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Abstract 

Background 

Forecasting models have played a pivotal role in decision making during the COVID-19 pandemic, predicting 

the numbers of cases, hospitalisations and deaths. However, questions have been raised about the role and 

reliability of models. The aim of this study was to investigate the potential benefits of combining probabilistic 

forecasts from multiple models for forecasts of incident and cumulative COVID mortalities.   

Methods 

We considered 95% interval and point forecasts of weekly incident and cumulative COVID-19 mortality 

between 16 May 2020 and 8 May 2021 in multiple locations in the United States. We compared the accuracy 

of simple and more complex combining methods, as well as individual models. 

Results 

The average of the forecasts from the individual models was consistently more accurate than the average 

performance of these models, which provides a fundamental motivation for combining. Weighted combining 

performed well for both incident and cumulative mortalities, and for both interval and point forecasting. Inverse 

score with tuning was the most accurate method overall. The median combination was a leading method in the 

last quarter for both mortalities, and it was consistently more accurate than the mean combination for point 

forecasting of both mortalities. For interval forecasts of cumulative mortality, the mean performed better than 

the median. The leading individual models were most competitive for point forecasts of incident mortality.  

Conclusions  

We recommend that harnessing the wisdom of the crowd can improve the contribution of probabilistic 

forecasting of epidemics to health policy decision making and, when there are historical data on forecast 

accuracy, weighted combining provides the best method. 
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Introduction 

The coronavirus disease-2019 (COVID-19) pandemic has created major planning and resource allocation 

challenges, as well as pressures on health services, which have prompted governments to impose extreme 

restrictions in attempts to control the spread of the virus (1-3). These measures have resulted in multiple 

problems beyond COVID-19, including increased hospital treatment delays, damage to economies, higher levels 

of unemployment, declining mental health, and widening of the pre-existing health and educational disparities, 

which will persist beyond the rollout of vaccines (4, 5). Subsequently, the pandemic has generated intense debate 

among experts about the best way forward (6). Governments and their advisors have relied upon forecasts from 

models of the numbers of COVID-19 cases, people hospitalized and deaths to help decide what actions to take 

(7). However, using modelling to lead health policy during the pandemic has been controversial and criticised 

on various grounds, including the overreliance on models and questionable model assumptions. Nevertheless, 

it is recognised that models are potentially valuable tools when used appropriately (2, 8-10).  

The most useful models are parsimonious, that is, including only sufficient detail to answer a particular 

question (11), and parameterised with evidence-based data, rather than being based on assumptions. Using 

models that provide frequent forecasts will incorporate the latest evidence into the model estimates, as well as 

realign with the latest mitigating measures by governments and the responses of their populations. Furthermore, 

forecasts will be more nuanced if modelling is carried out at the local, rather than national level (2). Models 

may be constructed for prediction or scenario analysis. For example, the model from Imperial College London 

that drove the United Kingdom and United States (U.S.) governments to impose the first lockdowns assumed 

scenarios where between 50% and 75% of people would comply with the government restrictions (12). Extreme 

assumptions may be made to provide policy insight into a broad set of possible scenarios (13). When employed 

for prediction, models forecast the most likely outcome in the current circumstances. Different models are based 

on different approaches to answering the same question, and conflicting forecasts may arise. Rather than 

questioning which model is best (13), a forecast combination can be used to harness the wisdom of the crowd 

(14). Combining produces a collective forecast from multiple models that is typically more accurate than 

forecasts from individual models. The mean combination (simple average of all the forecasts) is an example of 

a combined forecast, which is often used and hard to beat (15, 16). Forecast combining has many advantages 

