoff statistic W and q-value for each gene. A
scatter plot of genome-wide W knockoff statistics vs. -log10(p-values) based on the GeneS-
can3D test illustrates how almost half of the significant genes at the APOE locus based on
GeneScan3D are no longer significant in the GeneScan3DKnock test (Figures 3, S4, Tables
S2, S4). These include a large number of genes linked to GH19F044889 and several overlap-
ping ABC enhancers, that contain variants in high LD with variants in the APOE gene (Figure
4). Indeed, we obtained a narrower list of significant genes on chromosome 19 related to the
APOE locus, that includes the main genes from the 1D tests, i.e. APOE, TOMM40, APOC1
and NECTIN2, but other interesting genes as well, including BCAM, RELB and QPCTL. For
example, rare variants in BCAM and RELB have recently been identified to be associated with
AD and neuroimaging biomarkers of AD after adjusting for APOE genotypes34,35. QPCT, an
important paralog of QPCTL, has been shown to be involved in AD pathogenesis and cognitive
decline by glutaminyl cyclase (QC)-catalyzed pGlu-Aβ formation36. This ability to remove a
substantial proportion of false positive signals due to LD is a unique and appealing feature of
the proposed GeneScan3DKnock test.

Interestingly, GeneScan3DKnock detects several new associations outside chromosome 19
that are missed by the competitor gene-based tests. These include NECTIN1, ZNF843, ZNF646,
PPP1R17 (for common variants) and HIPK3 (for all variants), which were previously found
to be involved in AD-related pathophysiology. Nectin-1 is a member of the immunoglobulin
superfamily and a Ca(2+)-independent adherens junction protein involved in synapse forma-
tion37. The important role of nectin in synaptic development and maintenance can explain how
genetic variation in NECTIN1 can perturb synaptic activity, and play a role in AD. ZNF646
lies within the KAT8 locus, recently identified in two large scale GWAS studies focused on
clinically diagnosed AD and AD-by-proxy individuals38,39. Furthermore, ZNF646 was priori-
tized at the KAT8 locus based on high posterior probability for the colocalization between AD
GWAS SNPs at the KAT8 locus and eQTLs from both brain (dorsolateral prefrontal cortex) and
microglia40. Similarly, PPP1R17 was found to be significantly underexpressed in the brains of
14m old Sgo1−/+ mice (a murine AD model of chromosome instability (CIN) with chromo-
somal and centrosomal cohesinopathy) compared with age matched wild type animals41. The
protein encoded by this gene is found primarily in Purkinje cell bodies and projections in cere-
bellum and subsets of neurons in hypothalamus. A SNP located in the promoter of PPP1R17
was previously found to be associated with hypercholesterolemia42. Finally, HIPK3 belongs
to a group of homeodomain-interacting protein kinases (HIPKs), including HIPK2, which is
downregulated by elevated amount of Amyloid β (Aβ), a hallmark of Alzheimer’s disease43.
Protein HIPK3 levels were also found to be significantly different between individuals with
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mild cognitive impairment that converted to AD vs. the nonconverters44.

Replication of significant genes using summary statistics from a large meta-analysis AD
study. To provide more objective evidence of replication, we leverage a large meta-analysis
of clinical AD and AD-by-proxy studies (71,880 AD or proxy cases and 383,378 controls56)
and perform gene-based tests (GeneScan1D and GeneScan3D) using the available GWAS sum-
mary statistics. Results are shown in Table S5. Note that most of the genes identified by GeneS-
can3DKnock at FDR 10%, including genes at the APOE locus, ZNF646 and PPP1R17, have
a replication p value based on GeneScan3D < 0.05, while genes identified by conventional
BH controlling procedures (Figures S5-S6) fail to replicate for the most part, concordant with
simulation studies showing that the BH procedure can result in inflated empirical FDR values
and therefore it is not a rigorous procedure to identify significant genes at a desired FDR level.

Lung function (FEV1)

The Genetic Epidemiology of COPD (COPDGene) study includes chronic obstructive pul-
monary disease (COPD) cases, controls, and additional smokers with varied lung function. In
addition to COPD case/control status, lung function measurements are also available, includ-
ing forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and their
ratio (FEV1/FVC). We analyzed whole genome sequencing data from the TOPMed freeze5b
dataset, which includes a subset of 5,593 NHW individuals for continuous traits and 4,450 in-
dividuals for COPD case/control binary trait. We present results from the application to FEV1,
adjusting for sequencing center, 10 principal components of ancestry, age, age2, gender, height,
height2, smoking pack-years, and current smoking. We incorporated five tissue/cell-type spe-
cific GenoNet functional scores33 related to lung, namely: E017 (IMR90), E088 (Fetal lung),
E096 (Lung), E114 (A549) and E128 (NHLF lung fibroblast).

As with the AD example, GeneScan3DKnock identifies new significant genes that are
missed by the other tests. Specifically, we identify a new cluster of significant genes on chro-
mosome 12 that includes FRS2, CCT2, RAB3IP, LRRC10, BEST3 and that is missed by all the
other gene-based tests considered (Figure 5). Notably, an intronic SNP (rs10444582) in FRS2
was identified to be significantly associated with FEV1 in the UK Biobank and SpiroMeta
(p = 1.2 × 10−10, n = 396, 723)45. This locus was not included in the final list of loci released
by Shrine et al.45 as the p-value in the replication cohort (SpiroMeta) was only 3.5 × 10−3,
above the predetermined significance threshold. As COPDGene was not part of the Shrine
et al. study45, our findings on chromosome 12 provide additional, independent evidence for
this signal. Another significant and potentially interesting gene is RAB7A. A common SNP
(rs9847178) residing in the promoter flanking region of RAB7A has been found genome-wide
significant in a recent large GWAS study on smoking46. A nearby SNP (rs7650872) in the
same promoter flanking region has been found genome-wide significant with eosinophil counts
in the UK Biobank47. High eosinophil counts predict decline in FEV148. Interestingly, a recent
study has showed that loss of RAB7A confers resistance to severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) by reducing ACE2 levels49, concordant with reports in the litera-
ture of loci associated with susceptibility and/or response to infection that have been previously
associated with lung function phenotypes50.

Replication of significant genes using summary statistics from the UK Biobank data. We
performed similar replication studies for significant genes identified for FEV1 using 383,471
European individuals with FEV1 measurements in the UK biobank (Table S6). The covariates
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adjusted for in the analyses include 10 principal components of ancestry, age, age2, gender,
age·gender, and age2·gender. Note that the number of available covariates in the UK Biobank is
limited, and some important covariates for FEV1 such as height and smoking are not adjusted
for in these analyses. Despite this caveat, most of the genes identified as significantly associated
with FEV1 in our COPDGene study replicate in the UK Biobank study.

2.4 Applications to GWAS summary statistics
GWAS for neuropsychiatric and neurodegenerative diseases

We apply the different gene-based tests to summary statistics from nine GWAS studies of
brain disorders, including five neuropsychiatric traits: attention-deficit/hyperactivity disorder
(ADHD; 20,183 cases and 35,191 controls)51, autism spectrum disorder (ASD; 18,381 cases
and 27,969 controls)52, bipolar disorder (BD; 20,352 cases and 31,358 controls)54, schizophre-
nia (SCZ; 40,675 cases and 64,643 controls)53 and major depressive disorder (MDD; 170,756
cases and 329,443 controls)55; and four neurodegenerative traits: Alzheimer’s disease (AD;
71,880 cases and 383,378 controls)56, Parkinson’s disease (PD; 33,674 cases and 449,056 con-
trols)57, amyotrophic lateral sclerosis (ALS; 12,577 cases and 23,475 controls)58 and multiple
sclerosis (MS; 4,888 cases and 10,395 controls)59. We do not include STAAR-O here since the
current implementation is not applicable to summary statistics.

Since these applications focus on brain disorders, we leverage two existing Hi-C human
brain datasets for the dorsolateral prefrontal cortex (DLPFC) in adult brain60 and for the ger-
minal zone (GZ) and cortical and subcortical plate (CP) in fetal brain61, and use the Fit-Hi-C
method to identify statistically significant promoter-enhancer interactions from these data62,63

(Methods). Similarly, we apply MAGMA/H-MAGMA12 to the same datasets using the same
significant Hi-C interactions. We also apply TWAS/FUSION15 based on 13 brain regions from
GTEx v7 (Amygdala, Anterior cingulate cortex, Caudate, Cerebellar Hemisphere, Cerebellum,
Cortex, Frontal Cortex, Hippocampus, Hypothalamus, Nucleus accumbens, Putamen, Spinal
cord and Substantia nigra). The Cauchy p value combination method is used to combine TWAS
p-values from different brain regions.

We use a liberal significance threshold (10−3) to select genes from these analyses (because
some of the GWAS studies, e.g. AD, ADHS, MS, are underpowered) and investigate their ex-
pression patterns using spatiotemporal and single-cell transcriptomics data as described below.
The number of significant genes at this threshold and the overlap across the different tests are
shown in Table S7 and Figure S11. Compared with 1D analyses (GeneScan1D and MAGMA),
GeneScan3D and H-MAGMA detect a much larger number of disease-associated genes, as
expected given they incorporate signal from distal regulatory elements. GeneScan3D and H-
MAGMA also detect a substantially higher number of significant genes relative to TWAS, a
possible reflection of the limitation of eQTL-based approaches to discover significant associa-
tions that cannot be explained by eQTLs in the reference datasets.

