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Abstract 
Introduction 
Sudden cardiac death (SCD) is the leading cause of death in patients with myocardial 
infarction (MI) and can be prevented by the implantable cardioverter defibrillator (ICD). 
Currently, risk stratification for SCD and decision on ICD implantation are based solely on 
impaired left ventricular ejection fraction (LVEF). However, this strategy leads to over- and 
under-treatment of patients because LVEF alone is insufficient for accurate assessment of 
prognosis. Thus, there is a need for better risk stratification. This is the study protocol for 
developing and validating a prediction model for risk of SCD in patients with prior MI. 

Methods and Analysis  
The EU funded PROFID project will analyse 23 datasets from Europe, Israel and the US 
(~225,000 observations). The datasets include patients with prior MI or ischemic 
cardiomyopathy with reduced LVEF<50%, with and without a primary prevention ICD. Our 
primary outcome is SCD in patients without an ICD, or appropriate ICD therapy in patients 
carrying an ICD as a SCD surrogate. For analysis, we will stack 18 of the datasets into a 
single database (datastack), with the remaining analysed remotely for data governance 
reasons (remote data). We will apply 5 analytical approaches to develop the risk prediction 
model in the datastack and the remote datasets, all under a competing risk framework: 1) 
Weibull model, 2) flexible parametric survival model, 3) random forest, 4) likelihood 
boosting machine, and 5) neural network. These dataset-specific models will be combined 
into a single model (one per analysis method) using model aggregation methods, which will 
be externally validated using systematic leave-one-dataset-out cross-validation. Predictive 
performance will be pooled using random effects meta-analysis to select the model with best 
performance. 

Ethics and dissemination 
Local ethical approval was obtained. The final model will be disseminated through scientific 
publications and a web-calculator. Statistical code will be published through open-source 
repositories.  

 

Keywords 
Clinical prediction model; model development and validation; sudden cardiac death; 
myocardial infarction; protocol, defibrillator implantation 
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Introduction 
Sudden cardiac death (SCD) is the leading cause of death,[1] accounting for approximately 
20% of all deaths in Europe [2,3], and the estimated yearly incidence of SCD in European 
countries is around 1 per 1,000 inhabitants,[4] afflicting approximately 350,000-700,000 
Europeans annually.[3–6] The majority of SCD cases occur in people with coronary artery 
disease and are mostly caused by ventricular tachyarrhythmias following myocardial 
infarction (MI). After MI, a reduced left ventricular ejection fraction (LVEF) is associated 
with increased risk for all-cause death, cardiac death and SCD.[8] Randomised clinical trials 
(RCTs) have demonstrated that in patients with severely impaired LVEF, the risk of SCD and 
all-cause death may be significantly reduced through prophylactic implantation of an 
implantable cardioverter defibrillator (ICD) [9–11]. Based on these data, international 
guidelines recommend ICD implantation in post-MI patients with severely reduced LVEF 
≤35% for primary prevention of SCD.[1]  

However, since completion of these landmark trials in the late 1990s and early 2000’s, major 
advances in pharmacological and non-pharmacological treatment have led to substantial 
decline in the risk of SCD after MI.[1,3] Concordantly, only a minority of these patients will 
ever need the implanted ICD and experience appropriate ICD therapies. In fact, the numerical 
majority of SCD cases occur in patients with LVEF>35% and who are not considered for a 
primary prevention ICD implantation according to current guidelines [3,12]. Thus, there is 
consensus that the current practice of using LVEF as the sole risk stratification factor for the 
risk of SCD after MI and the decision on prophylactic ICD implantation has significant 
limitations. [13]  

Other clinical characteristics, laboratory and imaging biomarkers, genetic markers and risk 
factors have been reported to be associated with increased risk of SCD.[3,13,14] However, in 
isolation, none of these prognostic factors have sufficient predictive accuracy for clinical use. 
Consequently, there is an imperative and unmet need for the development of a clinical 
prediction model (CPM) to use a combination of such predictor variables to estimate the risk 
of SCD after MI. Existing CPMs [15–19] have not been implemented into recommended 
practice, largely because improvements in their predictive ability (and clinical utility [20]) is 
required.  

