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Abstract

To control the SARS-CoV-2 pandemic and future pathogen outbreaks requires
an understanding of which non-pharmaceutical interventions are effective at reduc-
ing transmission. Observational studies, however, are subject to biases, even when
there is no true effect. Cluster randomized trials provide a means to conduct valid
hypothesis tests of the effect of interventions on community transmission. While they
may only require a short duration, they often require large sample sizes to achieve
adequate power. However, the sample sizes required for such tests in an outbreak set-
ting are largely undeveloped and the question of whether these designs are practical
remains unanswered. We develop approximate sample size formulae and simulation-
based sample size methods for cluster randomized trials in infectious disease outbreaks.
We highlight key relationships between characteristics of transmission and the enrolled
communities and the required sample sizes, describe settings where cluster random-
ized trials powered to detect a meaningful true effect size may be feasible, and provide
recommendations for investigators in planning such trials. The approximate formulae
and simulation banks may be used by investigators to quickly assess the feasibility of a
trial, and then more detailed methods may be used to more precisely size the trial. For
example, we show that community-scale trials requiring 220 clusters with 100 tested
individuals per cluster are powered to identify interventions that reduce transmission
by 40% in one generation interval, using parameters identified for SARS-CoV-2 trans-
mission. For more modest treatment effects, or settings with extreme overdispersion
of transmission, however, much larger sample sizes are required.

Keywords: non-pharmaceutical interventions, power, reproduction number, sample
size, SARS-CoV-2

1 Introduction

Since its emergence in late 2019, the pandemic SARS-CoV-2 virus has spread globally,
resulting in millions of deaths.1 Before vaccines were developed and authorized, policy
responses to control the spread of the virus relied on non-pharmaceutical interventions
(NPIs). NPIs—including, among other measures, mask mandates, school and business
closures, and restrictions on travel—have the potential to reduce transmission of the
virus. However, which specific NPIs have an effect on transmission remains largely
uncertain, while their economic or psychological costs may be substantial. This presents
a challenge for policy design. Retrospective statistical analyses of reported cases or
deaths,2–4 in some cases supplemented with mobility data,5,6 have provided one means
to estimate these impacts, but the conclusions are far from clear. In the first waves of
the pandemic, school closures, for example, were found to have relatively minor effects
in various types of studies.2,3, 7 However, more recent analyses suggested that school
closure might reduce transmission, perhaps by as much as 15%.4,8–11

Ultimately, while this body of work has helped inform the policy landscape, impor-
tant gaps remain. Different interventions often overlap in timing, and communities that
adopt particular interventions may be similar in other ways, resulting in confounding
that biases estimates, even under the null hypothesis of no intervention effect, and chal-
lenges the validity of hypothesis tests.12 In addition, since these observational studies
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generally rely on the number of observations available in existing data sets, their power
to detect meaningful effect sizes may be low or uncertain.

RCTs are widely used to evaluate the impact of interventions on infectious diseases,
as seen in recent vaccine trials with tens of thousands of participants.13,14 While the
first trials for SARS-CoV-2 vaccines focused on estimating direct effects on individual-
level protection, cluster randomized trials (cRCTs) can also provide valuable insight
into indirect and total effects of a vaccination regimen in a community.15,16 For NPIs,
clusters are the natural scale of analysis, as many interventions are implemented at
this scale—e.g., by school districts or municipalities—and as both direct and indirect
protection are of interest in policy design.

Random allocation of interventions to different communities with short lags has
been proposed as an approach to assess whether interventions affect transmission.17,18

Indeed, because transmission is rapid, effects can be evaluated in a matter of weeks.
Due to uncertainty in results and the short trial duration (and thus short delay before
all communities can receive the intervention), equipoise and community acceptability
might be relatively high for such trials in an epidemic setting. Despite these advan-
tages, these RCTs might still incur substantial costs and require significant coordina-
tion, implementation, and testing. These logistical challenges grow as the number of
intervention units increases. Thus, the degree to which deploying RCTs to evaluate
NPIs is a useful policy tool will depend on the sample size required to detect, with
adequate power, a meaningful reduction in transmission.

Simulation approaches have been previously used to evaluate the statistical power
of cRCTs evaluating vaccination at both individual and cluster scales.19–22 This allows
investigators to size cRCTs to have a desired power to detect a specified true effect size
of interest (i.e., reduction in transmission). Although estimators have different prop-
erties and interpretations depending on the phase of the epidemic—e.g., by capturing
more indirect effects or having less impact when there is more pre-existing immunity—
this allows hypothesis tests to be appropriately powered.21,22 Here, we build on these
results to provide estimates for the number of clusters and number of individuals mea-
sured within each cluster needed to test the effectiveness of an NPI, with the aim of
bounding the feasibility of such analyses.

