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Abstract 

 

Background: Forecasting models have played a pivotal role in health policy decision making during 

the coronavirus disease-2019 (COVID-19) pandemic. A combined forecast from multiple models will 

be typically more accurate than an individual forecast, but there are few examples of studies of combined 

forecasts of COVID-19 data, focusing mainly on simple mean and median ‘ensembles’ and involving 

short forecast evaluation periods. We aimed to investigate the accuracy of different ways of combining 

probabilistic forecasts of weekly COVID-19 mortality data, including two weighted methods that we 

developed previously, on an extended dataset and new dataset, and evaluate over a period of 52 weeks.   

Methods: We considered 95% interval and point forecasts of weekly incident and cumulative COVID-

19 mortalities between 16 May 2020 and 8 May 2021 in multiple locations in the United States. We 

compared the accuracy of simple and more complex combining methods, as well as individual models.  

Results: The average of the forecasts from the individual models was consistently more accurate than 

the average performance of these models (the mean combination), which provides a fundamental 

motivation for combining. Weighted combining performed well for both incident and cumulative 

mortalities, and for both interval and point forecasting. Our inverse score with tuning method was the 

most accurate overall. The median combination was a leading method in the last quarter for both 

mortalities, and it was consistently more accurate than the mean combination for point forecasting. For 

interval forecasts of cumulative mortality, the mean performed better than the median. The best 

performance of the leading individual model was in point forecasting.  

Conclusions: Combining forecasts can improve the contribution of probabilistic forecasting to health 

policy decision making during epidemics, and, when there are sufficient historical data on forecast 

accuracy, weighted combining provides the most accurate method.  
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Introduction 

The coronavirus disease-2019 (COVID-19) pandemic has overwhelmed health services and caused 

excess death rates, prompting governments to impose extreme restrictions in attempts to control the 

spread of the virus [1-3]. These interventions have resulted in multiple economic, health and societal 

problems [4, 5]. This has generated intense debate among experts about the best way forward[6]. 

Governments and their advisors have relied upon forecasts from models of the numbers of COVID-19 

cases, hospitalisations and deaths to help decide what actions to take [7]. Using models to lead health 

policy has been controversial, but it is recognised that modelling is potentially valuable when used 

appropriately [1, 8-10]. Numerous models have been developed to forecast different COVID-19 data, 

e.g. [11-13].  

Models should provide probabilistic forecasts, as point forecasts are inherently uncertain [9, 14]. A 

95% interval forecast is a common and useful form of probabilistic forecast [15] [16]. Models may be 

constructed for prediction or scenario analysis. Prediction models forecast the most likely outcome in 

the current circumstances. Multiple models may reflect different approaches to answering the same 

question [11], and conflicting forecasts may arise. Rather than asking which is the best model [17], a 

forecast combination can be used, such as the mean, which is often used and hard to beat [18, 19]. 

Forecast combining harnesses the ‘wisdom of the crowd’ [20], that is, produces a collective forecast 

from multiple models that is typically more accurate than forecasts from individual models. Combining 

pragmatically synthesises information underlying different prediction methods, diversifying the risk 

inherent in relying on an individual model, and it can offset statistical bias, potentially cancelling out 

overestimation and underestimation [21]. These advantages are well-established in many applications 

outside health care [22-25]. This has encouraged the more recent applications of combining in infectious 

disease prediction [14, 26-29], including online platforms that present visualisations of simple combined 

probabilistic forecasts of COVID-19 data from the U.S, reported by the Centre for Disease Control and 

Prevention (CDC), and from Europe, reported by the European Centre for Disease and Control (EDCD). 

Other examples or combined probabilistic forecasts are in vaccine trial planning [30] and diagnosing 

disease [31]. These examples have focused on simple mean and median ‘ensembles’ and, in the case of 

prediction of COVID-19 data, published studies have involved short forecast evaluation periods, which 

rules out the consideration of more sophisticated methods, such as those weighted by historical accuracy. 