The development of a CPM for risk of SCD in patients with previous MI is a primary 
objective of the PROFID project – a large Horizon 2020 funded pan-European consortium 
[21] (grant no. 847999). The aim of this CPM is to aid the risk stratification of patients with 
MI and facilitate decision-making for primary prevention ICD implantation. Once the 
PROFID CPM has been developed, the PROFID project will compare its predictive 
performance with the existing CPMs (including using LVEF as the sole risk stratification 
variable, reflecting current clinical practice). The project will then compare personalised 
decision-making for prophylactic ICD implantation with application of the CPM against 
current clinical practice in patients with  LVEF≤35% and LVEF>35% in two multinational 
randomised clinical trials, (PROFID-Reduced and PROFID-Preserved, NCT04540354 and 
NCT04540289). 
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The aim of this paper is to describe the study protocol for the development and validation of 
the PROFID CPM, including the key analytical steps and decisions that have been 
considered.  

Methods and Analysis 
We structure this protocol in line with the transparent reporting of a multivariable prediction 
model for individual prognosis or diagnosis (TRIPOD) statement and checklist.[22] Given 
that this is a protocol, we focus on the methods section of the TRIPOD statement. Subsequent 
publications reporting the results will adhere to the full TRIPOD checklist. 
 

Aim 
The aim of the study, on which this protocol is based, is to develop and validate a 
multivariable CPM to estimate the risk of SCD after MI, using data from Europe, Israel and 
the US. 
 

Study Design and Data Sources 
This will be a retrospective analysis of data arising from observational cohort studies, routine 
healthcare records and randomised controlled trials. Table 1 shows the full list of datasets 
used for the development of the CPM, comprising 23 datasets from 12 countries. All datasets 
describe individuals who have had an MI or have coronary artery disease with ischemic 
cardiomyopathy and reduced LVEF <50%, and all contain information on SCD (or surrogates 
thereof). We distinguish between four types of datasets: (i) acute MI cohort datasets, where 
each patient was entered into the dataset at time of their acute MI event; (ii) prior MI or 
ischemic cardiomyopathy cohort datasets, where patient had a previous MI or ischemic 
cardiomyopathy and reduced left ventricular ejection fraction (<50% as defined by current 
heart failure guidelines of the European Society of Cardiology [23]) and were entered into the 
dataset at some time after their MI event; (iii) ICD cohort datasets, where each patient was 
entered into the dataset at the time of receiving their prophylactic ICD implant for primary 
prevention of SCD after an MI; and (iv) datasets from randomised controlled trials in which 
participants with prior MI or ischemic cardiomyopathy and severely reduced LVEF, received 
ICD implants or medication therapy (e.g. MADIT II,[9,10], SCD-HeFT [11]). All datasets 
contain clinical information, medications and other selected variables such as ECG 
parameters and biomarkers, which were recorded for each patient at time of entry into the 
dataset. Some datasets include additional variables regarding cardiac magnetic resonance 
(CMR) imaging, which have been shown to be highly prognostic of SCD [24] (see Table 1). 
All data include information about outcomes during follow-up for each patient: until time of 
SCD, death from other causes, or until time of first appropriate ICD shocks/anti-tachycardia 
pacing, hereafter referred to as appropriate therapy.  
 
Prior to analysis, all datasets will undergo data cleaning in partnership and agreement with 
the respective data providers. Given that each of the datasets contain different variables, we 
have developed a common data model to ensure that there is a consistent set of variables 
across all data sources (Supplementary Table 1). In particular, the common data model 
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dictates the units of measurement where applicable, categories for nominal and ordinal 
variables, and definitions of each variable. The variables listed in the common data model 
define the list of candidate predictor variables we will consider for inclusion in the model 
(i.e., for variable selection – see supplementary methods). We will also include calendar year 
in the models as a continuous variable to account for varying risk through time. At the time of 
prediction, this will be always set to the latest calendar year in the development data. 
 