We provide investigators with several tools to estimate the required sample size of
a cRCT powered to test the effect of an NPI on epidemic transmission. These include
approximate formulae that can be used to size the trial, and simulation results that
inform how power depends on key parameters. For more precise sample size and power
calculations, simulations adapted to the context of the trial under consideration will
be necessary. The results presented here, however, can provide a baseline for assessing
whether a trial may be feasible with a reasonable sample size and can provide a starting
point for more specific investigations.

2 Methods

2.1 Trial Design

We consider cRCTs where there are N = N1 + N0 total clusters enrolled, with N1 in
the intervention arm and N0 in the control arm. At a specified day t after the introduc-
tion of infections into the clusters, one round of sampling is performed, sampling m0
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individuals from each cluster and testing them for the infection. In the simulations, we
find the time t such that the average proportion of infectious individuals is as desired,
averaged across clusters. We then set this value t for use in all clusters. At that point,
the intervention begins in the intervention arm clusters, a randomly-selected subset of
half of the study clusters. A set amount of time later (in our main results, equal to
one generation interval of the infection, but a range of times are explored in Section
3.2.2), another round of sampling occurs, this time sampling m1 individuals from each
cluster and testing them. We denote this time point by t + 1. We assume that the
test accurately identifies infectious individuals. More complex models may be used
to adjust for known imperfect sensitivity and specificity, as has been done in other
settings.12,23

In some cases where clusters are relatively small, it may be reasonable to assume
that everyone or nearly everyone in the cluster will have their outcome measured.
For example, some schools, universities, long-term care facilities, and workplaces have
proposed or implemented universal testing strategies.24–27 We consider this setting
first, followed by settings where a simple random sample (without replacement) is
chosen for testing, independently at each time point.

Each cluster j then has two values associated with it: Yj,t, the number of sampled
individuals who test positive in the first round of sampling (pre-intervention); and
Yj,t+1, the number of sampled individuals who test positive in the second round of
sampling (post-intervention). We conduct analysis using test statistics based on the

quantity
Yj,t+1/m1

Yj,t/m0
from each cluster, e.g., by comparing the mean of this statistic in the

intervention arm to that in the control arm. This statistic estimates the reproductive
number, Rt, in the cluster, so the difference in means estimates the reduction in the
transmission rate.17

This statistic may not always be unbiased, due to adjustments made for zero-case
clusters, asymmetric effects of the progress of the epidemic prior to time t, and the
continuous-time nature of transmissions. However, in a randomized trial, under the
null hypothesis of no effect of intervention, the statistic has zero expectation. Thus,
hypothesis tests based on this statistic are valid. In the sample size calculations to
follow, we size the trial based on the true effect of intervention on the reproductive
number. While the power and sample size calculations presented here are based on
hypothesis tests using this statistic, they may be reasonable approximations for other
test statistics using the same information. While Type I Error is preserved through
internal validity, other statistics may have greater power, especially if they avoid any
bias in the estimator. In addition, other sampling schemes are possible, including
sampling only at time t + 1 or additionally using serologic sampling to estimate the
number of susceptible individuals at either or both time points. We focus on the setting
using only virologic testing at the two time points for power calculations as it may be
broadly feasible to implement.

2.2 Epidemic Spread Assumptions

Both the development of approximate sample size formulae and the simulations that
follow depend on certain assumptions about the epidemic process. First of all, we
assume that clusters are independent; that is, there is no transmission between clusters.
This may be reasonable if clusters are sufficiently geographically distinct.
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Secondly, we assume that once a cluster has its initial infections, the pathogen
spreads according to a standard Susceptible-Exposed-Infectious-Recovered (SEIR) model.
In the approximations, we use a discrete-time SEIR model with a fixed generation in-
terval. We assume that at time t, the proportion of individuals who are infectious
is It. This model assumes a time-varying reproduction number, Rt, that proceeds in
each community from a common basic reproduction number R0, changing as the num-
ber of susceptible individuals changes, with overdispersion parameterized by k. This
parameter allows for the epidemic spread to encompass settings ranging from very lit-
tle variation in transmission across individuals (k ≥ 1) to a small number of infected
individuals being responsible for the vast majority of onward transmission (k < 0.1),
sometimes referred to as “superspreading”.28,29 The number of individuals in the
community is assumed to be sufficiently large compared to the number of infectious
individuals at time t such that no individual is infected by two infectious individuals
in the same generation.

In the simulations, we use a continuous-time stochastic SEIR model. We assume
that each exposed individual’s incubation period is drawn from an exponential distri-
bution with a mean of 5.51 days.30 We match the simulations done elsewhere,21,22

assuming the mean infectious period across individuals is 5 days (from an exponential
rather than a gamma distribution). We assume an approximate negative binomial de-
gree distribution for the network structure of each cluster with a mean of 15 contacts
per individual and overdispersion parameter k. The contact structure does not exactly
follow the negative binomial degree distribution because we delete self-loops after us-
ing a configuration model (CM) algorithm to create the contact structure.31 We also
assume a fixed initial number of infections to seed the epidemic according to cluster
size (see Table 1). Note that because the epidemics progress stochastically within each
cluster, the Rt and It values vary between clusters.