(17). It synthesises information underlying different prediction methods in a pragmatic way, diversifying the 

risk inherent in relying on an individual model, and it can offset the statistical bias associated with individual 

models, potentially cancelling out overestimation and underestimation from individual models. In many 

applications, from economics and business (18, 19), to weather and climate prediction (20, 21), the advantages 

of forecast combining are well-established. This has encouraged the more recent application of combining to 

the prediction of infectious diseases (22-26). When considering forecasting, attention is often placed on point 

forecasts, but they have inherent uncertainty, and subsequently, there has been increasing calls for probabilistic 

forecasting (9, 22). An interval forecast is a common form of probabilistic forecast, which conveys the 

uncertainty in an intuitively appealing way (27). For example, a 95% interval forecast is a range that will, ideally, 

contain the true value with 95% probability. 
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Previously, we compared the accuracy of probabilistic forecast combining methods applied to predictions of 

weekly cumulative COVID-19 mortality in U.S. locations over the 40-week period up to 23 January 2021 (26). 

In this paper, we extend our earlier study by considering both weekly cumulative and incident COVID-19 

mortalities, where incident deaths for a week is defined as the number of deaths occurring in that week. The 

numbers of cumulative deaths and incident deaths are clearly related, but although observed values of one can 

be derived from the other, the same is not true for probabilistic forecasts beyond one step-ahead. Furthermore, 

different sets of models may be used to predict incident and cumulative mortality. We consider forecast 

combining for point forecasts and 95% interval forecasts for the 52-week period up to 15 May 2021, which 

constitutes a longer and more recent period of data than in our previous work. Additional differences from our 

earlier study are that we report the results for individual models in our comparison, and assess the impact of 

reporting delays of death counts on forecast accuracy.  

 

COVID-19 mortality dataset 

 

Data sources 

Forecasts of weekly incident and cumulative COVID-19 mortalities were downloaded from the COVID-19 

Forecast Hub (23). The Hub is an ongoing collaboration between the U.S. Centers for Disease Control and 

Prevention (CDC), with forecasting teams from academia, industry and government-affiliated groups (28). 

Teams are invited to submit forecasts of incident and cumulative mortalities for 1, 2, 3 and 4-week horizons, in 

the form of estimates of quantiles corresponding to 23 probability points along the probability distribution of 

possible values, and also point forecasts. Forecasts of the 2.5% and 97.5% quantiles bound a 95% interval 

forecast. In this paper, in addition to 95% interval forecasts, we consider point forecasts, which, for each model, 

we obtain as the 50% quantile (i.e., the median) at the centre of the probability distribution. The numbers of 

actual incident COVID-19 deaths each week were inferred from the reference data from the Hub on the numbers 

of actual weekly cumulative COVID-19 deaths. These data are provided by the Centre for Systems Science and 

Engineering (CSSE) at John Hopkins University (28).  

 

Analysis dataset 

The dataset for our analysis included forecasts projected from forecast origins each week between the weeks 

ending Saturday 16 May 2020 and Saturday 8 May 2021 (52 weeks of data). The COVID-19 Forecast Hub 

numbers these weeks as Epidemic Weeks 21 to 72, where Week 0 was the week ending 21 December 2019. 

These forecasts were compared with actual weekly COVID-19 mortality up to the week ending 15 May 2021 

(Week 73). We studied forecasts of COVID-19 mortality for the whole of the U.S. and 51 U.S. jurisdictions, 

which included the 50 states and the District of Columbia. For simplicity, in the rest of the paper, we refer to 

the jurisdictions as states. For each state, Figs. S1 and S2 in the supplementary information show the numbers 

of weekly incident and cumulative COVID-19 deaths respectively, from Weeks 22 to 73. These figures show 

different histories of the pandemic across the states.  
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The Hub carries out various screening tests for inclusion in their forecast combination, which they refer to 

as their ‘ensemble’ model. We included forecasts that passed the Hub’s screening tests, as well as forecasts that 

were not submitted in time to be screened. We followed the Hub by excluding, for any given week, a model for 

which forecasts for all 23 quantiles and for all four forecast horizons were not provided. The Hub also excluded 

forecasts deemed to be outlying. We did not exclude outliers, primarily because the actual number of COVID-

19 deaths in previous weeks may have been updated, and therefore the assessment of outliers in the past, by the 

Hub, would not be consistent with our retrospective assessments of outliers at Week 73.  