Participant Entry Criteria 
Our analysis will include all patients who are at least 18 years old and have had either: (a) a 
previous MI defined as ST-segment-elevation myocardial infarction or non-ST-segment-
elevation myocardial infarction, or (b) coronary artery disease and ischemic cardiomyopathy 
with reduced left ventricular ejection fraction <50% (as defined by current heart failure 
guidelines of the European Society of Cardiology [23]). From these patients, we exclude: (i) 
patients who received ICD implantation for secondary prevention of SCD at baseline, (ii) 
patients with a cardiac resynchronization therapy (CRT) device at baseline, (iii) patients with 
non-ischemic cardiomyopathy such as dilated cardiomyopathy, hypertrophic 
cardiomyopathy, or restrictive cardiomyopathy, (iv) patients with a primary electrical 
arrhythmic disease such as long QT syndrome, Brugada syndrome or catecholaminergic 
polymorphic VT, (v) patients with congenital heart disease, and (vi) patients who died (or 
experience the outcome) within the first 40 days after the index MI. A schematic of the 
inclusion and exclusion criteria is given in Figure 1.  

Patients with a CRT device at baseline are excluded because CRT reduces the risk for SCD 
[25]. The reason for exclusion criterion (vi) is that, after MI, patients undergo a ventricular 
remodelling period, during which important parameters for the subsequent risk such as LVEF 
may significantly change. Therefore, decisions on prophylactic ICD implantation are made 
after ventricular remodelling. Since the intention is to use the PROFID CPM after ventricular 
remodelling, we designed the study to match this prediction time point (i.e., predictions are 
possible any time after the 40-day remodelling period).  
 

Outcome definitions and analytic approach 
Our primary outcome is time-to-sudden cardiac death or to life-threatening ventricular 
arrhythmias (ventricular tachycardia, or ventricular fibrillation) during follow-up. Time-zero 
for calculating the time-to-event outcomes will be defined as follows:  

1. In the acute MI cohort datasets, time-zero for each patient is 40 days after the index 
MI event. If an individual has more than one MI event within the dataset, then their 
index MI will be chosen randomly across all their MI events prior to their first 
competing risk outcome. The decision to take a random MI event ensures maximum 
consistency across datasets and avoids introducing biases if one were to select the first 
or last MI.  
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2. In the prior MI or ischaemic cardiomyopathy cohort datasets, time-zero for each 
patient is their time of entry into the dataset/study, provided it is more than 40 days 
after the initial MI event. 

3. In ICD datasets, time-zero for each patient is the time of ICD implantation for 
primary prevention of SCD, provided it is more than 40 days after the initial MI 
event. 

The primary outcome for each patient is then defined as the time between time-zero and SCD 
or life-threatening ventricular arrhythmia event, which is defined across our datasets as 
follows, depending on whether a patient has an ICD implant or not: 

• In patients without an ICD, the primary outcome is occurrence of SCD based on 
cause-of-death adjudication, or implantation of ICD for secondary prevention of SCD 
(i.e., due to the occurrence of ventricular tachycardia or ventricular fibrillation). The 
definitions for which cause-of-deaths were listed as SCD varies across datasets. 
Moreover, the Swedish Heart Registry does not contain information on SCD directly, 
rather whether the patient had a successful resuscitation outcome for sudden cardiac 
arrest, which will be used as a surrogate for SCD (i.e., the first resuscitation event will 
be used as the endpoint for that individual). We therefore expect to see heterogeneity 
in the incidence of SCD across the included datasets, which will be accounted for 
directly through the modelling (see below). 