By comparing the accuracy of different combining methods over longer forecast evaluation periods 

compared to other studies, our broad aims were to: (a) investigate whether combining methods, 

involving weights determined by prior forecast accuracy or different ways of excluding outliers, are 

more accurate than simple methods of combining, and (b) establish the relative accuracy of the two 

simple methods. Previously, we reported several new weighted methods, in a comparison of combining 

methods applied to probabilistic predictions of weekly cumulative COVID-19 mortality in U.S. 

locations over the 40-week period up to 23 January 2021 [32]. We found that weighted methods were 
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the most accurate overall and the mean generally outperformed the median except in the first ten weeks. 

In this paper, we test further by comparing the combining methods on an extended dataset of cumulative 

mortality and a new dataset of incident mortality, over a longer period of 52 weeks. Here, we also include 

individual models in the comparison, and explore the impact of reporting delays of death counts on 

forecast accuracy. 

 

Materials and methods 

 

Data sources 

Forecasts of weekly incident and cumulative COVID-19 mortalities were downloaded from the COVID-

19 Forecast Hub [26, 33], which is an ongoing collaboration between the U.S. Centers for Disease 

Control and Prevention (CDC), with forecasting teams from academia, industry and government-

affiliated groups [33]. Teams are invited to submit forecasts for 1- to 4-week horizons, in the form of 

estimates of quantiles corresponding to 23 probability points along the probability distribution, as well 

as point forecasts. We considered 95% interval forecasts (bound by the 2.5% and 97.5% quantiles), and 

median point forecasts (the 50% quantile). The numbers of actual cumulative COVID-19 deaths each 

week were also provided by the Hub. Their reference data source is the Centre for Systems Science and 

Engineering (CSSE) at John Hopkins University [33].  

 

Analysis dataset 

We included forecasts projected from forecast origins between the weeks ending 16 May 2020 

(Epidemic Week 21) and 8 May 2021 (Week 72), and we considered actual weekly COVID-19 mortality 

up to the week ending 15 May 2021 (Week 73). We studied forecasts of COVID-19 mortality for the 

U.S. as a whole and 51 U.S. jurisdictions, including the 50 states and the District of Columbia. For 

simplicity, we refer to 51 states.   

The Hub carries out screening tests for inclusion in their ‘ensemble’ forecast combination. We 

included forecasts that passed the Hub’s screening tests, and forecasts that were not submitted in time 

for screening. For any given week, we excluded a model for which forecasts for all 23 quantiles and for 

all four forecast horizons were not provided. The Hub also excludes outliers. We did not exclude 

outliers, primarily because the actual number of COVID-19 deaths in previous weeks may have been 

updated, and therefore the assessment of outliers in the past would not be consistent with our 

retrospective assessments of outliers at the end of the dataset.  
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Evaluating the forecasts 

The accuracy of the 95% interval forecasts was evaluated in terms of calibration and the interval score. 

Calibration was assessed by the percentage of actual deaths that fell within the bounds of the interval 

forecasts, with the ideal being 95%. The interval score was calculated by the following expression [34, 

35]: 

              
2 2
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where lt is the interval’s lower bound, ut is its upper bound, yt is the observation in period t, I is the 

indicator function (1 if the condition is true and 0 otherwise), and, for a 95% interval, =5%. Lower 

values of the interval score reflect greater interval forecast accuracy. This score are useful for comparing 

methods, and although its unit is deaths, the score is not interpretable. The accuracy of the point forecasts 

were evaluated using the absolute value of the forecast errors. Averaging each of these two scores across 

weeks provided two measures of forecast accuracy – the mean interval score (MIS) and the mean 

absolute error (MAE).  

We also averaged across horizons, for conciseness, and because we had a relatively short analysis 

period, which is a particular problem when evaluating forecasts of extreme quantiles. To show the 

consistency across horizons, we present results by horizon for interval forecasts. We adapted the 

Diebold-Mariano statistical test [36] to test across multiple series, for each prediction horizon. To 

summarise results averaged across the four horizons, we applied the statistical test proposed by Koning 

et al. [37], which, for each method, compares the rank, averaged across multiple series, with the 

corresponding average rank of the most accurate method. Statistical testing was based on a 5% 

significance level. 