In the approximations, the intervention can affect the reproduction number and the
overdispersion parameter in the clusters where it is implemented. In the simulations,
the intervention affects the transmission rate, but not the contact structure in the
cluster and thus not the overdispersion of contacts.

2.3 Approximate Sample Size Formulae

We consider analysis based on the test statistic comparing the means of
Yj,t+1/m1

Yj,t/m0
(the

ratio of the proportion infected post-intervention to pre-intervention, which approxi-
mates the reproduction number when measured one generation interval apart) in the
intervention vs. control arms. We present two results based on approximate distribu-
tions of the test statistic: (i) an approximate sample size required (in terms of the
number of clusters per arm) when there is full testing within each cluster at times t
and t+ 1; and (ii) an approximate sample size required when there is sampled testing
within each cluster at those times. The former is useful for small cluster sizes, where
full or near-full testing is feasible. The latter assumes that the number tested is small
compared to the total cluster population, although it focuses on the variability due
to post-intervention sampling and ignores the variability due to sampling at time t.
The latter is thus likely to underestimate the required sample size in many settings,
except where the proportion sampled is non-negligible (i.e., greater than 10%). The
approximations do not account for the number susceptible, so both methods are most
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accurate early in an outbreak.
Both of these results are based on a Welch’s two-sample t-test for the comparison

of two means, with unequal variances. For this test, the required sample size (number
of clusters) in each arm, Ni, to detect a difference in means of ∆ with power 1− β at
two-sided significance level α solves:32

Ni =
(σ21 + σ20)(t2Ni−2,1−α/2 + t2Ni−2,1−β)2

∆2
, (1)

where σ2i is the variance of the observations in intervention arm i, for i ∈ {0, 1}, and
tDF,φ is the φ-quantile of the t distribution with DF degrees of freedom. We present
variance estimates that can be used in this calculation, with proofs and a full statement
of the assumptions and approximations made in the derivation given in Appendix 1.

If the full cluster populations are tested at each time point, then an approximate
sample size can be calculated for the difference in the means of

Yj,t+1

Yj,t
between the

intervention arms, where Yj,t is the number of individuals who test positive at time t
in cluster j. The t-test can then be used, with effect size ∆ = R1

t − R0
t estimated by

the difference in means, and variances approximated for each arm i by:

σ2i ≈ Rit
(

1 +
Rit
ki

)
1

nE[Ij,t]
, (2)

where Rit is the time-varying reproduction number at time t in intervention arm i, ki is
the overdispersion parameter of transmission in intervention arm i, n is the population
in each cluster, and E[Ij,t] is the mean (across clusters) proportion of individuals who
are infectious at time t.

If the variance of the proportion of individuals who are infectious at time t across
clusters, V ar[Ij,t], can be estimated as well, then the calculation should use variances
approximated by:

σ2i ≈ Rit
(

1 +
Rit
ki

)(
1

nE[Ij,t]
+
V ar[Ij,t]

nE[Ij,t]3

)
. (3)

When a small proportion of the population of each cluster is tested at each time
point instead (specifically, m0 individuals per cluster at time t and m1 individuals per
cluster at time t+1), the effect size ∆ = R1

t −R0
t can be approximated by the difference

in the means of
Yj,t+1/m1

Yj,t/m0
. The variances can be approximated by:

σ2i ≈
Rit
m1

{[
1 +

m1 − 1

n

(
1 +

Rit
ki

)][
1

E[Ij,t]

]
−Rit

}
. (4)

Again, if we can estimate the variance of the proportion of individuals who are
infectious at time t by V ar[Ij,t], then the variances can be approximated by:

σ2i ≈
Rit
m1

{[
1 +

m1 − 1

n

(
1 +

Rit
ki

)][
1

E[Ij,t]
+
V ar[Ij,t]

E[Ij,t]3

]
−Rit

}
. (5)

R functions to calculate these values are available at http://www.github.com/

jsheen/NPI.
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2.4 Simulation Setup

For each parameter combination described in Table 1, we first create a simulation bank
of cluster simulations with and without an enacted NPI intervention. The simulated
epidemic is described above. To approximately align clusters on epidemic time, time t is
defined as the first day when the mean proportion of infectious people across clusters
is approximately equal to the target E[It]. In an epidemic, it would be reasonable
to test interventions at similar epidemic time points, but the remaining variability
in the number infected allows us to explore the impact of this variance on power.
After t is identified, the simulation bank is created by interrupting the simulation for
each cluster at time t. The per-contact daily transmission rate, β, is set empirically
to give the desired R0 at the beginning of the simulation. At time t, we continue
the cluster simulation both with and without an enacted NPI intervention for one
generation interval (11 days) and record the number of infectious individuals at this
point (denoted time t+ 1). The generation interval is equal to the ceiling of the sum of
the average incubation period and average infectious period.33,34 At times t and t+ 1,
m individuals are sampled and tested within each cluster. We create 3,000 simulations
for the simulation bank. Only simulated clusters with at least one infectious individual
at time t are kept, so we implicitly assume there is at least one infectious individual in
each cluster. Example trajectories of the simulations are shown in Figure 1.