• In patients with an ICD, the primary outcome will be defined as appropriate therapy 
delivered by an ICD. This surrogate for SCD is required since patients with an ICD 
cannot experience SCD that is preventable by the device. First appropriate therapy 
mainly includes first appropriate shock and/or the first appropriate anti-tachycardia 
pacing (ATP); however, some datasets do not contain information on ATP, where first 
appropriate therapy will include appropriate shock only. We will account for such 
differences within the models (see below). A limitation of using appropriate therapy is 
that the programming of each ICD device differs across datasets and patients. 
However, appropriate ICD therapies remain the best available surrogate for SCD in 
patients with an ICD, particularly considering the objective of applying the CPM for 
decision-making on need for ICD implantation.  

For any patient who receives an ICD for primary prevention of SCD during their follow-up 
(i.e., without prior occurrence of ventricular tachycardia or ventricular fibrillation), the data 
on appropriate therapies after the time of primary prevention ICD implant will be used to 
define their time-to-event outcome. If a patient receives an ICD during follow-up and we do 
not have data on subsequent appropriate therapies, then we will censor this patient at the time 
of ICD implantation, unless this ICD was implanted for secondary prevention (ventricular 
tachycardia or ventricular fibrillation) in which case it will be taken as our primary outcome; 
such censoring will be only required in the Swedish Heart Registry.  

In all time-to-event analyses, we will account for competing risks of death from other causes 
using the Fine and Gray competing risks modelling framework.[26] Specifically, in patients 
without an ICD, we distinguish (i) SCD (resuscitated or non-resuscitated, including sustained 
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VT/VF), and (ii) death from any other cause, where (ii) is a competing risk for (i). In patients 
with an ICD, we distinguish (i) appropriate therapy (shock – with or without ATP), and (ii) 
death from any other cause including SCD that was not prevented by an ICD.  

Heart transplantation or implantation of left ventricular mechanical assist device during 
follow-up will be considered a censoring event. All other censoring will be administrative 
censoring. 

The differences in the outcome definition across patients with and without ICDs causes 
heterogeneity and clustering in our analysis, which we will account for during the modelling 
by including the following patient-level binary indicators as covariates: (i) entry of study with 
an ICD vs. entry of study without an ICD, (ii) patient from the Swedish Heart Registry 
(resuscitation outcomes only) vs. patient not from the Swedish Heart Registry, and (iii) 
appropriate therapy defined as shock only vs. shock or anti-tachycardia pacing. We will also 
include interactions in the model between LVEF and the timing of such measurement (before 
or after 40-day ventricular remodelling period).  
 

Sample Size calculation 
Sample size criteria for the development of CPMs for continuous, binary and time-to-event 
outcomes have recently been proposed.[27–29]. Since sample size criteria for competing risk 
models (and non-regression-based models) have yet to be developed, we base our sample size 
calculation on the criteria developed for time-to-event prediction models.[28] We assumed 
the following when making our sample size calculations for developing a time-to-event CPM 
(some values, such as event proportions, are based on the datasets available to us): (i) 2.2% 
experience SCD during follow-up, (ii) the mean follow-up time is 4.5 years, (iii) the model 
would explain 15% of maximum R2, (iv) we target a maximum degree of 
shrinkage/overfitting of 0.9, and (v) we have approximately 100 candidate predictors in our 
common data model. This resulted in a minimum required sample size of 24219, which was 
driven by criteria 1 of Riley et al.[28] Combined, the PROFID datasets include approximately 
225,000 patients, which far exceeds the minimum requirements.  
 