We evaluated the effects of reporting delays on forecast accuracy by analysing files of actual death 

counts at 13 different time points between Weeks 26 and 73. Updates, typically increases in death 

counts, result in forecasting models underestimating, and when updates are backdated, this leads to 

forecasting methods being penalised in retrospective analyses of forecast accuracy. Analysis was carried 

out using GAUSS software. 

 

Forecast combining methods 

The comparison included several interval combining methods that do not rely on the availability of 

records of past accuracy (Fig 1). Combining is applied to each interval bound separately.  
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Fig 1.  Illustration of interval forecast combining methods that do not rely on past historical 

accuracy. Each pair of shapes represents an interval forecast produced by an individual model. 

 

These methods include the well-established mean and median combinations [38-40] and more novel 

trimming methods, which exclude a particular percentage of forecasts, and then average the remaining 

forecasts of each bound [41]. Trimming is carried out to either deal with outliers, overconfidence or 

underconfidence. Trimming methods included symmetric trimming, exterior trimming, interior 

trimming and the envelope method. We also included: the COVID-19 Hub’s ensemble forecast, which 

was initially the mean combination of the forecasts that they considered eligible, and later it became the 

median; the best method at each week, the previous best [42]; and, our two weighted combinations, with 

weights based on the inverse of the MIS [32], the inverse score and inverse score with tuning. Further 

details are provided in S1 File.   

We divided the 52 weeks into an expanding in-sample period, starting with length 13 weeks, and a 

39-week out-of-sample period. For each location and trimming method, we optimised the trimming 

percentage, by finding the value that minimised the MIS averaged over all four horizons and all periods 

up to and including the current forecast origin (the in-sample period). The same approach was applied 

to optimise the tuning parameter. For the inverse score methods, the scores were calculated in-sample.   

For the point forecasts, we considered analogous combining methods to those for the interval 

forecasts, with the exception of the interior and exterior trimming means and envelope combining 

methods, which have no analogy for combining point forecasts. We included individual models for 

which forecasts were available for all 52 locations and all 39 out-of-sample periods.  
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Results 

Forecasting models 

Our analysis included forecasts from 53 forecasting models and the Hub’s ensemble model (S1 Table). 

In the early weeks of our dataset, the majority were susceptible-exposed-infected-removed (SEIR) 

compartmental models, but as the weeks passed, other model types became more common (Fig 2). These 

involved neural networks, agent-based and time series modelling, and curve fitting techniques.  

Fig 2. Number and types of models at each forecast origin for each mortality dataset 

The timeline of forecasts from each model illustrates the extent of missing data across the 52 locations, 

including the frequent ‘entry and exit’ of forecasting teams (Fig 3). The extent of missing data was such 

that imputation was impractical. In comparing forecast accuracy results, we were able to include six 

individual models for forecasts of incident mortality (numbered 1, 14, 20, 21, 22 and 33, as shown in 

Fig 3), and two models for cumulative mortality (21 and 33), because these models were available for 

all locations and weeks in the out-of-sample period.  

 

Fig 3. Data availability  
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Performance of methods overall 

We present results averaged across all 52 locations, for the whole U.S., and as the unit of scores was 

deaths, to avoid scores for some locations dominating, we also present results averaged for three 

categories: high, medium and low mortality states. The categorisation was in accordance with the 

number of cumulative COVID-19 deaths at the end of Week 73. Tables 1 and 2 present the MIS and 

mean ranks for 95% interval forecasts for the 32-week out-of-sample period for incident and cumulative 

mortality, respectively. Tables 3 and 4 present the corresponding MAE results for point forecasts.  

 

Table 1.  For 95% interval forecasts of incident mortality, mean interval scores and mean ranks for the 

39-week out-of-sample period.  