To find the number of clusters in each arm of the trial needed to achieve approxi-
mately 80% power when α = 0.05, we use a binary search algorithm with a minimum
and maximum number of clusters of 1 and 1,000, respectively. At each iteration of the
algorithm, 10,000 trial simulations are performed by choosing a given number of clus-
ters from each of the treatment arm and the control arm in the simulation bank. The
empirical power is then calculated after sampling m individuals from each cluster and

a two-sample Welch’s t-test is performed on the quantity log
(
Yj,t+1+1
Yj,t+1

)
. Note that to

avoid undefined test statistic values, we add one infected individual at each time point
to each cluster. This binary search algorithm implicitly assumes that the relationship
between power and number of clusters monotonically increases. Algorithm pseudocode
for the creation of the simulation bank and binary search algorithm for N can be found
in Appendix 2, along with comments on the stability of the algorithm (see Figure S1).

We further extend these simulation results in two ways: (i) we provide N when the
post-intervention testing time point is either two or three generation intervals after t
instead of one generation interval; and (ii) we provide simulation results when matching
clusters into pairs depending on the number of susceptible individuals at time t, as
well as the number of non-infectious individuals at time t, within each cluster, using
a matched-pairs t-test. We use a greedy matching algorithm and randomly assign one
cluster of each pair to either treatment or control.

We use the EoN python package to simulate the epidemic.35 Code used for simu-
lations is provided at http://www.github.com/jsheen/NPI.

3 Results

We present results from both the approximate sample size calculations and simulations
that target an empirical power of 80% to detect a specified effect size with two-sided
significance level α = 0.05 for the parameter combinations described in Table 1.
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3.1 Approximate Sample Size Requirements

The required sample size depends on features of the transmission of infection, the sizes
of the cluster populations and samples, and the effect size studied. These relationships
are illustrated using the approximate variance formulae.

3.1.1 Approximations Under Full Measurement

In cases where the outcome (infection) is measured in everyone in each cluster, we can
use equation (2) to estimate the variance. The variances (and thus required sample
sizes) increase as the reproduction numbers, Rit, decrease or as the overdispersion
parameter, ki, decreases. Note that decreasing ki corresponds to more overdispersion
and thus more variability in the change in the number of infections over one generation.
In addition, the variance increases as the average proportion of infected individuals per
cluster at time t decreases. These relationships are plotted in Figure 2, which shows the
number of clusters per arm required for 80% power to detect a reduction in transmission
of 40% at significance level α = 0.05. Figure 2A shows that, for a given cluster size
and expected proportion of infections at enrollment, there is a slight decrease in the
required sample size as R0

t increases and a substantial decrease in the required sample
size as k increases (less overdispersion). Figure 2B shows that, for fixed R0

t and k
(R0

t = 1.5 and k = 0.4 are shown), the required number of clusters decreases as the
expected proportion of the population infected at enrollment, E[It], increases and as
the cluster size (and thus number sampled) increases. When the expected number of
infections per cluster at time t falls below approximately two, the required sample size
increases dramatically.

3.1.2 Approximations Accounting for Sampling

When sampling within each cluster is accounted for, similar relationships are observed
between R0

t , k, and the required sample size calculated using equations (1) and (4).
Figure 3A shows these relationships for a cluster size of n = 10, 000 and sampling m =
100 individuals, with E[It] = 0.005, and with an effect size (transmission reduction) of
40%. Because of the larger cluster size, the spread of infections is more deterministic,
leading to a smaller effect of overdispersion. Figure 3B shows how the effect size affects
the required sample size for fixed k = 0.4.

With this approximation, we can also examine the relationship between the number
of individuals sampled per cluster, the cluster size, and the required sample size. Figure
3C illustrates these relationships when R0

t = 1.5, k = 0.4, the reduction in transmis-
sion due to intervention is 40%, and E[It] = 0.005. Note that these approximations
ignore any finite sample corrections. When the number sampled per cluster is a large
proportion of the cluster size (i.e., 1− m1

n is meaningfully less than 1), this difference is
likely to be meaningful.36 For reference, the approximate sample size if the full cluster
is tested with these parameters ranges from six clusters per arm if n = 10, 000 to 45
clusters per arm if n = 1, 000, which represent (approximately) the minimum number
of clusters for less-than-complete sampling.