Developmental and single cell expression profiles. We use spatiotemporal transcriptomic
data from embryonic and adult brains measured at 15 time periods, ranging from 4 postcon-
ceptional weeks (PCW) to age ≥ 60 years64. The gene expression data are available for 6
brain regions: neocortex (NCX), mediodorsal nucleus of the thalamus (MD), cerebellar cortex
(CBC), hippocampus (HIP), amygdala (AMY), and striatum (STR). We focus here on the cor-
tical expression profiles (NCX area), with 410 samples for the prenatal stages (periods 1-7) and
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526 samples for the postnatal stages (periods 8-15). We center the developmental expression
matrix to the mean expression level for each sample.

We compute the average expression values across the significant genes for each brain sam-
ple, and then compare the values for prenatal and postnatal brain samples. For psychiatric
diseases, the genes detected by GeneScan3D tend to have significantly higher expression in
prenatal relative to postnatal periods as expected, and the trajectories highlight developmen-
tal windows in early or mid-gestation periods (Figure 6(a)). For neurodegenerative diseases,
the pattern is reversed, with higher expression in the postnatal periods (except for MS), con-
cordant with the expectation that genes for neurodegenerative disorders have increased ex-
pression with aging. The results for H-MAGMA suggest similar patterns, but with reversed
patterns for ASD and ALS, and less significant differences for AD (Figure S12(a)). Results for
GeneScan1D, MAGMA and TWAS show similar patterns (Figures S13-S15), although there
are some discrepancies including the higher postnatal expression vs. prenatal expression for the
ASD significant genes and significantly higher prenatal expression for ALS significant genes
(MAGMA).

Additionally, we also leverage existing single-cell expression profiles60 on 285 single cells
from 6 adult brain cell-types including neurons (131 cells), astrocytes (62 cells), microglia
(16 cells), endothelial (20 cells), oligodendrocytes (38 cells) and oligodendrocyte progenitor
cells (OPC, 18 cells). For each single cell, we center the expression data to the mean level
of genes and then compute the average across the significant genes for a given disease. For
each specific cell-type, we average across the multiple cells in this cell type. We compute
standardized expression levels (i.e., subtract the mean and divide by the standard deviation) for
the 6 adult cell-types. Genes identified by GeneScan3D for psychiatric disorders tend to show
higher expression levels primarily in neurons, and to some extent in astrocytes compared to
other cell types, whereas genes for neurodegenerative disorders tend to show higher expression
levels primarily in microglia (Figure 6(b)). In particular, genes significant for ADHD show
the highest expression in astrocytes, consistent with recent evidence suggesting a key role of
astrocytes in the regulation of attention deficit disorder and hyperactivity65.

Results for the other tests show similar overall patterns as the GeneScan3D (Figures S12-
S15), although with some differences, including less pronounced evidence for the role of as-
trocytes in ADHD (except for TWAS). These results serve as a proof of concept for the pro-
posed 3D test, showing that genes identified by GeneScan3D and other existing tests exhibit
expression patterns consistent with existing literature, i.e. an important role for neurons for
neuropsychiatric diseases, and microglia for neurodegenerative diseases66.

Browser for results on UK/Japan Biobank data

UK Biobank. We have applied GeneScan3D to 1,403 UK Biobank binary phecodes and 827
continuous phenotypes using summary statistics on 28 million imputed variants. We have
created a browser that displays phenome-wide results for a given gene, and genome-wide
gene-based results for a given trait, and provides summary tables for significant genes. These
gene-based results for the UK Biobank traits complement existing databases for single-variant
tests67, and rare variant focused tests such as SAIGE-GENE6.

BioBank Japan. For non-European populations, we applied GeneScan3D to BioBank Japan
binary phenotypes using available case-control GWAS summary statistics on 8,712,794 auto-
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somal variants and 207,198 X chromosome variants, with 212,453 Japanese individuals across
42 diseases68. Results can be queried using the aforementioned browser.

3 Discussion
We propose novel gene-based tests that integrate genetic variation residing in putative regula-
tory regions and implement the knockoff framework for increased power and improved causal
gene prioritization. This framework provides a rich toolkit for the analysis of GWAS and
whole-genome sequencing data with applications to gene-discovery and fine-mapping. Based
on empirical studies, we show that the proposed gene-based tests are more powerful and help
attenuate the confounding effect of LD relative to state-of-the-art gene-based tests. They also
have distinct advantages compared with the recently proposed window-based test, Knockoff-
Screen, in terms of functional interpretation, and appropriate FDR control at the gene level.
Indeed, our simulation results suggest that the knockoff filter procedure needs to be performed
at the gene rather than window level if our interest is in identifying genes and controlling FDR
at the gene level.

Our gene-based tests can be seen as complementary to the TWAS approach. Like TWAS,
they attempt to incorporate the effect of distal regulatory elements into the test. TWAS however
is limited to common eQTLs detectable in reference datasets which appear to account for a
minority of GWAS signal17,18. In contrast, our approach has the ability to assess the effects of
coding, noncoding, rare and common variants, including those with no detectable effects on
gene expression, and can scan the gene with varied window sizes. Furthermore, the knockoff

framework can attenuate the confounding effect of LD, and is able to produce a narrower list
of possible causal genes, likely removing some of the false gene discoveries.

In this paper we have focused on using existing external data on gene-enhancer links, and
we recognize the limitations of these databases, both in terms of the accuracy of these links and
the number of cell-types with available data. Single-cell Hi-C is an emerging technology that
could help overcome issues of tissue heterogeneity and expand these maps across many more
cell types69.

Like all gene-based tests that incorporate genetic variation in distal regulatory elements,
our tests are also susceptible to false-positive associations due to, for example, causal variants
residing in putative enhancers that may show significant interactions with promoters of multiple
genes based on Hi-C data. Identifying the actual causal gene(s) requires follow-up experimental
studies, such as CRISPR gene perturbation experiments70.

In summary, we propose comprehensive gene-based tests for common and rare variation,
both coding and regulatory variation that are more powerful than competitor gene-based tests in
the literature. The GeneScan3DKnock approach is implemented in a computationally efficient
R package.
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4 Methods

4.1 Overview of existing gene-based association tests
Sequence kernel association test (SKAT) and Burden test

We assume that n subjects have been sequenced/genotyped in a region of interest (e.g. a gene),
with p being the number of variants identified in the region. We denote by yi the phenotype for
the i-th subject, and Xi = (Xi1, . . . , Xid) be d covariates (e.g. age, gender, principal components
of ancestry, etc.). The vector of p genotypes for subject i is denoted by Gi = (Gi1, . . . ,Gip),
where Gi j = 0, 1, 2 represents the number of minor alleles at variant j = 1, . . . , p. We are
interested in testing for association between the phenotype and the p variants, while adjusting
for covariates.

For a continuous phenotype, we consider the classical linear model:

yi = α0 + α1Xi1 + · · · + αdXid + β1Gi1 + · · · + βpGip + εi, εi ∼ N(0, σ2).

For a binary outcome, the logistic model is considered instead.
The null hypothesis of interest is H0 : β1 = · · · = βp = 0, i.e. there is no association

between the phenotype and any of the p variants. To test this hypothesis, the SKAT and Burden
test statistics have been proposed4. In SKAT, we assume that β j follow an arbitrary distribution
with mean 0 and variance τw j, where w j is a pre-specified weight for variant j; then the null
hypothesis H0 is equivalent to testing τ = 0. We conduct a variance-component score test with
statistic

QSKAT =

p∑
j=1

w2
jU

2
j ,

where U j =
∑n

i=1 Gi j(yi − µ̂i) is the score statistic for testing marginal effect of the j-th variant
(β j = 0) and µ̂i is the fitted value of yi under the null model (H0). QSKAT follows a mixture
of χ2

1 distributions under H0 and the p-value can be calculated by the Davies method2,71. The
default way is to assume the weight w j = Beta(MAF j; a1, a2), where MAF is the minor allele
frequency, a1 = 1 and a2 = 25; weights based on predicted functional effects of genetic variants
are also commonly used33,72–75.

A Burden test statistic can also be formulated. If we assume β j = w jβc, the null hypothesis
H0 above is equivalent to testing H0 : βc = 0. The Burden score statistic is defined as:

QBurden =

 p∑
j=1

w jU j


2

.

QBurden asymptotically follows a scaled χ2
1 distribution and the p-value can be calculated ana-

lytically.
Extensions of these tests to account for sample relatedness and case-control imbalance have

also been proposed6,76.

Transcriptome-wide association tests

A different type of gene-based strategy has become popular in recent years in the context of
GWAS studies, namely the transcriptome-wide association studies (TWAS). TWAS integrate
large GWAS data and complementary genetic variation-gene expression data (such as GTEx
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and PsychENCODE). Several TWAS approaches for a single tissue have been proposed, in-
cluding PrediXcan/MetaXcan and FUSION14,15,77. More recently, these approaches have been
extended by leveraging the gene expression data across multiple related tissues78.