 Mean interval score  Mean rank 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean 900 9799 1631 443 104  5.8 4 7.4 5.1 5.0 

Median  778 11239 1172 435 110  5.8 9 6.4 5.0 5.9 

Ensemble 794 11176 1211 448 112  6.7 8 7.1 6.4 6.6 

Sym trim  878 10445 1515 446 109  6 6 6.3 5.8 5.8 

Exterior trim  996 12447 1716 480 118  8.6† 11 9.4 7.9 8.5 

Interior trim 895 9969 1625 429 97*  4.8 5 7.0 4.1* 3.3 

Envelope 5284 64944 11037 1004 300  15† 16 14.8† 14.6† 15.5† 

Previous best 877 11779 1217 637 135  9.8† 10 8.7 10.9† 9.9† 

Inv score 770 9130 1296 425* 98  3.9* 3 4.5* 4.1* 3.2* 

Inv score tuning 677* 8939 1000 441 104  5.2 2 4.6 5.8 5.4 

Model 1 729 11174 948* 512 114  6.3 7 5.3 7.9 5.7 

Model 14 1918 30502 2936 909 227  13.7† 13 13.4† 13.5† 14.2† 

Model 20 1957 33948 2808 933 248  13.5† 14 13.4† 13.6† 13.5† 

Model 21 2004 35399 2846 949 254  14.3† 15 13.9† 14.5† 14.3† 

Model 22 1014 19145 1312 535 130  9.2† 12 8.9 9.1 9.5† 

Model 33 748 8681* 1139 499 139  7.3† 1* 5.1 7.5 9.8† 

Model average 2222 37870 3315 995 257       

* Best method in each column; †method is significantly worse than method with best mean rank.  
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Table 2.  For 95% interval forecasts of cumulative mortality, mean interval scores and mean ranks for 

the 39-week out-of-sample period.  

 Mean interval score  Mean rank 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean 3529 48497 6761 925 256  5.7 6 5.9 4.9 6.2 

Median  3700 56185 6769 934 310  6.1 11 7.2 5.6 5.3 

Ensemble 3588 50481 6747 941 318  6.5 8 7.1 6.1 6.2 

Sym trim  3671 52563 6956 924 257  5.7 9 6.6 5.2 4.9 

Exterior trim  3737 53839 7006 985 271  7.6† 10 8.1 7.2 7.3 

Interior trim 3883 36142* 8623 921 208*  4.8 1* 5.0 4.7* 4.8 

Envelope 6545 103456 11304 1968 663  11.7† 12 11.4† 11.7† 12.1† 

Previous best 3531 49146 6371 1235 303  8.9† 7 7.7 10.2† 9.1† 

Inv score 3296 40479 6561 920* 221  4.2* 2 4.5 5.2 3.1* 

Inv score tuning 3100* 40758 5918* 948 219  4.8 3 4.2* 6.1 4.4 

Model 21 7247 136492 11276 2202 658  12.2† 13 12.4† 12.1† 12.2† 

Model 33 3457 44297 6552 1068 348  7.4† 4 5.3 8.0 9.2† 

Model average 6486 114911 10333 2114 633       

*Best method in each column; †method is significantly worse than method with best mean rank.  

 

Table 3.  For point forecasts of incident mortality, mean absolute errors and mean ranks for the 39-week 

out-of-sample period.  

 Mean absolute errors  Mean rank 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean 99 1711 146 43 13*  6.1 8 6.5 5.5 6.1 

Median  86 1632 114 41* 13*  4.2* 6 4.6 3.8* 4.1 

Ensemble 87 1630 114 41* 13*  4.8 5 4.8 4.2 5.3 

Sym trim 95 1632 141 41* 13*  4.9 7 5.4 4.5 4.6 

Previous best 100 1889 130 48 16  8.4† 9 7.7 8.5† 8.9† 

Inv score 95 1585 143 42 13*  4.9 4 5.5 4.9 4.5 

Inv score tuning 82 1356 116 43 13*  5.4 2 4.8 5.6 6.1 

Model 1 83 1460 112* 44 13*  10.4† 13 10.8† 10.3† 9.9† 

Model 14 114 2097 155 55 16  4.6 3 5.4 6.1 2.5* 

Model 20 117 2216 155 56 17  10.7† 10 10.3† 11.1† 10.8† 

Model 21 118 2247 157 56 17  10.5† 11 10.5† 10.4† 10.7† 

Model 22 119 2401 151 55 16  11.1† 12 11.1† 11.1† 11.2† 

Model 33 80* 1277* 114 42 13*  4.8 1* 3.5* 5.0 6.3 

Model average 130 2309 188 57 17       

*Best method in each column; †method is significantly worse than method with best mean rank.  