There are two key effects of an increase in cluster size, holding all other parameters
fixed: (i) stochastic effects in epidemic spread are less pronounced, leading to more
similar epidemic trajectories across clusters; and (ii) the number of individuals sampled
represents a smaller proportion of the cluster population. The former effect tends to
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decrease the variance of the test statistic, while the latter effect tends to increase the
variance of the test statistic. Thus, it is difficult to describe a general rule governing
the relationship between cluster size and required sample size. In the approximations
shown in 3C, the latter effect is ignored, so the estimated required number of clusters
decreases as cluster size increases.

As the number of individuals sampled per cluster increases, there is a reduction in
the required number of clusters per arm. However, this exhibits diminishing returns
as it increases, indicating an eventual tradeoff between the number of clusters required
per arm and the total number of samples required per arm, as is common in cRCTs.20

This figure likely underestimates the value of increased testing per cluster, especially
for relatively large fractions sampled, as it ignores finite population corrections.

3.2 Sample Size Requirements from Simulations

Estimated required sample sizes to get the desired empirical power are calculated in
simulations as well. A full set of results from these simulations are shown in Supplemen-
tary Tables S1–S17. Here, we focus on the relationships between the key parameters
and the required sample size.

3.2.1 Sample Sizes Sampling One Generation After Intervention

Similar to the approximation results, simulation results demonstrate that, in general,
the required sample size decreases as the overdispersion parameter increases, R0

t de-
creases, effect size increases, and the number of individuals sampled per cluster in-
creases (Figure 4).

Figure 4A shows that as overdispersion decreases (k increases), the required sample
size decreases. Moreover, as shown in Tables S1–S3, as k increases, R0

t at time of
intervention generally increases as well, even for fixed R0

0 at the start of the simulated
outbreak. Because of this, the relationship between k and R0

0 and the required sample
size is even more pronounced in the simulation results. Figure 4B illustrates that the
required number of clusters will generally decrease as a greater percentage of the cluster
is sampled. This indicates that if testing is easy to conduct, the required number of
clusters for a trial can be reduced by increasing the sampling within each cluster.
Conversely, if the total number of individuals to be sampled in the trial is fixed (i.e.,
limited number of tests available), and the number sampled from each cluster and
number of clusters required are allowed to vary, Figure 4C illustrates that it is more
efficient to sample fewer individuals from a greater number of communities than it is
to sample more individuals from a smaller number of communities. This relationship
is less clear for small clusters (n = 100) where nearly full sampling can occur.

For clusters of size n = 100 or 1, 000, the day of NPI intervention for some parameter
sets occurred less than four weeks after the start of the epidemic (when It = 2% and
0.5% respectively)—but interventions may not always be able to be implemented this
quickly. To account for longer delays between the start of the epidemic and day of
intervention, we further extend our results by reporting the sample sizes when the day
of intervention is one month after the first day of infection in Tables S4 and S5.
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3.2.2 Sample Sizes With Greater Lags After Intervention

The formulae and results described above all tested the effect of intervention after
one generation interval. Discretizing on this time scale will provide an estimate that
approximates transmission, Rt, although occurrences of secondary infections prior to
the full generation interval will bias estimates of transmission upwards, and occurrences
of primary infections occurring after the full generation interval will bias estimates
downwards.37 Furthermore, because the direct effects continue and indirect effects may
increase on short time scales, the effect size in cRCTs in epidemics can increase over
time.21,22 Eventually, however, the exhaustion of susceptible individuals will lead to a
reduction in the effect size as incidence rates become more similar between intervention
and control clusters. We explore the effects of the time interval used in our simulations
by increasing the lag between intervention and evaluation. The approximations are not
well-suited to assess these sample sizes as their assumptions become less reasonable over
longer time scales.

Figure 5 shows a drastic increase in power—or decrease in the required sample size—
if sampling occurs two generation intervals after intervention compared to sampling one
generation interval after intervention.

However, these results change when we increase the lag further, to sampling three
generation intervals after intervention. There is generally a more modest decrease in
the required sample size for extending from two to three generation intervals than from
one to two generation intervals. Second, for small clusters (n = 100), increasing the lag
between intervention and day of sampling can even increase the required sample size
for certain parameter combinations. As the epidemic progresses, there is eventually a
point where the depletion of susceptible individuals leads to a decline in power from
increasing the lag, although this time point will depend on the precise combination
of parameters. We also find this decrease in power occurs more often when there are
fewer people sampled from each cluster. Full results are shown in Tables S6–S11.

3.2.3 Sample Sizes After Matching Clusters

A common approach to increasing power in cRCTs is to match or stratify clusters on
baseline covariates to increase balance and reduce variability.20,38 In this case, clusters
can be matched on the number of susceptible individuals at the time of intervention
(assuming the availability of serological tests) or on the number uninfected at the time
of intervention (using the prevalence data collected at time t). This matches clusters
on Ij,t, reducing the effect of the variability in that parameter on the variance of the
effect estimate.