The typical approaches use prediction models, such as Elastic Net or LASSO, to predict the
genetically regulated component of gene expression based on genotype information. Specifi-
cally, given a gene of interest k and p cis-SNPs close to the gene, TWAS define the predicted
gene expression in a tissue l for individual i as Zi,kl = w1,klGi1 + · · ·+ wp,klGip where the weights
w j,kl are the coefficients estimated from genetic variation-gene expression reference datasets
such as GTEx. These prediction models are subsequently applied to individual (or summary
level) data from GWAS to assess the associations between predicted gene expression and a
trait.

4.2 Overview of regulatory elements
We describe here the procedure we used to identify proximal and distal regulatory elements for
each protein-coding gene.

Promoters

Polymerase ChIP-seq data was extracted from the ChIP-Atlas database, a compendium of
ChIP-seq data from the NCBI SRA, Roadmap Epigenomics, ENCODE, DNA Data Bank of
Japan, and EMBL-EBI ArrayExpress resources, which utilizes MACS2 as the peak identifica-
tion algorithm79. Three sets of peaks were obtained, one using only lung cell lines, one using
only neural cell lines, and another set using all cell lines available (tissue classifications for cell
lines meeting criteria included Blood, Kidney, Breast, Digestive tract, Uterus, Lung, Neural,
Epidermis, Prostate, Pluripotent Stem Cell, Liver, Gonad, Muscle, Adipocyte, Placenta, and
Pancreas).

In these polymerase ChIP-seq experiments, the specific antigen targeted corresponded to
the ChIP-Atlas polymerase antigen class, which included the following targets: POLR2B,
POLR2M, POLR3D, POLR3G, POLR3GL, RNA polymerase II, and RNA polymerase III.
Ensembl transcription start sites were extracted using the UCSC ensGene table with the Ge-
nomicRanges package genes function, merged against Ensembl IDs, and then again against
HUGO gene symbols Bioconductor genome wide annotation for Human (org.Hs.e.g.db). 1 Kb
regions upstream of the transcription start site (TSS) that overlapped ChIP-seq peaks were re-
tained for subsequent analysis. Peaks were ranked for each gene according to their proximity
to the TSS, the peak narrowness, MACS2 peak score, and the percent overlap with the 1 Kb
upstream target peak region. For genes with peaks in the 1 Kb upstream regions, the best peak
for each gene was chosen as the highest scoring peak on the five aforementioned metrics. The
scoring logic (to choose narrow polymerase peaks that are proximal to and upstream of the
TSS) is in line with the size and placement of polymerase peaks in a large scale analysis of
mammalian promoters80.

Enhancers

To define enhancers for a given gene, we use the enhancer elements from GeneHancer (GH)
dataset30, as well as the activity-by-contact (ABC) model to obtain predicted enhancers for
expressed genes31. For each gene, we focused on putative enhancers that are outside the gene
plus and minus 5 Kb buffer region, and with length less or equal than 10 Kb.
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GeneHancer Enhancers. To estimate the strength of each gene-enhancer link connection,
the gene-enhancer association scores are defined based on five methods: expression quanti-
tative trait loci (eQTLs), enhancer RNA (eRNA) co-expression, transcription factor (TF) co-
expression, capture Hi-C (CHi-C) and gene-target distance30. Specifically,

Gene-enhancer association score = − log10(pg) + S C + c · f ,

where pg is the combined p-value for eQTLs, eRNA co-expression and TF co-expression using
Fisher’s combination method; S C is the CHi-C score, constituting the logarithm of the ratio of
observed to expected read counts; c is a normalizing constant and f is the fraction of enhancers
in the distance bin out of all genome-wide gene-enhancer pairs30.

ABC Enhancers. We also incorporate an activity-by-contact (ABC) model to obtain pre-
dicted enhancers for expressed genes31. The ABC score is constructed for each putative regu-
latory element E of a gene G as follows:

ABCE,G =
ActivityE × ContactE,G∑

All elements E within 5Mb of G ActivityE × ContactE,G
.

In the ABC model, enhancer activity (ActivityE) is obtained from DNase-seq and H3K27ac
ChIP-seq signals, while the Enhancer (E) to Gene (G) contact measure (ContactE,G) comes
from the Knight- Ruiz (KR) normalized, 5 Kb resolution Hi-C state cell types. For each gene,
we incorporate the predicted ABC enhancers with ABC scores ≥ 0.02 for 5 cell types and
tissues, i.e., K562, GM12878, NCCIT, LNCAP, hepatocytes31.

Human-brain Hi-C enhancers. For the brain disorder GWAS applications, we leverage Hi-
C data for two human brain tissues: adult brain dorsolateral PFC (DLPFC) Hi-C60, and Fetal
brain (developing cortex) Hi-C with two layers germinal zone (GZ) and cortical and subcortical
plate (CP)61. The Hi-C data (10Kb resolution) are bias corrected and normalized under iterative
correction and eigenvector decomposition (ICE) using hiclib81.

We use the Fit-Hi-C method to identify statistically significant chromatin contacts from the
given Hi-C matrices. Fit-Hi-C uses spline models to estimate expected contact probabilities
using genomic distance and calculated ICE biases. Statistical significance of interactions is
calculated using a binomial distribution and p-values corrected for multiple testing62,63. We
obtain long-range chromatin interactions between 20Kb lower bound and 2Mb upper bound of
interaction distances using Fit-Hi-C2 (version 2.0.7)82. Hi-C contacts with FDR < 0.01 were
selected as significant interactions. Significant Hi-C interacting regions were overlapped with
GENCODE v26 promoter coordinates (defined as 2kb upstream and downstream of the TSS)
to identify promoter-based interactions.

Additionally, we also incorporate promoter-based interactions as described in60,61, by gen-
erating background Hi-C interaction profiles from randomly selected regions matched length
and GC content to promoters and fitting Hi-C contacts to Weibull distributions. We lever-
age both Fit-Hi-C method and promoter-anchored chromatin loops provided by60,61 together as
long-range Hi-C promoter-enhancer interactions. In total, there are 130,782 enhancers for adult
brain (AB) Hi-C, 111,143 enhancers for fetal brain Hi-C germinal zone (FB-GZ) and 109,298
enhancers for fetal brain Hi-C cortical and subcortical plate (FB-CP). All putative brain-tissue
Hi-C enhancers are in 10Kb resolution.
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4.3 GeneScan3DKnock: Proposed gene-based association test incorpo-
rating regulatory elements and knockoff statistics

We describe here the details of the proposed gene-based test that aims to comprehensively
evaluate the effects of rare and common, coding, proximal and distal regulatory variation on a
trait of interest. A workflow depicting the overall gene-based testing approach proposed here
is shown in Figure 1.

Joint testing of rare and common variation within a window

For a fixed window Φ, we incorporate several recent advances for association tests for sequenc-
ing studies to compute the corresponding p-value pΦ, as follows.

For each window we conduct:

a. Burden and SKAT tests for common and low frequency variants (MAF≥ 1/
√

2n) with
Beta(MAF j; 1, 25) weights. These tests aim to detect the combined effect of common
and low frequency variants.

b. Burden and SKAT tests for rare variants (MAF< 1/
√

2n & MAC (minor allele count)
≥ t) with Beta(MAF j; 1, 25) weights. These tests aim to detect the combined effect of
rare variants.

c. Burden and SKAT tests for rare variants, weighted by cell-type specific functional anno-
tations. These tests aim to utilize functional annotations for improved power26,83.

d. Burden test for aggregation of ultra-rare variants (MAC< t). These tests aim to aggregate
effects from extremely rare variants (e.g. singletons, doubletons, etc.).

e. Single variant score tests for common, low frequency and rare variants (MAC≥ t) in the
window.

We then apply the aggregated Cauchy association test24 to combine p-values from tests in a-e to
compute p-values of each 1D window Φ for all variants, including common and rare variants.
Note that for the current analyses we use MAC threshold 10.

GeneScan3D: Integrating proximal and distal regulatory elements for a gene

For a given gene G, we consider the gene body (i.e. the interval between the transcription start
site (TSS) and the end of 3’ UTR) plus and minus 5 Kb buffer regions and integrate a single
ChIP-seq promoter and R putative enhancers into the analyses (Figure 1). A set of overlapping
1D windows Φm,m = 1, . . . ,M with window sizes 1-5-10 Kb are generated to scan the gene
and buffer regions together (each 1D window is overlapping with half of its adjacent windows
for a given window size). Then we construct 3D windows for the gene by adding a ChIP-seq
promoter and R putative enhancers to each 1D window Φm,m = 1, . . . ,M as follows (details on
how to identify the regulatory elements for each gene are in Section 4.2):
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Φ3D
m,0 = Φm + ChIP-seq promoter

Φ3D
m,1 = Φm + ChIP-seq promoter + Enhancer 1

3D windows: . . . . . .

. . . . . .

Φ3D
m,R = Φm + ChIP-seq promoter + Enhancer R

For each such 3D window, we compute a p-value pΦ3D
m,r

, with 1 ≤ m ≤ M, 0 ≤ r ≤ R using
the proposed combined test for a window. Finally, we compute a gene-level p-value pG by
combining the (1 + R) × M p-values using the Cauchy’s combination method24, as follows:

Q =

∑R
r=0
∑M

m=1 tan[(0.5 − pΦ3D
m,r

)π]

(1 + R) × M
.

The p-value of the Cauchy statistic is pG = 1/2 − arctan(Q)/π.