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 18, 2021. ; https://doi.org/10.1101/2021.07.11.21260318doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.11.21260318
http://creativecommons.org/licenses/by/4.0/


9 
 

Table 4.  For point forecasts of cumulative mortality, mean absolute errors and mean ranks for the 39-

week out-of-sample period  

 Mean absolute errors  Mean rank 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean  270 4754 430 87 30  5.5 8 5.6 5.2 5.4 

Median  240 4438 359 84* 30  4.4 5 5.1 3.8* 4.3 

Ensemble 238 4373 357 85 30  4.8 4 4.5 4.3 5.8 

Sym trim 244 4639 359 84* 29*  4.5 7 5.5 4.3 3.5* 

Previous best 253 3976 398 108 32  7.5† 2 6.7† 8.6† 7.4† 

Inv score 262 4576 417 87 29*  4.8 6 5.2 5.0 4.1 

Inv score tuning 236 4291 353* 86 29*  4.3* 3 4.4 4.6 4.0 

Model 21 346 6914 480 128 42  9.6† 10 9.6† 9.5† 9.7† 

Model 33 231* 3910* 360 88 30  4.7 1* 3.0* 4.8 6.4 

Model average 338 6102 515 120 38       

*Best method in each column; †method is significantly worse than method with best mean rank.  

 

Considering methods that performed well in terms of either being the leading method or competitive 

against the leading method, according to the scores and mean ranks, inverse score combining performed 

best overall, and benefitted from tuning (Tables 1 to 4). The poorest results were produced by the 

envelope method (Tables 1 to 4). The interior trimmed mean performed well for interval forecasting for 

low and medium mortality states, producing the most accurate interval forecasts for the low mortality 

category for both the incident and cumulative mortality data (Tables 1 and 2). The leading individual 

model (Model 33) performed well in forecasting the numbers of deaths for all series, the U.S. as a whole, 

and for high mortality states (Tables 1 to 4). Its performance was stronger in point forecasting than 

interval forecasting, and it was more accurate in forecasting incident deaths than cumulative deaths 

(Tables 1 to 4). 

The final row of Tables 1 to 4 shows that the average score of all the individual methods was 

substantially worse than the performance of the mean combining method (the average performance was 

much worse than the performance of the average).  

Comparing the two simple combining methods, for interval forecasts of incident deaths, the median 

was more accurate than the mean for all series and for high mortality states, whilst the performance was 

similar for medium and low mortality states (Table 1). For interval forecasts of cumulative mortality, 

the mean was the more accurate method across all categories (Table 2). The median was consistently 

the more accurate for point forecasts of both incident and cumulative mortality (Tables 3 and 4).  

The methods that performed poorly were identified as being statistically significantly worse than the 

best methods. Tables 1 to 4 report results averaged across the four forecast horizons (1 to 4 weeks ahead). 
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We found similar relative performances of the methods when looking at each forecast horizon separately 

for both forecasts of incident mortality (S2 Table) and cumulative mortality (S3 Table).  

 

Changes in performance over time  

For the first 13-week period, results were not obtainable for methods for which a previous in-sample 

period was needed to estimate parameters. The leading methods in the second and third quarters for 

forecasts of incident mortality were the inverse score methods (S4 Table), and for cumulative mortality, 

the inverse score methods and the interior trimmed mean (S5 Table). For forecasts of both mortalities, 

the leading methods in the most recent quarter were the median-based methods (median and ensemble). 

However, for both incident and cumulative mortalities, the mean was more accurate than the median in 

the second and third quarters.   

 

Impact of reporting delays on performance 

We observed updates to historical death counts in 14 locations. Updates were particularly noticeable in 

six states (Fig 4). 

  

Fig 4.   Numbers of reported COVID-19 deaths in states where there were noticeable effects of 

reporting delays. Shows superimposed plots using data files at Weeks 26, 30, 32, 34, 37, 41, 43, 45, 

47, 54, 59, 66 and 73. 