Missing Data 
Many of the datasets in this study will contain variables with missing values. During the 
exploratory and descriptive analyses, we will investigate missing data patterns using 
graphical plots and tabulations. During CPM development, validation, and deployment, we 
will use fuzzy K-means to impute missing data,[30] which has been shown to be a robust 
method in prediction context.[31] For this study, fuzzy K-means is especially attractive over 
alternative imputation methods because it can be easily implemented during model 
deployment since it only requires cluster centroids to be retained (which poses no risk in 
terms of information governance). While multiple imputation would be an alternative 
imputation strategy for developing the CPM, it poses issues when deploying the model in 
practice, because to use the CPM with missing data would require one to store a copy of the 
development data, and as such will not be considered here. [32] Overall, the data contains 
both sporadically missing values, (variables with missing values for some patients within a 
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dataset) and systematically missing values (variables that are completely missing for a whole 
dataset, e.g., where the datasets did not record a particular variable). For sporadically missing 
values, we will assume they are missing at random. We will assume systematically missing 
values are missing completely at random[33]. 
  

Statistical Analysis Methods 
All our analysis choices have required us to respect that we will not have direct access to the 
individual participant data (IPD) from all datasets; we will only be able to access some 
datasets through remote analysis whereby our analytical scripts are sent to the data 
custodians, who run them and return to us the analytical results. Specifically, we have direct 
(IPD-level) access to 18 of the 23 datasets, which we will “stack” into a single database 
(hereafter named ‘datastack’), while the remaining 5 datasets will be analysed remotely for 
data governance reasons (‘remote data’). To account for this approach to data access, we have 
developed a bespoke two-phase design, following best-practice recommendations.[34,35] We 
provide an overview of the statistical processes in this section. A graphical representation of 
our modelling approach is given in Figure 2. 

In all assessments of predictive performance that we mention below, we quantify this using 
discrimination, calibration and overall accuracy; all measures will be estimated within the 
competing risk framework.[36] We will quantify discrimination of the prediction model using 
the weighted Harrell’s weighted C-index.[37] We will assess the calibration using calibration 
plots of the observed survival curves (Kaplan-Meier plot) against those predicted by the 
model. Where relevant (i.e. for regression-based methods), we will also summarise 
calibration by estimating the calibration slope (ideal value 1) by fitting a Cox regression 
model (to the sub-distribution hazard of SCD) to the observed outcomes and with the linear 
predictor (for regression models) from the model as the only covariate. Finally, we will 
compute overall accuracy through the integrated Brier score. The inverse probability of 
censoring weights versions of both Harrell’s C-index and the integrated Brier score will be 
based on Kaplan-Meier estimates of the censoring distribution in the training sets.  

 

Phase 0: data preparation and ratification 
From the onset of our analysis, within all datasets we will temporally hold-out 10% of data 
using an event-stratified sampling approach based on the latest event times (i.e., where we 
randomly select the latest 10% of the temporally ordered event dates), which is similar to 
period analysis [38]. Hereafter, these are all called the ‘10% hold-out sets’, with the 
remaining 90% of each dataset called the ‘development sets’ (Figure 2). The 10% hold-out 
sets will be used in the second phase of modelling to temporally validate the selected 
analytical model from phase 1 (see below). We emphasise that within each modelling phase 
our approach to validating CPMs is systematic internal-external cross-validation.[39,40] As a 
preliminary modelling step, we will undertake a data ratification exercise, where reports will 
be sent to each data provider to ensure consistency in approaches to cleaning and analyzing 
each data source.  
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2021. ; https://doi.org/10.1101/2021.07.12.21260002doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.12.21260002
http://creativecommons.org/licenses/by/4.0/