GeneScan3DKnock: Knockoff-enhanced gene-based test for causal gene discovery

An advantage of the proposed GeneScan3D test is that it allows the discovery of multiple pos-
sible causal genes by incorporating information from proximal and distal regulatory elements.
However, it is likely that some of those genes are false positives owing to confounding due
to linkage disequilibrium (LD) and/or co-regulation. Extensive LD at a locus of interest can
confound the results and lead to many genes being significant. For example, if the LD re-
gion overlaps several enhancers, all genes regulated by such enhancers may show a significant
signal. The knockoff framework28, a recent advance in statistics, can be leveraged to reduce
the effect of LD in such cases, and can help prioritize a narrow list of potential causal genes.
Furthermore, the knockoff-based test is of independent interest, as by design it controls the
FDR at a target level under arbitrary correlation structure, and can have higher power to iden-
tify additional significant genes that are missed by the conventional gene-based test as we show
empirically in the applications. The knockoff-based test has two steps: the knockoff generation,
and the filtering of the results using the knockoff filter.

Model-X Knockoff generation. The idea of the knockoff-based procedure is to generate
artificial or knockoff genotypes G̃ such that for any subset K of variants the distribution of
(G, G̃) is invariant when swapping GK and G̃K , i.e. (G, G̃)swap(K)

d
= (G, G̃). Additionally the

knockoff genotypes have the property that G̃ ⊥ Y |G. Note that the well-known permutation
procedure that permutes the samples does not guarantee these exchangeability properties be-
tween the original and knockoff genotypes. To generate valid knockoff genotypes we can use
a sequential model for knockoff generation that leverages the local patterns of linkage dise-
quilibrium, as previously proposed based on the Hidden Markov Models (HMMs)32,84 or an
auto-regressive model8, in such a way that the knockoff genotypes are exchangeable with the
original (true) genotypes G but are independent of the phenotype conditional on the original
genotypes. The knockoff genotypes serve as negative controls and are designed to mimic the
correlation or LD structure found within the original genotypes. Specifically, we sequentially
sample for each variant j the corresponding knockoff genotype L(G j|G− j, G̃1...( j−1)), indepen-
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dent of the observed value of G j. Because of the HMM’s significant computational complexity
with unphased genetic data, in order to generate knockoff genotypes we rely on a recently intro-
duced, computationally efficient auto-regressive model that follows from the assumption that
genotypes can be approximately modeled by a multivariate normal distribution:

G j = α +
∑
k, j

βkGk +
∑

k≤ j−1

γkG̃k + ε j,

where ε j is a random error term. (Note that we can leverage the approximate block structure
for LD in the genome to only include variants in a neighborhood of the current variant j.) We
estimate (α, β, γ) by minimizing the mean squared loss. We calculate the residual ε̂ j = G j − Ĝ j

and its permutation ε̂ j
∗, and then we define the knockoff feature as G̃ j = Ĝ j + ε̂ j

∗. More details
on this knockoff generation procedure, and its theoretical and empirical properties can be found
in8.

Knockoff filter. Once the knockoff genotypes G̃ are generated, the knockoff filter is used to
select significant genes. Specifically, we perform a gene-based test as described above (GeneS-
can3D) in both the original cohort and the knockoff one. Let pG, and pG̃ be the resulting
p-values. We define a feature statistic by contrasting the observed p-value for each gene to its
counterpart based on the knockoff data. More precisely, the feature statistic for a gene G is
defined as WG = TG − TG̃, where TG = − log10(pG) and TG̃ = − log10(pG̃) are the importance
score for gene G in the original and knockoff cohort, respectively. This feature statistic has the
flip-sign property, meaning that swapping the genetic variants in gene G with their knockoff

counterparts changes the sign of WG. A data-adaptive threshold τ for WG can be determined by
the knockoff filter28 so that the FDR is controlled at the nominal level q, as follows:

τ = min
{

t > 0 :
1 + #{G : WG ≤ −t}

#{G : WG ≥ t}
≤ q
}
.

We select all genes with WG ≥ τ since genes with large feature statistics are more likely to be
causal (non-null) genes. This follows from the exchangeability property between the original
and the knockoff genotypes, which ensures that the importance scores (TG and TG̃) for the null
genes are exchangeable, and therefore the feature statistic WG is symmetric around 0 for the
null genes, but tends to be larger than 0 for non-null genes.

We additionally compute the corresponding q-value for a gene, qG. The q-value already
incorporates correction for multiple testing, and is defined as the minimum FDR that can be
attained when all tests showing evidence against the null hypothesis at least as strong as the
current one are declared as significant. In particular, we define the q-value for a gene G with
feature statistic WG > 0 as

qG = min
t≤WG

1 + #{G′ : WG′ ≤ −t}
#{G′ : WG′ ≥ t}

,

where 1+#{G′:WG′≤−t}
#{G′:WG′≥t} is an estimate of the proportion of false discoveries if we were to select all

genes with feature statistic > t (with t > 0). For genes with feature statistic WG ≤ 0 we set
qG = 1.

Multiple knockoffs. To improve the power and stability of the knockoff procedure we im-
plement a multiple knockoff procedure8,85 where the inference is based on generating multiple,
independent knockoff datasets. Gimenez and Zou85 proposed an extension of the sequential
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model for knockoff generation to multiple knockoffs and showed the validity of the multiple
knockoff generation procedure in controlling the FDR. We implement this procedure here to
generate multiple independent knockoff datasets. Briefly, we sequentially sample for each vari-
ant j: G̃1

j , . . . , G̃
M
j from L(G j| G− j, G̃1

1... j−1, . . . , G̃
M
1... j−1), where M is the number of knockoffs.

With multiple knockoffs, the feature statistic for a gene G is defined as

WG = (TG −median T m
G̃ )ITG≥max1≤m≤M T m

G̃
,

where T m
G̃

is the gene importance score for gene G in the m-th knockoff replicate, and I is an
indicator function. We define

τ = min
{

t > 0 :
1
M + 1

M #{G : κG ≥ 1, τG ≥ t}
#{G : κG = 0, τG ≥ t}

≤ q
}
,

where κG = argmax0≤m≤MT m
G̃

(note that T 0
G̃

= TG) and τG = TG − median T m
G̃

. We select
genes with WG ≥ τ, i.e. those genes that have importance scores greater than any of those
corresponding to the M knockoffs (κG = 0), and for which the difference from the median
importance score is above some threshold (τG ≥ τ). A q-value for a gene G can be computed
for the multiple knockoff scenario, similar to the single knockoff case.

The multiple knockoff procedure helps improve power because at a target FDR of q, the sin-
gle knockoff approach needs to make a minimum of 1/q discoveries while a multiple knockoff

approach with M knockoffs decreases this detection threshold to 1/Mq. Therefore, in situa-
tions where the signal is sparse and the target FDR level q is low, a single knockoff procedure
will have very low power. In such cases, the multiple knockoff procedure will tend to improve
power. Furthermore, the multiple knockoff procedure also helps with improving the stability
of the selected genes given that each knockoff generation is random, and therefore the results
from a single knockoff can be unstable.

Additional tests for comparison

We compare with the nearest competitor gene-based tests in the literature (MAGMA/H-MAGMA,
STAAR-O) as well as with the GeneScan1D test, as described below. We also compare with a
recently proposed window-based test, KnockoffScreen.

GeneScan1D analysis. We scan the gene G and the two 5 Kb buffer regions on either side
of the gene using 1D windows with sizes 1-5-10 Kb. For each 1D window, we conduct the
combined tests and finally combine p-values for M 1D windows using the Cauchy combination
method.

MAGMA/H-MAGMA. MAGMA11 is a commonly-used gene-based test for GWAS data
that links SNPs to their closest gene (e.g. 35 Kb upstream and 10 Kb downstream of each
gene). Because of the large number of SNPs and their collinearity, MAGMA is based on a
principal component regression model, using the F-test to compute the gene-based p-value.
In addition to common variants, it can also incorporate rare variants by computing a burden
score for all rare variants linked to a specific gene. Each rare variant is weighted according to
w j = 1/

√
MAF j(1 −MAF j). Then MAGMA regresses the dependent variable on the principal

components (accounting for 99.9%) of the genetic matrix.
H-MAGMA12 is a recent extension of MAGMA that assigns SNPs to genes by using long-

range chromatin interactions in disease relevant tissues. Since the current implementation12 is
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focused on human brain tissue, for a fair comparison, in the analyses presented in this paper
we use the same method to assign SNPs in putative regulatory elements to their cognate genes
as employed for the GeneScan3D test.

STAAR-O. STAAR-O13 is a recently proposed rare variant (RV) association test, incorpo-
rating functional annotations and genetic variation in distal regulatory elements. The STAAR-
O framework first calculates a set of test statistics including STAAR-Burden, STAAR-SKAT
and STAAR-ACAT-V using different annotation weights. The aggregated Cauchy association
test (ACAT) method is used to combine the resulting P-values into the STAAR-Omnibus test
statistic. In addition to a sliding window approach, STAAR-O can also perform gene-centric
analyses by generating p-values for the gene body and associated regulatory elements.