 

Fig 5 presents the MIS for the overall leading method (inverse score with tuning), the popular mean 

benchmark and the leading model (Model 33) for forecasts at the individual state level.  
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Fig 5.  Mean interval scores for 95% interval forecasts of incident and cumulative COVID-19 

mortalities in individual states in high, medium and low mortality groups, for three selected 

methods. The states are ordered on the x-axis by the number of cumulative COVID-19 deaths at the 

end of Week 73, from low to high. Lower scores reflect higher accuracy. 

 

The adverse effects of reporting delays of death counts on performance is apparent for the high mortality 

state of Ohio (OH), the medium mortality state of Oklahoma (OK), and the low mortality states of 

Delaware (DE), West Virginia (WV) and Rhode Island (RI).  For interval forecasts of both mortalities, 

the mean combination was competitive for most states. This is not reflected in Tables 1 to 2 due to 

adverse effects being greatest for the mean, particularly in the states of Ohio and Delaware. The impact 

of reporting delays on performance differed across mortalities. In particular, the inverse score with 

tuning method was less affected than the mean and Model 33 for interval forecasts of incident mortality 

in Ohio, whilst the effects were similar for interval forecasts of cumulative mortality (Fig 5). For the 

state of Delaware, the inverse score with tuning method was less affected for interval forecasts of 

cumulative mortality, but for interval forecasts of incident mortality, there was no effect on performance 

for all three methods (Fig 5). Similar adverse effects were reflected in the scores for the point forecasts 

(Fig 6). 
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Fig 6.  Mean absolute errors for median point forecasts of incident and cumulative COVID-19 

mortalities in individual states in high, medium and low mortality groups, for three selected 

methods. The states are ordered on the x-axis by the number of cumulative COVID-19 deaths at the 

end of week 73 from low to high. Lower scores are better. 

 

As a sensitivity analysis, we excluded forecasts for all six states that had notable effects of updates 

on death counts. There were improvements in the performance for all methods, and only slight changes 

in the ranking of methods. Regarding our significance testing results, there were no changes in our 

conclusions.  

 

Calibration of interval forecasting methods 

There was a general tendency for underestimation in the widths of the 95% intervals (Table 5), which is 

quite common in studies of interval forecasting [43]. The inverse score methods were relatively well 

calibrated. Interior trimming was well calibrated, because it leads to wider than average intervals, which 

is useful when models underestimate the interval width. The envelope method also performed well 

because it also leads to wider than average intervals. However, this method is likely to deliver intervals 

that are too wide. Also, sizeable overestimation will lead to a result of 100% which is quite close to the 

ideal of 95%, while sizeable underestimation can lead to calibration far from 95%. This highlights a 

limitation of calibration for evaluating interval forecasts, and supports our greater focus on the interval 

score.  
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Table 5.  Average calibration of the 95% interval forecasts for incident and cumulative mortality in the 

39 week out-of-sample period.  

 Incident mortality  Cumulative mortality 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean  87.2 93.4 87.2 89.7 84.4  85.7 79.6 81.5 90.4 85.5 