Delays in reporting COVID-19 deaths is a well-recognised problem. Updates, typically increases, which may 

involve sharp increases in death counts, will result in forecasting models underestimating, and when updates 

are backdated, this will lead to forecasting methods being penalised in retrospective analyses of forecast 

accuracy. Updates that decrease death counts will produce overestimates. We downloaded 13 data files of actual 

death counts at different points during our 53-week study period (one file each at Weeks 26, 30, 32, 34, 37, 41, 

43, 45, 47, 54, 59, 66 and 73). We observed updates to the historical death counts in 14 locations between Weeks 

26 and 73 (Alaska, California, Delaware, Indiana, Ohio, Oklahoma, Missouri, New Jersey, New York, Rhode 

Island, Texas, Washington, Wisconsin and the U.S.). Fig. 1 presents superimposed plots of the numbers of 

cumulative COVID-19 deaths, using the 13 data files, for six states in which the effects of updates were 

particularly notable. We evaluate the effect of reporting delays on forecast accuracy when we compare the 

forecasting methods.     

 

 

Fig. 1 Numbers of reported deaths in states where there were notable effects of reporting delays: (a) Delaware, 

(b) Indiana, (c) Ohio, (d) Rhode Island, (e) Oklahoma and (f) West Virginia. Updates with backdating (a-d) are 

shown as deviations (dashed lines) from the most recent plot of cumulative COVID-19 mortality reported at 

Week 73 (black lines), and updates without backdating are shown as a sharp upward step (e) and a decrease (f) 

between Weeks 66 and 73. 
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Our analysis included forecasts from 53 individual forecasting models and the Hub’s ensemble model. 

Details about these models are given in the appendix in the supplementary information. In the early weeks of 

our dataset, the traditional SEIR (susceptible-exposed-infected-removed) compartmental models were in the 

majority, but as the weeks passed, other types of models became more common (Fig. 2). These other models 

involved various statistical techniques and methods including neural networks, agent-based models, time series 

modelling, ridge regression and curve fitting techniques.  

 

 

Fig. 2 Number and types of models at each forecast origin for each mortality dataset 

 

Fig. 3 shows the timeline of forecasts from each model, illustrating the extent of missing data across the 52 

locations, including the frequent ‘entry and exit’ of forecasting teams. This figure also shows that there were 

differences between the sets of models providing forecasts of incident and cumulative mortality. Screening by 

the Hub removed 14.4% of forecasts of incident deaths and 22.3% of forecasts of cumulative deaths. The large 

amount of missing data was such that we felt imputation would not be appropriate.  

 

 

Fig. 3 Extent of missing data for forecasts of incident mortality (left) and cumulative mortality (right) from 

Models 1 to 53 for forecast origins between Epidemic Weeks 21 and 72   
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Comparison of forecast accuracy  

Forecast evaluation methods 

The accuracy of the 95% interval forecasts was evaluated in terms of calibration and the interval score. 

Calibration was assessed by the percentage of actual deaths that fell within the bounds of the interval forecasts, 

with the ideal being 95%. The interval score was calculated by the following expression (29, 30): 

              
2 2

, ,INT

t t t t t t t t t t t t t
S l u y u l I y l l y I y u y u

 
                   

where lt is the interval’s lower bound, ut is its upper bound, yt is the observation in period t, I is the indicator 

function (1 if the condition is true and 0 otherwise), and, for a 95% interval, =5%. The bounds lt and ut are the 

2.5% and 97.5% quantiles, respectively. Lower values of the interval score reflect greater interval forecast 

accuracy, and for this study, the unit of the quantile score is the number of deaths. The score rewards narrow 

intervals, with observations that fall outside the interval incurring a penalty, the magnitude of which depends 

on the value of α (29). The accuracy of the point forecasts was evaluated using the absolute value of the forecast 

errors. Averaging each of these two scores across an out-of-sample period provides two measures of forecast 

accuracy – the mean absolute error (MAE) and the mean interval score (MIS). 