Although STAAR-O focuses primarily on detecting rare variant associations, for a fair com-
parison with our proposed test we apply STAAR-O to all variants, and only common variants
using the same MAF/MAC thresholds as used for our proposed tests (MAF threshold 1/

√
2n

and MAC threshold 10). Similarly, for STAAR-SKAT and STAAR-Burden tests, we use the
same weighting scheme for the variants (Beta(MAF j; 1, 25)), and for STAAR-ACAT-V that
aggregates p-values from the extremely rare variants of Burden test and the individual vari-
ant score tests, we use weights Beta(MAF;1,1), as employed in GeneScan3D. We also use the
same regulatory elements and functional annotations that we used for the GeneScan3D test. For
each protein-coding gene, three gene functional categories are considered: (1) The entire gene
body (2) ChIP-seq promoter; and (3) R putative GH and ABC enhancers together. Finally, we
combine the STAAR-O p-values for the 3 categories using the Cauchy combination method.

For the sake of completeness, we also apply the default setting of STAAR-O (R package
v.0.9.5) using both weights Beta(MAF j; 1, 25) and Beta(MAF j; 1, 1); MAF threshold 0.05 for
simulations and MAF threshold 0.01 for real data analysis; MAC threshold 10 for STAAR-
ACAT-V, for RVs association studies13. We note however that when causal variants include
common variants as in our settings, this default setting may be less powerful.

KnockoffScreen. Although our main comparisons are with gene-based tests, we perform
additional comparisons with the recently proposed window-based method KnockoffScreen8 in
order to illustrate the need for a gene-based knockoff filter when our interest is controlling
the FDR at the gene level. For KnockoffScreen, we scan each locus using several window
sizes, with half of each window overlapping the adjacent windows of the same size. For each
window, we conduct joint testing of rare and common variation using original genotype and
M = 1, 3, 5 knockoffs. Then we use the knockoff filter to detect windows that are significant
at a specified FDR target level. Being a window-based method, KnockoffScreen is designed to
identify significant windows at a specified target level. Because here genes are the functional
units of interest, we estimate the empirical power and FDR in terms of genes. Specifically,
we define a gene as detected by KnockoffScreen if there is at least one detected window that
overlaps the gene and/or its regulatory elements.We compute the gene-level empirical power as
the proportion of causal genes being detected and the empirical FDR as the proportion of the
detected genes that are noise. Note that the empirical gene-level FDR does not correspond to
the window-level FDR that KnockoffScreen is aiming to control at a target level. The empirical
window-level FDR is computed as the proportion of detected windows not overlapping with the
causal loci and the empirical power is defined as the proportion of causal loci being identified
(i.e. the causal locus overlaps with at least one detected window).
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4.4 Software implementation
We have developed a computationally efficient R package, GeneScan3DKnock (https://github.com/

Iuliana-Ionita-Laza/GeneScan3DKnock), to facilitate the gene-based test analyses described
here. The package implements the 1D and 3D versions of the gene-based tests, along with the
knockoff-enhanced tests. The computational time of GeneScan3DKnock depends on the sam-
ple size, gene size and the number of regulatory elements. To perform WGS gene-based tests
on ∼ 4000 individuals using the ADSP data required 27h for 22 2.60 GHz computing cores
with 70 gigabyte memory for AD trait. The TOPMed COPDgene projects with ∼ 5600 Non
Hispanic White individuals required 30h for 22 2.50 GHz computing cores with 70 gigabyte
memory for each trait.

Visualization of the promoter-enhancer link data for the significant genes in the 3D anal-
yses. It is also of interest to visualize the promoter-enhancer links for genes with significant
3D test results. For the GeneScan3D analysis, each gene is comprised of M × (1 + R) 3D
windows, including M 1D windows + promoter, and M 1D windows + promoter + one of R
enhancers (Section 4.3). For each significant gene in the GeneScan3D test, we can visualize
the promoter-enhancer links corresponding to the 3D window with minimum p-value using the
Gviz and GenomicInteractions packages in R. The code to generate the plots is available as a
vignette (https://github.com/Iuliana-Ionita-Laza/GS3DKViz).

Data Availability We used data from existing studies from COPDGene (TopMED, dbGaP
phs000951.v4.p4) and the Alzheimer’s Disease Sequencing Project (dbGaP phs000572.v8.p4),
and summary level GWAS results on neuropsychiatric and neurodegenerative traits are avail-
able from51–59.

Code Availability We have implemented GeneScan3DKnock in a computationally efficient
R package that can be applied generally to the analysis of other whole-genome sequencing or
GWAS studies.
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Figure 1: Workflow of the proposed gene-based tests. (a) GeneScan1D, a 1D scan of the gene
and buffer region; (b) GeneScan3D, a 3D scan of the gene and regulatory elements linked to it;
(c) GeneScan3DKnock, the knockoff-enhanced test, implementing a knockoff-based version of
GeneScan3D.

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.14.21260405doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.14.21260405
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Power and false discovery rate of the proposed gene-based tests, binary and
continuous traits with tests including only common variants. (a) Power and robustness to
noisy enhancers. The top panels show power for the GeneScan3D, GeneScan1D, H-MAGMA,
MAGMA and STAAR-O tests. The number of enhancers (R) ranges from 2 to 10. The bottom
panels show power for the GeneScan3D, H-MAGMA and STAAR-O tests assuming causal
variants in R = {2, 5} ‘causal’ enhancers. Power is compared between using only the R = {2, 5}
‘causal’ enhancers (the oracle approach) vs. using all 10 enhancers (including noisy enhancers).
(b) Power and false discovery rate (FDR) for GeneScan3DKnock using different number of
knockoffs and the Benjamini-Hochberg (BH) procedure for GeneScan3D, STAAR-O and H-
MAGMA.
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Figure 3: Applications to ADSP whole-genome sequencing data, common variants only
(a)-(f) Manhattan plots of MAGMA, H-MAGMA, TWAS, STAAR-O, GeneScan1D and
GeneScan3D results, respectively. (g) Manhattan plot of GeneScan3DKnock results. Genes
within the zinc-finger-containing (ZNF) gene cluster on chr19 are unlabeled and shown in blue
in H-MAGMA, GeneScan3D and GeneScan3DKnock analyses for clear visualization. The
right panel shows a heatmap with p-values of GeneScan3D test (truncated at 10−20) for all
genes passing the FDR=0.1 threshold, and the corresponding q-values that already incorpo-
rate correction for multiple testing. The genes are shown in descending order of the knockoff

statistics. (h) Scatter plot of W knockoff statistics (GeneScan3DKnock) vs. −log10(p value)
(GeneScan3D) for common variants. Each dot represents a gene. The dashed lines show the
significance threshold defined by Bonferroni correction (for p-values), and the data-adaptive
threshold for false discovery rate control (FDR; for W statistic).
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Figure 4: Visualization of promoter-enhancer interactions of significant genes at the APOE
locus. (a) The promoter-enhancer links are shown for the significant genes in the GeneScan3D
analyses for common variants, where arcs in blue point to those genes identified by the knockoff

procedure only. Genes with a signal enhancer are shown in green; those with no signal enhancer
in orange (middle panel). The APOE locus is the location of a tight cluster of several enhancers
(shown in purple in the bottom panel), with arcs connecting the enhancers to many different
gene promoters. (b) The LD structure in the APOE region. The locations of the enhancers in
the region are also shown.
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Figure 5: Applications to COPDGene whole-genome sequencing data (trait FEV1), for
common variants only. (a)-(f) Manhattan plots of MAGMA, H-MAGMA, TWAS, STAAR-O,
GeneScan1D and GeneScan3D results, respectively. (g) Manhattan plot of GeneScan3DKnock
results. The right panel shows a heatmap with p-values of GeneScan3D test for all genes pass-
ing the FDR=0.1 threshold, and the corresponding q-values that already incorporate correction
for multiple testing. The genes are shown in descending order of the knockoff statistics. (h)
Scatter plot of W knockoff statistics (GeneScan3DKnock) vs. −log10(p value) (GeneScan3D)
for common variants. Each dot represents a gene. The dashed lines show the significance
threshold defined by Bonferroni correction (for p-values), and the data-adaptive threshold for
false discovery rate control (FDR; for W statistic).
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Figure 6: (a) Human brain developmental expression of GeneScan3D significant genes for
each brain-disorder, combined Hi-C for Adult brain, Fetal brain GZ and CP layers. P-values
of Wilcoxon rank sum tests are shown in the boxplots to compare independent prenatal and
postnatal samples. (b) Cell-type expression profiles of GeneScan3D significant genes.
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Supplemental Material

Whole-genome sequencing data and analyses
The Alzheimer’s Disease Sequencing Project (ADSP). The ADSP data include 3,085 whole
genomes from the ADSP Discovery Extension Study including 1,096 Non-Hispanic White
(NHW), 977 African American (AA) descent and 1,012 Caribbean Hispanic (CH). Sequencing
for these samples was conducted through three National Human Genome Research Institute
(NHGRI) funded Large Scale Sequencing and Analysis Centers (LSACs): Baylor College of
Medicine Human Genome Sequencing Center, the Broad Institute, the McDonnell Genome In-
stitute at Washington University. The samples were sequenced on the Illumina HiSeq X Ten
platform with 150bp paired-end reads. Additionally, the dataset includes 809 whole genomes
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with 756 NHW, 28 AA and
25 others. The samples were sequenced on the Illumina HiSeq 2000 platform with 100bp
paired-end reads. Whole-genome sequence data on 809 ADNI subjects (cases, mild cognitive
impairment, and controls) have been harmonized using the ADSP pipeline for joint analysis.
The ADSP Quality Control Work Group performs QC and concordance checks into an overall
ADSP VCF file.