Median 85.6 89.3 85.6 88.1 83.0  82.4 71.6 78.8 87.9 81.0 

Ensemble 85.3 88.6 84.9 87.7 83.0  82.2 71.6 79.0 87.4 80.8 

Sym trim  86.6 89.3 87.0 88.8 83.8  84.2 74.9 80.1 88.9 84.0 

External trim  81.9 86.6 82.0 84.5 79.0  80.9 72.2 76.9 85.5 80.8 

Internal trim  91.9* 94.0* 91.4* 93.7* 90.3  91.6 85.5 90.5 92.9* 91.9 

Envelope 98.7 100.0 99.6 99.5 96.9*  98.1* 99.4* 96.9* 99.3 97.9* 

Previous best 83.7 89.3 84.9 84.9 81.1  80.3 84.2 79.8 81.6 79.3 

Inv score 90.0 98.7 90.1 92.8 86.7  88.6 82.3 84.8 92.6 88.7 

Inv score tuning 89.7 98.7 90.5 91.7 86.4  88.0 86.9 85.2 91.3 87.5 

Model 1 91.7 98.0 93.6 93.1 88.1  NA NA NA NA NA 

Model 14 66.4 85.4 63.8 69.7 64.5  NA NA NA NA NA 

Model 20 67.2 82.9 63.7 67.8 69.3  NA NA NA NA NA 

Model 21 67.2 82.9 64.0 68.0 68.8  61.8 69.7 56.6 62.2 66.3 

Model 22 87.4 77.4 87.1 88.6 87.1  NA NA NA NA NA 

Model 33 83.9 84.8 87.2 85.7 78.9  81.8 72.4 82.2 85.6 78.1 

* Best method in each column. NA - not applicable. Ideal is 95%. 

 

 

Discussion 

Our weighted combining methods performed well for both types of mortality, and for both interval and 

point forecasting. Inverse score with tuning was the most accurate method overall. The relative 

performance of the different combining methods, particularly the mean verses the median, depended on 

the mortality type, forecast type and timing. The leading individual model performed well, particularly 

for forecasts for the high mortality category, and this model was most accurate in point forecasting 

incident mortality. The adverse effects of reporting delays on performance were minor.  

We developed the inverse score methods in our earlier study [32] and found them to be the most 

accurate combining methods overall. By formally testing the combining methods on an extended new 

dataset and a new dataset, drawing the same conclusion, our study provides further evidence of the 

superiority of these simple weighted methods. We also provide further insight into the relative 

performance of the simple benchmark methods. A recent study by Bracher et al [29] compared forecasts 
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produced by the mean combination, median combination and a weighted combination for COVID-19 

deaths in Germany and Poland. They found that combined methods did not perform better than 

individual models. However, this study was limited by an evaluation period of only ten weeks. It is also 

worth noting that the study used just thirteen individuals models in the combinations. In our previous 

work [32], we found accuracy improved notably as the number of individual models rose up to about 

twenty models.      

We understand that this study is the first formal comparison of simple and more complex combining 

methods of probabilistic forecasts applied to infectious disease prediction and with a forecast evaluation 

period of at least 52 weeks. Another strength of our study is our source of data, which presented an 

opportunity to study the ‘wisdom of the crowd’, and provided the necessary conditions for the crowd 

being ‘wise’ [20] and without distortion, such as by social pressure [44] or restrictions against 

forecasting teams applying their own judgement [26]. These conditions include independent 

contributors, diversity of opinions, and a trustworthy central convener to collate the information 

provided [20]. Further strengths relating to the reliability of our findings arise from the high number of 

individual models included models in addition to the extended forecast evaluation period of our study. 

Our reported findings are limited to U.S. data and a particular set of models, and it is possible that 

different results may arise from other models, or for data from other locations, or other types of data, 

such as numbers infected. These are potential avenues for future research. Our ability to detect statistical 

differences was limited by the small sample sizes, with only 17 locations in each category, missing data 

and a relatively short out-of-sample period.  

It is suggested that relying on modelling alone leads to “missteps and blind spots”, and that the best 

approach to support public policy decision making would involve a triangulation of insights from 

modelling with other information, such as analyses of previous outbreaks and discussions with frontline 

staff [45]. It is essential that modelling offers the most accurate forecasts. Probabilistic forecasts reflect 

the inherent uncertainties in prediction. Although individual models can sometimes be more accurate 

than combined methods, relying on forecasts from combined methods provides a more risk-averse 

approach, as the best individual model will not be clear until records of historical accuracy are available, 

and the best performing model will typically change over time. Furthermore, our finding that the 

performance of the average (mean combination) was substantially better than the average performance 

of the individual models suggests that, at the start of an epidemic, when it is not clear which model has 

the best performance, the statistical expectation is that the average method will score far better than a 

model chosen randomly, or chosen on the basis of no prior history, which was the case at the start of the 

COVID-19 pandemic. The performance of the mean and median combination were often reasonable, 

but there was no clear leading benchmark method, and when historical accuracy became available, the 

weighted methods were more accurate. Therefore, we only recommend considering simple methods in 

early stages of epidemics and we call for further formal investigation into the use and potential benefit 

of weighted methods in the prediction of diseases using probabilistic forecasts.  
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