11 
 

Phase 1: model development, aggregation, and systematic internal-external cross-validation 
For this first phase of the main analysis, we use model aggregation methods combined with 
systematic inter-external cross-validation (across the 90% development subsets) [39,40] to 
select the “best” analytical method to take forward for the final PROFID CPM (Figure 2). 
Specifically, this process involves leaving out one of the 90% development subsets, with the 
remaining development subsets used to develop a CPM on (a) the datastack combined and (b) 
on each remote dataset in turn, using each of the following methods (within a competing risk 
framework): 1) Weibull modelling, 2) flexible parametric survival modelling [41,42], 3) 
random survival forests [43], 4) likelihood boosting machine, and 5) neural network [44] (see 
the supplementary methods for details on how we will fit each method and variable 
selection). For each of the five analytical methods, this will create either 5 or 6 CPMs in each 
iteration of the leave-one-out-cross-validation (5 if the left-out set is a remote dataset, and 6 if 
the left-out set is within the datastack, since we have the datastack plus 5 other remote 
datasets). Since we need a single PROFID model, these 5/6 CPMs will then be combined 
using the methods described by Debray et al [45] (see supplementary methods) to create five 
aggregated CPMs (one aggregated CPM per analytical method). Each of these five aggregate 
models will then be validated in the left-out 90% development subset. This process then 
cycles through leaving out each development subset in-turn, resulting in 23 sets of predictive 
performance estimates per analytical method. We will use random effects meta-analysis to 
combine these estimates, resulting in 5 sets of pooled (meta-anlaysed) predictive performance 
estimates, with associated measures of heterogeneity (I2) and prediction intervals (i.e. the 
potential model performance in a new population similar to those included in the 
meta�analysis). [46]  

At this point, we will consider leaving out some datasets if the hetrogenity assessment 
indicates some data are markedly different (detrimentally) to the others. Any such decisions 
will also be based on clinical assessments, to avoid this being a completely data-driven 
exercise. If we do leave out a dataset, then the aforementioned internal-external validation 
processes would be repeated. 

After completing this step, we will use the pooled (meta-analysed) predictive performance 
measures to select the analytical method for the final PROFID CPM. We will favour the 
analytical method that leads to the highest predictive performance in terms of calibration and 
discrimination. If multiple methods lead to similar performance or if different performance 
metrics favour different models, then we will favour the model that has the fewest number of 
predictor variables and is most transparent in how it calculates risk estimates (interpretability) 
and has the easiest clinical implementation. 
 

Phase 2: model updating for CMR variables and final model systematic internal-external 
cross-validation 
At the end of phase 1, we will have selected the analytical method that will be used for the 
final PROFID CPM. In phase 2, we will seek to use the temporally held-out sets (10% hold-
out sets) to obtain unbiased estimates of predictive performance of said model (having used 
the prediction performance estimates from phase 1 to select an analytical method). 
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Specifically, we will take the selected analytical method (and corresponding models) from 
phase 1 and calculate the performance in each of the 10% temporal hold-out sets separately; 
to estimate genuine temporal performance, we will not use the 90% development subsets 
further here, but rather take the models as developed from phase 1. As in phase 1, we will 
apply meta-analysis to pool the estimates of predictive performance of the final aggregate 
model [46]; this pooled set of performance estimates become our final external validation 
measures, and we will also calculate prediction intervals for each performance estimate (i.e. 
the potential model performance in a new population similar to those included in the 
meta‐analysis [47]). 

Additionally, phase 2 will also consider the addition of the CMR variables into the modelling 
(using six datasets that have such data recorded). Having determined the best analytical 
approach (phase 1), we will again employ the systematic internal-external cross-validation 
framework on the subset of datasets with CMR variables to perform flexible parametric 
extension and recalibration [48–54] thereby allowing inclusion of CMR variables into the 
model. Specifically, we will train a flexible parametric survival model with the following 
covariates: the logit-transformed 1-year probability output of the selected phase 1 model, core 
scar estimated with the full-width half-maximum (FWHM) method, and grayzone. 
Maintaining appropriate data segregation to avoid information leakage, we will impute core 
scar in the one dataset without FWHM (Centro Cardiologico Monzino Registry), whereas we 
will use quantile normalisation to obtain a unified representation of grayzone across all 
datasets, where several different methods were used for quantification. Iterating across all 
leave-one-out datasets, we will then apply meta-analysis to pool predictive performance of 
this extended model.  