COPDGene from the TOPMed Project. Eligible subjects in COPDGene Study (NCT00608764,
www.copdgene.org) were of non-Hispanic white (NHW) or African-American (AA) ancestry,
aged 45-80 years old, with at least 10 pack-years of smoking and no diagnosed lung dis-
ease other than COPD or asthma. IRB approval was obtained at all study centers, and all
study participants provided written informed consent. All subjects underwent a baseline sur-
vey, including demographics, smoking history, and symptoms; pre- and post-bronchodilator
lung function testing; and chest CT scans. Samples from COPDGene were sequenced at
the Broad Institute and at the Northwest Genomics Center at the University of Washington.
Variants for all TOPMed samples were jointly called by the Informatics Research Center
at the University of Michigan. For details on sequencing and variant calling methods, see
https://www.nhlbiwgs.org/topmed-whole-genome-sequencing-project-freeze-5b-phases-1-and-
2. QC included comparison of annotated and genetic sex and comparison of genotypes from
prior SNP array data with genotypes called from sequencing. Samples with questionable iden-
tity from either of these checks were excluded from analysis.
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Figure S1: Power and false discovery rate of the proposed gene-based tests, binary and
continuous traits with tests including all variants. (a) Power and robustness to noisy
enhancers. The top panels show power for the GeneScan3D, GeneScan1D, H-MAGMA,
MAGMA and STAAR-O tests. The number of enhancers (R) ranges from 2 to 10. The
bottom panels show power for the GeneScan3D, H-MAGMA and STAAR-O tests assuming
causal variants in R = {2, 5} ‘causal’ enhancers. Power is compared between using only the
R = {2, 5} ‘causal’ enhancers (the oracle approach) vs. using all 10 enhancers (including noisy
enhancers). (b) Power and false discovery rate (FDR) for GeneScan3DKnock using different
number of knockoffs and the Benjamini-Hochberg (BH) procedure for GeneScan3D, STAAR-
O and H-MAGMA.
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Figure S2: Power and false discovery rate of STAAR-O tests with non-default (all variants
and common variants only) and default (rare variants only) settings, binary and contin-
uous traits. (a) Power and robustness to noisy enhancers. The top panels show power for the
STAAR-O tests. The number of enhancers (R) ranges from 2 to 10. The bottom panels show
power for the STAAR-O tests assuming causal variants in R = {2, 5} ‘causal’ enhancers. Power
is compared between using only the R = {2, 5} ‘causal’ enhancers (the oracle approach) vs.
using all 10 enhancers (including noisy enhancers). (b) Power and false discovery rate (FDR)
for the Benjamini-Hochberg (BH) procedure for STAAR-O.
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Figure S3: Power and false discovery rate of window-level KnockoffScreen, gene-level
KnockoffScreen, and GeneScan3DKnock, binary and continuous traits with tests includ-
ing common variants only and all variants. Power and FDR are reported when using different
number of knockoffs.
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Figure S4: Applications to ADSP whole-genome sequencing data, all variants (a)-(e) Man-
hattan plots of MAGMA, H-MAGMA, STAAR-O, GeneScan1D and GeneScan3D results, re-
spectively. (f) Manhattan plot of GeneScan3DKnock results. Genes within the zinc-finger-
containing (ZNF) gene cluster on chr19 are unlabeled and shown in blue in H-MAGMA,
GeneScan3D and GeneScan3DKnock analyses for clear visualization. The right panel shows
a heatmap with p-values of GeneScan3D test (truncated at 10−20) for all genes passing the
FDR=0.1 threshold, and the corresponding q-values that already incorporate correction for
multiple testing. The genes are shown in descending order of the knockoff statistics. (g) Scatter
plot of W knockoff statistics (GeneScan3DKnock) vs. −log10(p value) (GeneScan3D) for all
variants. Each dot represents a gene. The dashed lines show the significance threshold defined
by Bonferroni correction (for p-values), and the data-adaptive threshold for false discovery rate
control (FDR; for W statistic).
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Figure S5: Applications to ADSP whole-genome sequencing data, all variants. (a)-(e) Man-
hattan plots of MAGMA, H-MAGMA, STAAR-O, GeneScan1D and GeneScan3D and GeneS-
can3DKnock results using BH for FDR control, respectively.
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Figure S6: Applications to ADSP whole-genome sequencing data, common variants. (a)-(f)
Manhattan plots of MAGMA, H-MAGMA, TWAS, STAAR-O, GeneScan1D and GeneScan3D
and GeneScan3DKnock results using BH for FDR control, respectively.
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Figure S7: Applications to COPDGene whole-genome sequencing data (trait FEV1), for all
variants. (a)-(f) Manhattan plots of MAGMA, H-MAGMA, STAAR-O, GeneScan1D, GeneS-
can3D and GeneScan3DKnock results, respectively.
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Figure S8: Applications to COPDGene whole-genome sequencing data (trait FEV1), for
all variants. (a)-(e) Manhattan plots of MAGMA, H-MAGMA, STAAR-O, GeneScan1D and
GeneScan3D and GeneScan3DKnock results using BH for FDR control, respectively.

S11

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.14.21260405doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.14.21260405
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S9: Applications to COPDGene whole-genome sequencing data (trait FEV1), for
common variants. (a)-(f) Manhattan plots of MAGMA, H-MAGMA, TWAS, STAAR-O,
GeneScan1D and GeneScan3D and GeneScan3DKnock results using BH for FDR control, re-
spectively.
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Figure S10: Applications to ADSP and COPDGene (trait FEV1) whole-genome sequenc-
ing data for STAAR-O default settings. (a)-(b) Manhattan plots of ADSP and FEV1 using
Bonferroni threshold, respectively. (c)-(d) Manhattan plots of ADSP and FEV1 results BH for
FDR control, respectively.
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Figure S11: Overlap between significant genes of GeneScan3D, H-MAGMA and TWAS
for 9 neuropsychiatric and neurodegenerative traits.
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Figure S12: (a) Human brain developmental expression of H-MAGMA significant genes
for each brain-disorder, combined Hi-C for Adult brain, Fetal brain GZ and CP layers. P-
values of Wilcoxon rank sum tests are shown in the boxplots to compare independent prenatal
and postnatal samples. (b) Cell-type expression profiles of H-MAGMA significant genes.
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Figure S13: (a) Human brain developmental expression of GeneScan1D significant genes
for each brain-disorder. P-values of Wilcoxon rank sum tests are shown in the boxplots to
compare independent prenatal and postnatal samples. (b) Cell-type expression profiles of
GeneScan1D significant genes.
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Figure S14: (a) Human brain developmental expression of MAGMA significant genes
for each brain-disorder. P-values of Wilcoxon rank sum tests are shown in the boxplots
to compare independent prenatal and postnatal samples. (b) Cell-type expression profiles of
MAGMA significant genes.
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Figure S15: (a) Human brain developmental expression of TWAS significant genes for
each brain-disorder. P-values of Wilcoxon rank sum tests are shown in the boxplots to com-
pare independent prenatal and postnatal samples. (b) Cell-type expression profiles of TWAS
significant genes.

S18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.14.21260405doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.14.21260405
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S1: Type-I error rate of the GeneScan1D and GeneScan3D tests. Results are shown
for tests based on all variants and common variants only, for continuous and binary traits.

Trait
Significance

level
GeneScan1D

GeneScan3D
(R = 2 enhancers)

Common variants

Binary

10−3 0.0011 0.0010
10−4 9.67E-05 9.89E-05
10−5 1.04E-05 1.04E-05
2.5 × 10−6 3.00E-06 2.50E-06

Continuous

10−3 0.0011 0.0011
10−4 1.06E-04 1.03E-04
10−5 1.02E-05 1.03E-05
2.5 × 10−6 2.90E-06 3.10E-06

All variants

Binary

10−3 8.21E-04 8.45E-04
10−4 7.48E-05 7.69E-05
10−5 7.50E-06 6.40E-06
2.5 × 10−6 2.50E-06 1.70E-06

Continuous

10−3 0.0011 0.0011
10−4 1.02E-04 1.02E-04
10−5 1.04E-05 1.03E-05
2.5 × 10−6 2.70E-06 2.90E-06
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Table S2: GeneScan1D/3D results for ADSP data. For all variants and/or common variants,
genes significantly associated with AD in at least one of the GeneScan1D/3D analyses are
reported. The p-values smaller than 2.7 × 10−6 are shown in boldface font.