In most of our reporting of the results, we average across horizons. We do this for conciseness and because 

we are using a relatively short out-of-sample period, which is a particular problem when evaluating forecasts of 

extreme quantiles. To show the consistency across horizons, we present results by horizon for interval forecasts. 

For these MIS results, we carried out statistical tests for the difference in forecast accuracy of different methods 

and models. We adapted the Diebold-Mariano test (31) in order to test across multiple series, and this was 

applied to the results of each prediction horizon separately. To summarise results averaged across the four 

horizons, we were unable to use the Diebold-Mariano test, so we applied the statistical test proposed by Koning 

et al. (32), which, for each method, compares the rank, averaged across multiple series, with the corresponding 

average rank of the most accurate method. Statistical testing was based on a 5% significance level. 

 

Interval forecast combining methods 

The comparison included several combining methods that do not rely on the availability of records of past 

accuracy. These methods are useful in the early stages of a pandemic, and in later stages when a new forecasting 

team starts to submit forecasts, or there is an uneven record of past accuracy among the different models, which 

is the case in our study. Fig. 4 presents a visual summary of these combining methods. Combining is applied to 

each interval bound separately. The mean combination (a, in Fig.4) and the median combinations (b, in Fig.4) 

are two well established benchmark methods (33-35). The median has the appeal of being robust to outliers.  
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Fig. 4 Illustration of non-score-based combining methods of interval forecasts from five individual models, 

showing (a) mean combination, (b) median combination, (c) symmetric trimmed mean, (d) asymmetric exterior 

trimmed mean, (e) asymmetric interior trimmed mean and (f) envelope. Each interval forecast is represented by 

a different coloured pair of dots.  

 

More novel methods of combining involve trimming (excluding) a particular percentage β of forecasts of 

each interval bound (shown by shading in Fig. 4), and then averaging the remaining forecasts of that bound. 

Symmetric trimming (c, in Fig.4) deals with outliers. For each bound, it involves trimming the N lowest-valued 

and N highest-valued forecasts, where N is the largest integer less than or equal to the product of β/2 and the 

total number of forecasts (36). The median combination is an extreme form of symmetric trimming. We also 

implemented asymmetric exterior trimming, asymmetric interior trimming, and the envelope methods (33). 

Asymmetric exterior trimming (d, in Fig.4) is suitable for addressing underconfidence, which is reflected by 

overly wide intervals. It involves removing the N lowest-valued lower bound forecasts, as well as the N highest-

valued upper bound forecasts, where N is the largest integer less than or equal to the product of β and the number 

of forecasts. When trimming resulted in a lower bound being above the upper bound, we replaced the two 

bounds by their average. Asymmetric interior trimming (e, in Fig.4) deals with overconfidence, which is 

reflected by overly narrow intervals. For this, we removed the N highest-valued lower bound forecasts and the 

N lowest-valued upper bound forecasts, where N is defined as for exterior trimming. The envelope method (f, 

in Fig.4) is an extreme form of interior trimming, whereby the interval is constructed using the lowest-valued 

lower bound forecast and highest-valued upper bound forecast.  

For our comparison, we divided the 52 weeks, from which forecasts were made, into an expanding in-sample 

period, starting with length 13 weeks, and a 39-week out-of-sample period. For each week, location and method, 

we optimised the trimming percentage β by finding the value that minimised the sum of the MIS averaged over 

all four horizons and all periods up to and including the latest forecast origin. Optimisation occurred each week, 

using the expanding in-sample period, to produce combined forecasts for the 39 weeks of the out-of-sample 

period.  

We included the COVID-19 Hub’s ensemble forecast. This was initially the mean combination of the 

forecasts that they considered to be eligible, but in late July, 12 weeks into our 52-week analysis period, it 
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became the median combination of these forecasts (23). The use of eligibility screening implies that the 

ensemble is constructed with the benefit of a degree of subjective trimming. The ensemble provided forecasts 

of cumulative mortality for all of our 52-week period, while for incident mortality, forecasts were available 

from all except the first three weeks of the 52-week period. 