Finally, using the 10% temporal hold-out sets, we will compare the 1-year predicted risks for 
individuals from the CPM with CMR data and the CPM without CMR data, thus providing 
the likelihood that the 2.5% risk threshold (for the PROFID-Reduced trial) or 3% threshold 
(for the PROFID-Preserved trial) be crossed after the addition of CMR given the initial 
PROFID CPM prediction. This will inform the decision of subgroups of patients 
(combinations of risk variables) where requesting CMR data at prediction time would be 
informative. 

As a final analytical step, we will use 100% of the datastack and of each remote dataset 
(again combining the models across these using model aggregation) to fit the final PROFID, 
using the best analytical method. 

Model Output 
The output of the PROFID model will be i) risk of SCD preventable by an ICD implant, 
corrected for risk of death by competing causes, and ii) risk of death by competing causes, 
corrected for risk of SCD. For context, we will also report overall mortality risk (i.e., risk of 
SCD + risk of death from other causes).  
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Ethics and Dissemination 
All patient data analysed in this study will be de-identified and stored in a secure data 
environment for analysis; all individual participating databases were approved by their 
respective ethical boards, whenever required by national or local regulations strictly in 
adherence to GDPR, European laws and local data safety protocols.  

We will disseminate our results through scientific publications. All statistical code for the 
analysis will be made available through open-source repositories (e.g., git/github) for full 
transparency and reproducibility. We will not be able to share the individual participant data 
owing to the required data sharing agreements and considerations. Finally, we will embed the 
final model in an appropriate open-source platform (e.g., web-calculator/ app). All 
dissemination will follow the TRIPOD guidelines.[22]  
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Tables 
Table 1: Overview of the datasets included in our study. The population column shows whether the data are of type “acute MI cohort”, “prior 
MI cohort”, “ICD cohort”, or “randomised controlled trials”, as defined in the methods section.  
 

Dataset ([reference]) 

Dataset 

Includes 

MRI? 
N 

SCD and its 

proxies 

Endpoints Basic clinical characteristics 

SCD or its 

proxy 

N (%) 

Death other 

N (%) 

Median 

follow-up   

(months) 

Incidence 

rate of SCD 

or its proxy 

per 100 

person-years 

Age 

Mean (SD) 

Sex 

Males (%) 

LVEF (%) 

Mean (SD) 

Aston University 

Research Database 

([24]) 

Yes 

805 
SCD/ VT/ VF/ 

FAT 
91 (11.3%) 234 (29.1%) 54.1 2.5 66.5 (12.2) 634 (78.8%) 42.1 (16.8) 

Finnish Research 

Database (ARTEMIS) 

([55];[56]) 

No 

982 SCD/SCA 41 (4.2%) 152 (15.5%) 104.0 0.5 66.5 (9.2) 698 (71.1%) 61.8 (12.1) 

EU-CERT-ICD 

Retrospective part 

([57]) 

No 

2,006 FAS 259 (12.9%) 271 (13.5%) 32.0 4.5 64.2 (10.1) 1,738 (86.6%) 26.4 (5.8) 

Centro Cardiologico 

Monzino Registry 

Yes 
845 

SCD/ SCA/ 

FAT/ VT 
87 (10.3%) 76 (9.0%) 32.1 3.5 65.4 (11.0) 725 (85.8%) 34.0 (10.1) 

DAI-PP pilot registry 

([58]) 

No 
1,580 FAT 367 (23.2%) 143 (9.1%) 29.6 8.4 61.7 (10.6) 1,405 (88.9%) 27.9 (5.5) 

Helios Hospital EHR Yes 452  FAT 134 (29.6%) 13 (2.9%) 22.8 10.2 65.0 (9.8) 400 (88.5%) 28.2 (5.7) 

ISAR-RISK ([8]) No 3,821 SCD 82 (2.1%) 411 (10.8%) 56.7 0.6 62.9 (12.6) 2,833 (74.1%) 52.2 (13.1) 