Gene Chr:start-end (hg38)
Pvalue

GeneScan1D
All variants

Pvalue
GeneScan1D

Common variants

Pvalue
GeneScan3D
All variants

Pvalue
GeneScan3D

Common variants

ChIP-seq
Promoter

#GH and ABC
enhancers

ZNF45 19:43,912,624-43,935,282 0.2544 0.6344 1.12E-39 1.60E-40 X 97
ZNF155 19:43,967,862-43,998,326 0.4927 0.1585 2.90E-21 4.14E-22 × 66
ZNF230 19:44,002,957-44,013,924 0.6649 0.1669 7.60E-40 1.09E-40 X 58
ZNF223 19:44,051,367-44,067,999 0.5433 0.1201 2.10E-21 3.00E-22 × 53
ZNF284 19:44,072,159-44,089,613 0.4463 0.5059 7.60E-40 1.08E-40 X 71
ZNF224 19:44,094,339-44,109,886 0.8048 0.6620 8.91E-40 1.27E-40 X 77
ZNF225 19:44,112,181-44,134,822 0.3922 0.8169 1.00E-39 1.43E-40 X 85
ZNF234 19:44,141,554-44,160,313 0.7476 0.3404 8.95E-40 1.27E-40 X 87
ZNF285 19:44,382,298-44,401,608 0.7318 0.7191 1.02E-29 1.46E-30 X 22
ZNF180 19:44,474,428-44,500,524 0.2074 0.7610 1.45E-39 2.07E-40 X 93
IGSF23 19:44,613,563-44,636,781 0.2018 0.4155 5.07E-22 7.24E-23 × 13
PVR 19:44,643,798-44,666,162 0.6116 0.2691 1.15E-27 1.64E-28 X 34
CEACAM19 19:44,662,278-44,684,359 0.5490 0.5034 2.68E-27 3.82E-28 × 47
BCL3 19:44,747,705-44,760,044 0.0845 0.0195 6.85E-28 9.77E-29 X 24
CBLC 19:44,777,869-44,800,652 0.0034 0.0385 1.51E-27 2.15E-28 × 30
BCAM 19:44,809,071-44,821,421 0.0142 0.0021 3.87E-30 5.52E-31 X 60
NECTIN2 19:44,846,175-44,889,223 8.98E-40 1.28E-40 6.70E-40 9.58E-41 X 61
TOMM40 19:44,890,569-44,903,689 2.20E-76 8.92E-77 3.91E-75 5.64E-76 X 17
APOE 19:44,905,791-44,909,393 5.30E-76 6.95E-77 2.29E-75 3.27E-76 X 28
APOC1 19:44,914,247-44,919,349 8.55E-50 1.07E-50 2.49E-49 3.52E-50 × 24
APOC4 19:44,942,237-44,945,496 0.0602 0.0230 1.28E-24 1.83E-25 × 13
APOC4-APOC2 19:44,942,238-44,949,565 0.0752 0.0294 1.09E-24 1.56E-25 × 10
APOC2 19:44,946,035-44,949,565 0.0931 0.0306 2.19E-24 3.14E-25 × 19
CLPTM1 19:44,954,585-44,993,341 0.0422 0.1296 1.23E-27 1.76E-28 X 26
RELB 19:45,001,449-45,038,198 0.0400 0.0259 2.81E-30 4.01E-31 X 54
CLASRP 19:45,039,045-45,070,956 0.0909 0.0602 2.13E-29 3.04E-30 X 57
ZNF296 19:45,071,500-45,076,587 0.2104 0.1923 9.15E-28 1.31E-28 X 32
GEMIN7 19:45,079,195-45,091,518 0.1002 0.0127 1.67E-29 2.39E-30 × 40
MARK4 19:45,079,288-45,305,284 0.3483 0.0843 1.37E-27 1.96E-28 X 17
PPP1R37 19:45,091,396-45,148,077 0.1143 0.0244 1.76E-27 2.52E-28 X 32
EXOC3L2 19:45,212,621-45,245,431 0.4782 0.3115 5.77E-27 8.25E-28 × 40
KLC3 19:45,333,434-45,351,520 0.0300 0.0073 2.96E-27 4.21E-28 × 25
OPA3 19:45,527,427-45,602,212 0.1746 0.0602 1.85E-40 2.64E-41 × 17
QPCTL 19:45,692,666-45,703,989 0.5585 0.1051 1.94E-21 2.77E-22 X 51
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Table S3: Windows with minimum p-value for the genes significant in the GeneScan3D analyses
(common variants only) are shown (AD). For each significant gene, the minimum p-value for the 1-D
windows is reported, along with the best 1-D window spanning the gene plus buffer region. The mini-
mum p-value for the 3-D windows along with the corresponding regulatory element, and the strength of
the enhancer-gene link are also reported.

Gene
min-p

1-D windows
Best 1-D window (hg38)

min-p
3-D windows

Best RE with enhancer score (hg38)

ZNF45 0.1043 chr19:43,931,258-43,932,101 1.20E-42
GH19F044903: chr19:44,903,704-44,907,334
GH link score 18.49

ZNF155 0.0084 chr19:43,994,962-43,995,935 4.26E-24
GH19F044923: chr19:44,923,872-44,928,016
GH link score 21.11

ZNF230 0.0097 chr19:44,009,944-44,010,922 1.43E-42
GH19F044903: chr19:44,903,704-44,907,334
GH link score 13.18

ZNF223 0.0203 chr19:44,059,376-44,060,351 3.99E-24
GH19F044923: chr19:44,923,872-44,928,016
GH link score 12.64

ZNF284 0.0448 chr19:44,069,650-44,070,618 1.13E-42
GH19F044903: chr19:44,903,704-44,907,334
GH link score 15.86

ZNF224 0.0608 chr19:44,091,826-44,092,807 1.13E-42
GH19F044903: chr19:44,903,704-44,907,334
GH link score 20.39

ZNF225 0.0269 chr19:44,139,241-44,139,818 1.28E-42
GH19F044903: chr19:44,903,704-44,907,334
GH link score 12.72

ZNF234 0.0224 chr19:44,142,512-44,143,203 1.13E-42
GH19F044903: chr19:44,903,704-44,907,334
GH link score 12.18

ZNF285 0.0765 chr19:44,389,350-44,390,328 4.66E-32
GH19F044889: chr19:44,889,191-44,894,261
GH link score 1.21

ZNF180 0.1769 chr19:44,474,408-44,475,380 1.58E-42
GH19F044903: chr19:44,903,704-44,907,334
GH link score 18.84

IGSF23 0.0357 chr19:44,608,576-44,609,451 3.99E-24
GH19F044923: chr19:44,923,872-44,928,016
GH link score 7.95

PVR 0.0083 chr19:44,661,414-44,666,407 7.02E-30
ABC enhancer: chr19:44,890,614-44,891,469
ABC score 0.0379

CEACAM19 0.0147 chr19:44,663,283-44,664,277 4.68E-30
ABC enhancer: chr19:44,890,614-44,891,469
ABC score 0.0366

BCL3 0.0013 chr19:44,758,712-44,759,652 4.68E-30
ABC enhancer: chr19:44,890,614-44,891,469
ABC score 0.0411

CBLC 0.0019 chr19:44,783,946-44,784,890 4.68E-30
ABC enhancer: chr19:44,890,614-44,891,469
ABC score 0.076

BCAM 7.28E-05 chr19:44,820,132-44,821,030 6.97E-33
GH19F044909: chr19:44,909,534-44,915,843
GH link score 4.9

NECTIN2 1.20E-42 chr19:44,888,835-44,889,771 1.25E-42
GH19F044903: chr19:44,903,704-44,907,334
GH link score 5.79

TOMM40 3.37E-78 chr19:44,908,102-44,908,684 1.25E-77 promoter
APOE 3.37E-78 chr19:44,907,807-44,908,799 8.36E-78 promoter

APOC1 3.92E-52 chr19:44,918,285-44,919,189 3.92E-52
ABC enhancer: chr19:44,906,123-44,906,623
ABC score 0.0334

APOC4 0.0018 chr19:44,943,215-44,944,186 7.88E-27
ABC enhancer: chr19:44,912,770-44,913,270
ABC score 0.0302

APOC4-APOC2 0.0018 chr19:44,943,215-44,944,186 7.88E-27
ABC enhancer: chr19:44,912,770-44,913,270
ABC score 0.0302

APOC2 0.0018 chr19:44,943,144-44,944,134 7.88E-27
ABC enhancer: chr19:44,912,770-44,913,270
ABC score 0.0302

CLPTM1 0.0117 chr19:44,967,087-44,968,058 1.87E-29
ABC enhancer: chr19:44,890,614-44,891,469
ABC score 0.0737

RELB 0.0004 chr19:45,020,477-45,021,421 6.67E-33
GH19F044909: chr19:44,909,534-44,915,843
GH link score 11.26

CLASRP 0.0012 chr19:45,063,100-45,064,084 4.45E-32
GH19F044889: chr19:44,889,191-44,894,261
GH link score 1.55

ZNF296 0.0349 chr19:45,076,520-45,081,506 7.02E-30
ABC enhancer: chr19:44,890,614-44,891,469
ABC score 0.0202

GEMIN7 0.0008 chr19:45,084,166-45,089,162 4.66E-32
GH19F044889: chr19:44,889,191-44,894,261
GH link score 1.9

MARK4 0.0008 chr19:45,084,166-45,089,162 9.36E-30
ABC enhancer: chr19:44,890,282-44,891,469
ABC score 0.0301

PPP1R37 0.0002 chr19:45,086,407-45,091,400 9.36E-30
ABC enhancer: chr19:44,890,284-44,891,469
ABC score 0.0262

EXOC3L2 0.0184 chr19:45,211,680-45,212,582 7.02E-30
ABC enhancer: chr19:44,890,308-44,891,469
ABC score 0.0263

KLC3 0.0005 chr19:45,332,046-45,333,045 7.02E-30
ABC enhancer: chr19:44,890,282-44,891,469
ABC score 0.0322

OPA3 0.0010 chr19:45,592,914-45,593,889 1.13E-42
GH19F044903: chr19:44,903,704-44,907,334
GH link score 4.48

QPCTL 0.0116 chr19:45,691,716-45,692,686 3.99E-24
GH19F044923: chr19:44,923,872-44,928,016
GH link score 12.14
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Table S4: GeneScan3DKnock results for ADSP data. For all variants and/or common vari-
ants, genes significantly associated with AD for the GeneScan3DKnock test at FDR 10% are
shown. ‘-’ represents genes that are not significant under all variants or common variants (with
q-value> FDR 10%).