We assess the effect of this matching in the simulations, using a matched pairs t-
test where clusters are matched on the number of susceptible individuals at the time of
intervention (see Tables S12–S14. We find evidence of modest benefits from matching
when cluster sizes are large. The required sample size generally decreases depending on
the parameter combination used; however, on average, the change in required number
of clusters for n = 1, 000 and n = 10, 000 was modest: 5% and 2% reductions in
required sample size, respectively.

For clusters of size 100, the required sample size improved for all parameter combi-
nations where we were able to solve for the number of clusters. The average reduction
in required number of clusters was 14%. Because of the smaller cluster size, matching
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on the number of sampled susceptible individuals may be more reliable and thus more
informative than matching with larger cluster sizes. More specifically, the number of
sampled susceptible individuals in a smaller cluster compared to a larger cluster may
give more information about the number of cases in the following generations because
it has a larger impact on the transmission dynamics.

We also assess the effect of matching when clusters are matched on the number
of non-infectious individuals at the time of intervention (see Tables S15–S17). We
find larger benefits from matching on this parameter: the decreases in the required
number of clusters for n = 100, 1, 000, and 10, 000 were 15%, 12%, and 28% on average,
respectively. In general, for each cluster size, the benefits were greater for smaller
sample sizes.

When comparing matching clusters on number of susceptible individuals to the
number of non-infectious individuals at time of intervention, we find that when n = 100
and 1, 000, when not all individuals were tested, matching on the number of non-
infectious individuals reduced the sample size compared to matching on the number of
susceptible individuals (by 24% and 27% for n = 100 and 1000, respectively). When
all individuals in each cluster were tested, matching on number of non-infectious in-
dividuals increased the sample size compared to matching on susceptible individuals
(by 27% and 8% for n = 100 and 1000, respectively). When n = 10, 000, matching on
the number of non-infectious individuals reduced the sample size compared to match-
ing on susceptible individuals by an average of 26%. Thus, using serology testing to
capture the number of susceptible individuals at time t may be more useful when all
participants are tested; when clusters are not fully sampled, in contrast, the number
of sampled non-infectious individuals (equivalently, the number of sampled infectious
individuals) at time t is more useful for matching.

Importantly, we assess the benefits of matching when time of intervention occurs
according to a pre-specified E[It] in Table 1. Time of intervention will change the
number of individuals of each condition (susceptible, exposed, infectious, and recov-
ered), thus affecting the benefits of matching. The effect of time of intervention on the
benefits of matching is not explored.

Gains in power may also be achieved using stratification or adjustment by measured
covariates related to the transmission of infections within each community. For cluster-
level covariates, analysis would then proceed by regression analysis. The reduction in
sample size depends on the correlation between the covariate and the outcome, and we
refer readers elsewhere to determine the expected reduction that could be applied to
calculated sample sizes.20,32

3.3 Comparison of Approximation and Simulation Sam-
ple Sizes

The approximation and simulation approaches generate different ways of considering
the issue of required sample sizes, with the former illustrating the impact of different
contextual features (overdispersion, cluster size) and the latter accounting for more of
the variability in the epidemic spread process. Direct comparison between the sam-
ple size requirements derived from approximation formulae and from simulations are
difficult, primarily because of the progression of the epidemic up to the time of in-
tervention in the simulations. As previously susceptible edges of the contact network
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have already been infected in some clusters, the distribution of infections in the next
generation varies from cluster to cluster. Similar effects may occur with the contact
networks, where overdispersion falls over time as the most highly-connected individuals
are most likely to have already been infected.39,40

Despite this, the approximations and simulations shown here generally provide
required sample sizes that are comparable in magnitude for many settings. When all
individuals are tested in each cluster, the approximation performs very well and closely
matches the results of simulations. When the variance of infections at time t across
clusters is ignored, this is likely to result in some underestimation of the variance and
thus of the required sample size; the same is true because variation in the R0

t values
across clusters is ignored by the approximation.

When only a sample of individuals is tested in each cluster, the approximations
diverge further from the simulations. This can occur for a variety of reasons in addition
to the parameter mismatch described above: the approximation does not account for
sampling prior to the intervention and it does not fully account for the variance in the
number of infectious individuals at the time of intervention, V ar[It], and the variance
in the actual reproductive number, R0

t , at the time of intervention. Figure S2 shows
the wide spread in the number of infectious individuals per cluster, which reflects the
overdispersion of the contact structure of the simulated networks. When the outbreak
parameters can be well-estimated a priori, then, the simulations account for certain
heterogeneities that the approximations do not. Because of this, approximations can
be used to get an estimate of the feasibility of a trial but should not be the only
consideration in powering a trial.