Israeli National ICD 

Registry {[59]} 

No 
753 FAT 54 (7.2%) 66 (8.8%) 28.4 2.8 64.8 (10.2) 685 (91.0%) 28.3 (6.6) 

MADIT II Randomised 

Trial ([9];  

[60]) 

No 

1,231 
SCD/ VT/ VF/ 

FAT 
218 (17.7%) 122 (9.9%) 16.9 11.3 64.5 (10.4) 1,040 (84.5%) 23.2 (5.4) 

MADIT RIT 

Randomised Trial 

No 
708 FAT 97 (13.7%) 26 (3.7%) 16.2 10.2 60.6 (12.5) 538 (76.0%) 26.5 (6.6) 
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Dataset ([reference]) 

Dataset 

Includes 

MRI? 
N 

SCD and its 

proxies 

Endpoints Basic clinical characteristics 

SCD or its 

proxy 

N (%) 

Death other 

N (%) 

Median 

follow-up   

(months) 

Incidence 

rate of SCD 

or its proxy 

per 100 

person-years 

Age 

Mean (SD) 

Sex 

Males (%) 

LVEF (%) 

Mean (SD) 

Nancy Research 

Database ([61]) 

Yes 
100 FAT 36 (36.0%) 21 (21.0%) 57.9 7.6 58.2 (10.1) 86 (86.0%) 27.0 (5.6) 

Olomouc Research 

Database 

No 
818 FAT 178 (21.8%) 116 (14.2%) 21.9 9.9 67.8 (10.1) 636 (77.8%) 30.7 (6.9) 

PRE-DETERMINE 

([62];[63–66] 

Yes 
5,781 

SCD/ SCA/ 

FAT 
256 (4.4%) 1,069 (18.5%) 89.0 0.7 64.2 (11.0) 4,401 (76.1%) 51.4 (10.6) 

PROSe-ICD ([67]; [68]) No 394 FAT 62 (15.7%) 118 (29.9%) 48.3 4 64.3 (10.3) 335 (85.0%) 24.1 (6.8) 

PROSe LV Structural 

Predictors Imaging 

Sub-Study ([67]; [68]) 

Yes 

155 FAT 44 (28.4%) 47 (30.3%) 70.8 5.1 60.6 (11.0) 130 (83.9%) 25.7 (7.0) 

SCD-HeFT trial ([11]) 
No 

1,115 
SCD/ SCA/ 

VT/ VF/ FAS 
233 (20.9%) 215 (19.3%) 33.1 7.7 61.8 (10.6) 945 (84.8%) 24.6 (6.6) 

Silesian Research 

Database  

No 
648   SCD/ FAT 25 (3.9%)  108 (16.7%)  55.0   0.9 64.2 (10.5) 432 (67%) 46.1 (8.6) 

Swedish Heart Registry 

([69]) 

No 
175,573 SCA/VT/VF 3,239 (1.8%) 51,523 (29.3%) 48.1 0.4 71.0 (12.3) 114,352 (65.1%) 50.7 (11.7) 

EU-Trig-Treat ([70]; 

[59]) 

No 
115 FAS 16 (13.9%) 17 (14.8%) 44.6 3.9 65.8 (10.5) 99 (86.1%) 32.5 (9.6) 

*Total 

- 

197,882 

SCD/ SCA/ 

VT/ VF/ FAS/ 

FAT 

5,519 (2.8%) 54,748 (27.7%) 48.1 0.6 70.2 (12.4) 132,112 (66.8%) 49.2 (12.9) 

* Excludes entries for the DO-IT registry (N=570) and Western Denmark Heart Registry (N=~28,000), which are analysed remotely. 
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Figures 
 

Figure 1: Schematic of the inclusion and exclusion criteria, which are applied to each dataset 
within the PROFID project. 
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Figure 2: Graphical representation of our modelling approach. 
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