In our comparison of methods, we also included three methods that considered the accuracy of the forecasts 

from the individual models. The first of these three methods simply selected the model with the best historical 

accuracy (37). We refer to this method as previous best. For this method, the interval forecast was obtained from 

the model for which the MIS was the lowest when computed using the weeks up to and including the current 

forecast origin (i.e., the in-sample period). We also investigated two weighted average combinations, which 

have similarities with inverse-variance weighting, which is a common approach used in meta-analysis (38). For 

one weighted method, the inverse interval score method, the weights were inversely proportional to the MIS 

(26).  For the other weighted method, inverse interval score with tuning, a tuning parameter, λ > 0, is 

incorporated to control the influence of the score on the combining weights, using the following expression for 

the weight on forecasting model i at forecast origin t (26):  

𝑤𝑖𝑡 =
(1 𝑀𝐼𝑆𝑖,𝑡⁄ )

𝜆

∑ (1 𝑀𝐼𝑆𝑗.𝑡⁄ )
𝜆𝐽

𝑗=1

 

where MISi,t is the historical MIS computed at forecast origin t from model i, and J is the number of forecasting 

models included in the combination. If λ is close to zero, the combination reduces to the mean combination, 

whereas a large value for λ leads to the selection of the model with best historical accuracy. The parameter λ 

was optimised using the same expanding in-sample periods, as for the trimming combining methods. Due to the 

extent of missing forecasts (Fig.3), we pragmatically computed MISi,t using all available past forecasts, rather 

than limit the computation to periods for which forecasts from all models were available. For the models for 

which forecasts were not available for at least 5 past periods, we set MISi,t to be equal to the mean of MISi,t for 

all other models. An alternative approach, employed in (26), is to omit from the combination any model for 

which there is only a very short or non-existent history of accuracy available. The disadvantage of this is that it 

omits potentially useful forecast information, and this was supported by our empirical forecasting results.  

 

Point forecast combining methods 

For the point forecasts, we considered analogous combining methods to those for the interval forecasts, with the 

exception of the asymmetric interior trimming, asymmetric exterior trimming and envelope combining methods, 

which are only of use for interval forecast combining.  

 

Inclusion of individual models in the comparison 

Alongside the results for the combining methods, we also report the results for any individual model for which 

forecasts were available for all 52 locations and all 39 out-of-sample periods. There were six models fulfilling 

this criterion for incident mortality (numbered 1, 14, 20, 21, 22 and 33), and two models for cumulative mortality 

(numbered 21 and 33). The numbering of models corresponds to that shown in Fig.3.  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.11.21260318doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.11.21260318
http://creativecommons.org/licenses/by/4.0/


Empirical results 

Performance of methods overall 

We averaged the MIS and MAE across all four horizons and all 52 locations: the 51 states and the whole U.S. 

As the unit of these two scores was deaths, to avoid scores for some locations dominating, we also present 

results averaged for the following four categories: high, medium and low mortality states, and the U.S. as a 

whole. The high, medium and low categories were decided by ordering the 51 states by the number of 

cumulative deaths at the end of the final week of our dataset, and then dividing the states into three groups of 

17 states. Tables 1 and 2 present the MIS and mean ranks for 95% interval forecasts, for each method for the 

32-week out-of-sample period for incident and cumulative mortality, respectively. Tables 3 and 4 present the 

corresponding MAE results for point forecasts.  

Considering methods that performed well in terms of either being the leading method or competitive against 

the leading method, inverse score combining performed best overall, with the method benefitting from the 

incorporation of tuning (Tables 1 to 4). The poorest results were produced by the envelope method (Tables 1 to 

4). The asymmetric interior trimmed mean performed well for interval forecasting for low and medium mortality 

states, producing the most accurate interval forecasts for the low mortality category for both the incident and 

cumulative mortality data (Tables 1 and 2). The leading individual model (Model 33) performed well in 

forecasting the numbers of deaths for all series, the U.S. as a whole, and for high mortality states (Tables 1 to 

4). Its performance was stronger in point forecasting than interval forecasting, and it was more accurate in 

forecasting incident deaths than cumulative deaths (Tables 1 to 4). 