Moreover, due to the stochasticity, some clusters may have zero identified cases at
time t+ 1. This is accounted for in the analysis of the simulations by adding one case
to each time point, which may introduce some bias. Additionally, the test statistic
inherently is based on a fixed, discrete generation interval, which is not the case in
the simulation or in reality. This may lead to the test statistic not estimating the
reduction in Rt consistently; however, since the null remains the same in either case,
the hypothesis tests remain valid.

4 Discussion

To determine whether cRCTs are a practical tool to test the impact of NPIs in epidemic
settings, we developed two approximate sample size formulae. We compared these
results to simulated outbreaks and developed a simulation bank that can be used to
further refine estimates of the required sample size for cRCTs. The simulations can be
adapted to specific settings to provide more precise sample size estimation and improve
the design of cRCTs.

As an example, we have shown that for settings with communities of 10,000 people,
Rt of 1.5 in the absence of intervention, and k of 0.4, 80% power to detect a reduction
in Rt of 40% due to intervention can be achieved with approximately 220 total clusters
(22,000 sampled individuals) in the trial. While this is certainly a large sample size,
cRCTs of that order of magnitude have been conducted for large-scale policy interven-
tions,41 and individual RCTs with thousands or tens of thousands of participants have
occurred to evaluate NPIs and vaccines during this pandemic.13,14,42,43 In particular,
if large-scale random testing of individuals is occurring that can be incorporated into
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the study, sampling large numbers of individuals per cluster may be feasible. As Rt
increases, overdispersion decreases, or the effect size increases, this sample size can be
reduced while maintaining power.

For communities of 100 people who are all tested (e.g. a workplace), with the
same transmission parameters, 80% power to detect a reduction in Rt of 40% due to
intervention can also be achieved with approximately 220 total clusters (22,000 sampled
individuals) in the trial. If the overdispersion were more extreme, the required sample
size would increase drastically; for example, for k = 0.1, these trials would require
approximately 720 clusters, or 72,000 sampled individuals. If, in addition, 80% power
to detect a reduction in Rt of 20% is desired, the sample sizes increases dramatically,
requiring approximately 3,500 clusters or 350,000 sampled individuals.

These results use a simple estimator based on virologic testing at two time points,
one before and one after the intervention.17 More work is needed to determine the
properties of this estimator, especially in cases where the epidemic fades out in certain
clusters and as the lag between the two testing times changes, as both may bias es-
timates away from the true transmission reduction. Other estimators may have more
desirable properties in estimating specific estimands of interest or in precision. We
focus here only on the power of hypothesis tests, the ability to reject the null of no
intervention effect for interventions that reduce the reproduction number by a specific
amount.

The approximation formulae are limited by the fact that they ignore the variability
in the number of active infections at time t, and the method that accounts for sampling
ignores finite population corrections and sampling variability at time t. In addition,
these methods ignore the variability in previous infections and the effect those have
on future spread on the network, which may serve to overstate the variability in dis-
persion, especially for small cluster sizes or late time points in the epidemic.39,40 The
simulations require a specific data-generating process and assume that the epidemic
unfolds according to the SEIR model up to the point of intervention. It also assumes
that overdispersion in transmission is caused by the contact network structure, which
may ignore biological mechanisms of overdispersion.39 The simultaneous implementa-
tion of other NPIs that affect transmission may affect the validity of this model, and
more precise modeling should be used to get better sample size estimates for specific
settings. In addition, the possibility of imported infections to the trial communities is
ignored here, as well as the effect of the intervention on reducing those.

Because of their different required assumptions and parameters and approximations,
both the approximation formulae and the simulations should be considered with a
range of plausible estimates for the parameters when designing a trial. We propose
that investigators considering a cRCT for an NPI follow the following procedure to
estimate the required sample size:

1. Calculate approximations to the number of clusters required per arm using the
two approximation formulae presented here for likely parameters in their setting.
If these are well beyond the point of feasibility for the study, the desired power
may not be achievable. If any parameters can be manipulated (e.g., by only
enrolling high-incidence clusters or changing the cluster size for implementation),
consider other combinations that may reduce the required sample size.

2. Consult the simulation results in Tables S1–S17 to find the parameter combination
most similar or combinations which bound the likely parameters for the setting
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of interest. Extrapolate an estimated sample size from these results and again
evaluate the feasibility of this sample size.

3. Conduct a simulation study using the best estimates for the transmission dynam-
ics of the setting of interest using the sample size estimated in steps 1–2 and the
planned analysis method. Determine if the empirical power from this simulation
study approximately matches the desired power.