Gene Chr:start-end (hg38)
W statistic
All variants

q-value
All variants

W statistic
Common variants

q-value
Common variants

PPP1R17 chr7:31,687,215-31,708,455 - - 2.70 0.0957
HIPK3 chr11:33,256,672-33,357,023 3.20 0.0400 - -
NECTIN1 chr11:119,623,408-119,729,200 - - 3.23 0.0200
ZNF646 chr16:31,074,422-31,084,196 - - 2.71 0.0957
ZNF843 chr16:31,432,593-31,443,160 - - 2.77 0.0957
ZNF45 chr19:43,912,624-43,935,282 3.74 0.0211 3.74 0.0105
ZNF155 chr19:43,967,862-43,998,326 8.82 0.0118 8.82 0.0105
ZNF230 chr19:44,002,957-44,013,924 4.10 0.0118 4.10 0.0105
ZNF223 chr19:44,051,367-44,067,999 8.82 0.0118 8.82 0.0105
ZNF284 chr19:44,072,159-44,089,613 4.41 0.0118 4.41 0.0105
ZNF224 chr19:44,094,339-44,109,886 4.41 0.0118 4.41 0.0105
ZNF225 chr19:44,112,181-44,134,822 4.41 0.0118 4.41 0.0105
ZNF234 chr19:44,141,554-44,160,313 4.10 0.0118 4.10 0.0105
ZNF180 chr19:44,474,428-44,500,524 3.74 0.0211 3.74 0.0105
IGSF23 chr19:44,613,563-44,636,781 8.82 0.0118 8.82 0.0105
BCAM chr19:44,809,071-44,821,421 9.06 0.0118 9.06 0.0105
NECTIN2 chr19:44,846,175-44,889,223 8.07 0.0118 8.07 0.0105
TOMM40 chr19:44,890,569-44,903,689 10.98 0.0118 10.98 0.0105
APOE chr19:44,905,791-44,909,393 10.98 0.0118 10.98 0.0105
APOC1 chr19:44,914,247-44,919,349 5.20 0.0118 5.20 0.0105
CLPTM1 chr19:44,954,585-44,993,341 4.09 0.0118 4.09 0.0105
RELB chr19:45,001,449-45,038,198 9.05 0.0118 9.05 0.0105
OPA3 chr19:45,527,427-45,602,212 4.41 0.0118 4.41 0.0105
QPCTL chr19:45,692,666-45,703,989 8.82 0.0118 8.82 0.0105
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Table S5: Replication results for ADSP data. The list includes all genes that have been identified
as significant across all the different tests/analyses (including BH-adjusted tests). Genes identified by
GeneScan3DKnock are shown in italic font. The p-values smaller than 0.05 are shown in boldface font.

Gene Pvalue GeneScan3D Pvalue GeneScan1D
CHI3L2 6.14E-01 3.27E-01
NOS1AP 8.32E-01 1.56E-01
PDE12 1.47E-05 4.88E-06
PLK4 6.10E-01 6.73E-01
TENT4A 8.52E-02 6.36E-02
RIOK1 2.79E-01 3.99E-01
ADGRG6 7.33E-01 7.33E-01
IPCEF1 5.93E-01 2.03E-01
PPP1R17 4.96E-02 5.56E-02
INIP 6.40E-03 1.93E-02
SLC46A2 7.38E-03 5.94E-03
ZFP37 7.40E-02 7.94E-01
HIPK3 1.81E-01 1.50E-01
NECTIN1 4.23E-01 4.23E-01
ELF1 4.38E-01 5.91E-01
KBTBD7 3.33E-01 5.41E-01
RBPMS2 1.65E-01 8.64E-01
ZNF646 2.52E-05 3.68E-05
BCKDK 2.45E-06 9.07E-07
PRSS8 5.04E-05 3.92E-05
FUS 3.01E-05 1.73E-02
ZNF843 4.10E-04 3.36E-01
TRIR 4.01E-01 5.79E-01
ZNF45 0.00E+00 3.08E-02
ZNF155 0.00E+00 6.35E-02
ZNF230 0.00E+00 3.50E-03
ZNF223 0.00E+00 3.87E-03
ZNF284 0.00E+00 5.10E-02
ZNF224 0.00E+00 1.81E-01
ZNF225 0.00E+00 1.86E-01
ZNF234 0.00E+00 7.73E-05
ZNF285 0.00E+00 2.19E-02
ZNF180 0.00E+00 5.97E-03
IGSF23 0.00E+00 1.53E-14
PVR 0.00E+00 8.50E-24
CEACAM19 0.00E+00 9.97E-24
BCL3 0.00E+00 5.23E-56
CBLC 0.00E+00 1.05E-39
BCAM 0.00E+00 1.07E-142
NECTIN2 0.00E+00 0.00E+00
TOMM40 0.00E+00 0.00E+00
APOE 0.00E+00 0.00E+00
APOC1 0.00E+00 0.00E+00
APOC4 0.00E+00 9.39E-33
APOC4-APOC2 0.00E+00 9.39E-33
APOC2 0.00E+00 5.82E-33
CLPTM1 0.00E+00 7.83E-48
RELB 0.00E+00 1.08E-44
CLASRP 0.00E+00 1.67E-27
ZNF296 0.00E+00 6.51E-14
GEMIN7 0.00E+00 3.37E-17
MARK4 0.00E+00 4.24E-36
PPP1R37 0.00E+00 1.20E-36
EXOC3L2 0.00E+00 1.55E-20
KLC3 0.00E+00 3.27E-06
OPA3 0.00E+00 3.79E-04
QPCTL 0.00E+00 2.44E-03
LCA5L 6.89E-01 8.15E-01

S23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 18, 2021. ; https://doi.org/10.1101/2021.07.14.21260405doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.14.21260405
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table S6: Replication results for COPDGene data (trait FEV1). The list includes all genes that have
been identified as significant across all the different tests/analyses (including BH-adjusted tests). Genes
identified by GeneScan3DKnock are shown in italic font. The p-values smaller than 0.05 are shown in
boldface font.

Gene Pvalue GeneScan3D Pvalue GeneScan1D
TRIM62 1.00E-03 8.23E-04
PODXL2 2.60E-05 5.22E-02
MGLL 1.62E-05 2.36E-02
SEC61A1 7.38E-06 2.25E-03
RUVBL1 1.27E-06 6.56E-07
EEFSEC 2.33E-06 1.32E-06
DNAJB8 1.04E-14 8.43E-03
GATA2 1.70E-05 2.76E-04
RAB7A 7.93E-05 8.31E-03
COMMD2 5.89E-03 2.30E-03
FAM13A 7.55E-04 4.41E-04
ARHGEF38 1.28E-37 1.28E-37
INTS12 9.02E-60 3.07E-60
GSTCD 5.42E-39 2.90E-39
NPNT 3.15E-60 1.73E-60
EXOC3 1.11E-07 1.22E-03
CEP72 1.26E-08 6.75E-09
BRD9 1.60E-07 5.06E-06
TRIP13 1.10E-07 2.33E-06
TERT 1.59E-02 6.02E-02
ATP6V1C1 3.74E-02 8.70E-02
RBM14 6.63E-36 8.10E-13
FRS2 6.28E-04 8.82E-04
CCT2 6.13E-04 4.46E-04
LRRC10 3.35E-04 2.73E-04
BEST3 3.52E-03 5.35E-02
RAB3IP 8.48E-07 1.88E-05
DACH1 7.75E-03 4.67E-03
CRABP1 1.88E-21 3.14E-01
IREB2 4.66E-20 1.59E-20
HYKK 7.52E-23 5.46E-23
PSMA4 1.47E-22 5.16E-22
CHRNA5 9.67E-22 3.31E-22
CHRNA3 2.53E-22 2.04E-21
CHRNB4 2.37E-19 1.19E-19
ADAMTS7 8.61E-22 4.32E-02
MORF4L1 9.35E-22 2.06E-01
RASGRF1 6.72E-22 5.76E-01
LEUTX 1.41E-01 1.62E-01
CYP2A6 7.38E-05 4.22E-05
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Table S7: The number of significant genes (p ≤ 10−3) associated with each brain disorder
for GeneScan tests, MAGMA/H-MAGMA and TWAS.

Disorder GeneScan1D
GeneScan3D
combined Hi-C

MAGMA
H-MAGMA
combined Hi-C

TWAS

ADHD 193 371 206 451 180
ASD 95 176 101 287 73
BD 421 1059 475 1104 474
SCZ 1742 3651 1753 3804 1496
MDD 657 1450 665 1438 575
AD 308 791 246 596 296
PD 214 557 171 385 205
MS 364 694 338 529 231
ALS 55 79 51 95 36
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