In addition to changing test statistics, other methods may be used to reduce the
sample size required to achieve the desired power. Increasing the time between in-
tervention and evaluation can increase the power to some extent, although this may
make the trial more logistically challenging and make interpretation of effect estimates
more challenging. Matching and stratification on cluster-level variables may reduce
the variability of results and improve power, again changing the interpretation of es-
timates.20,38,44 If the number of clusters are limited but a large number of tests are
available, repeated cross-sectional testing may also improve power; this design also
allows investigation of time-varying effects.20

Further work is required to improve the sizing of large-scale cRCTs in outbreak
settings. In particular, analysis of data on the variability of infections at different
time points during outbreaks among relevant clusters would enable validation of the
assumptions made in these approaches. This data validation would improve both the
closed-form approximations used here and the validity of simulations conducted to
assess power and sample size. In addition, understanding the variability in Rt across
clusters, and covariates or data that can be used to predict Rt in a given cluster, will
enable a better understanding of the mechanism of effects of NPIs on transmission.
This improved understanding of the estimand will improve sample size and power
calculations and potentially point to more efficient estimators.

Randomized trials are key to achieving valid hypothesis tests of the effect of in-
terventions in infectious disease outbreaks. Cluster randomized trials can be used to
test the total effect of non-pharmaceutical interventions by comparing the infection
trajectory in intervention communities to that in control communities. This analysis
demonstrates that in some cases, reasonable power to detect meaningful effect sizes
can be achieved for such trials, and it provides investigators with tools to estimate the
sample size required.

Data Availability

The simulated data, code, and results that support the findings of this study are openly
available in GitHub at http://www.github.com/jsheen/NPI.
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Table 1: Parameters Used in Simulations

Parameter Values

R0 1.5, 2.0
Overdispersion Parameter (k) 0.1, 0.4, 0.7

Effect Size (Reduction in Transmission) (∆) 20%, 40%

Cluster Population (n) 100 1,000 10,000
Number Sampled Per Cluster (m) 10, 50, 100 100, 1,000 100, 1,000

Mean Infection Prevalence at t (E[It]) 2% 0.5% 0.5%*
Initial Infection Prevalence (I0) 1% 0.4% 0.4%

*0.45% for n = 10, 000 when k = 0.1
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Figure 1: Simulated trajectories of a randomized control trial of a non-
pharmaceutical intervention. Each arm has 100 clusters, with average basic reproduction
number under control R0 = 1.5, overdispersion parameter k = 0.4 (top and middle panels)
or k = 0.1 (bottom panel, indicating more overdispersed transmission), and cluster size
n = 1, 000. On day 30, the intervention begins, which reduces the transmission rate, β, by
40% (top panel) or 20% (middle and bottom panels). The dashed lines represent the day of
intervention (t) and the day of sampling, one generation interval after intervention (t+ 1).
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Figure 2: When all individuals are tested in each cluster, the required number
of clusters per arm decreases as the reproduction number, overdispersion pa-
rameter, proportion infected at time of intervention, or cluster size increase.
Approximate number of clusters per arm required for 80% power to detect an effect size of
40% at α = 0.05 vs. (A) reproduction number under control (R0

t ) and overdispersion param-
eter (k) for fixed cluster size n = 1, 000 and expected proportion of infections at enrollment
E[It] = 0.005 and vs. (B) E[It] and n for fixed R0

t = 1.5 and k = 0.4. Note that higher
values of k correspond to more overdispersed transmission.
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Figure 3: When a sample of individuals in each cluster are tested, the approxi-
mate required number of clusters per arm decreases as the reproduction number,
overdispersion parameter, effect size, cluster size, or number of individuals sam-
pled per cluster increase. Approximate number of clusters per arm required (as calculated
by equations (1) and (4)) for 80% power to detect an effect size of 40% (A,C) or as spec-
ified (B) at α = 0.05 vs. (A) reproduction number under control (R0

t ) and overdispersion
parameter (k) for fixed cluster size n = 10, 000 and number sampled per cluster m = 100;
vs. (B) R0

t and effect size for fixed n = 10, 000, m = 100, and k = 0.4; and vs. (C) n and
m for fixed R0

t = 1.5, and k = 0.4. In all panels, the expected proportion of the population
infected at enrollment is E[It] = 0.005.
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Figure 4: The required number of clusters per arm to achieve a desired empirical
power in simulations depends on the overdispersion parameter, reproduction
number, effect size, cluster size, and percent of individuals in each cluster who
are sampled. Number of clusters per arm required (A,B) and number of individuals per
arm required (C) to achieve 80% empirical power with a significance level of α = 0.05 in
10000 simulated trials vs. overdispersion parameter k (A) or percent of individuals sampled
per cluster (B,C). Effect size and basic reproduction number at the start of the outbreak,
R0

0, are varied within each panel. In A, each percent of individuals sampled has a unique
line, leading to larger differences even when effect size is held fixed.
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Figure 5: Required sample size generally decreases as time of sampling after
intervention increases, except when the number of true infections is low three
generation intervals after intervention for smaller cluster sizes. Rows correspond
to cluster size, n and columns correspond to overdispersion parameter, k. Effect size, basic
reproduction number at the start of the outbreak, R0

0, and number sampled, m, are varied
within each panel. On average, sampling two or three generation intervals after intervention
required a sample solely 35% and 31% as large, respectively, as after one generation interval.
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