The final row in each of Tables 1 to 4 does not provide the forecasting results for a method. Instead, it reports 

the average score of all the individual methods. In each table, we see that this is substantially worse than the 

performance of the mean combining method (i.e., the average performance is much worse than the performance 

of the average). This gives fundamental support for forecast combining, because the average performance can 

be viewed as the statistical expectation for the performance of an individual model, chosen when there is no 

information regarding their accuracy, which was the case at the start of the pandemic.  

Comparing the two simple combining methods, for interval forecasts of incident deaths, the median was 

more accurate than the mean for all series and for high mortality states, whilst the performance was similar for 

medium and low mortality states (Table 1). For interval forecasts of cumulative mortality, the mean was more 

accurate than the median across all categories (Table 2). The median was consistently more accurate than the 

mean for point forecasts of both cumulative and incident mortality (Tables 3 and 4).  
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Table 1  For 95% interval forecasts of incident mortality, MIS and mean ranks for the 39-week out-of-sample 

period. Boxed numbers indicate the best method in each column. 

 MIS  Mean rank 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean 900 9799 1631 443 104  5.8 4 7.4 5.1 5.0 

Median  778 11239 1172 435 110  5.8 9 6.4 5.0 5.9 

Ensemble 794 11176 1211 448 112  6.7 8 7.1 6.4 6.6 

Sym trim  878 10445 1515 446 109  6 6 6.3 5.8 5.8 

Asym exterior trim  996 12447 1716 480 118  8.6* 11 9.4 7.9 8.5 

Asym interior trim 895 9969 1625 429 97  4.8 5 7.0 4.1 3.3 

Envelope 5284 64944 11037 1004 300  15* 16 14.8* 14.6* 15.5* 

Previous best 877 11779 1217 637 135  9.8* 10 8.7 10.9* 9.9* 

Inverse score 770 9130 1296 425 98  3.9 3 4.5 4.1 3.2 

Inverse score tuning 677 8939 1000 441 104  5.2 2 4.6 5.8 5.4 

Model 1 729 11174 948 512 114  6.3 7 5.3 7.9 5.7 

Model 14 1918 30502 2936 909 227  13.7* 13 13.4* 13.5* 14.2* 

Model 20 1957 33948 2808 933 248  13.5* 14 13.4* 13.6* 13.5* 

Model 21 2004 35399 2846 949 254  14.3* 15 13.9* 14.5* 14.3* 

Model 22 1014 19145 1312 535 130  9.2* 12 8.9 9.1 9.5* 

Model 33 748 8681 1139 499 139  7.3* 1 5.1 7.5 9.8* 

Mean MIS of models 2222 37870 3315 995 257       

* The method is significantly worse than the method with the best mean rank. MIS – Mean interval score. 

 

Table 2  For 95% interval forecasts of cumulative mortality, MIS and mean ranks for the 39-week out-of-sample 

period. Boxed numbers indicate the best method in each column. 

 MIS  Mean rank 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean 3529 48497 6761 925 256  5.7 6 5.9 4.9 6.2 

Median  3700 56185 6769 934 310  6.1 11 7.2 5.6 5.3 

Ensemble 3588 50481 6747 941 318  6.5 8 7.1 6.1 6.2 

Sym trim  3671 52563 6956 924 257  5.7 9 6.6 5.2 4.9 

Asym exterior trim  3737 53839 7006 985 271  7.6* 10 8.1 7.2 7.3 

Asym interior trim 3883 36142 8623 921 208  4.8 1 5.0 4.7 4.8 

Envelope 6545 103456 11304 1968 663  11.7* 12 11.4* 11.7* 12.1* 

Previous best 3531 49146 6371 1235 303  8.9* 7 7.7 10.2* 9.1* 

Inverse score 3296 40479 6561 920 221  4.2 2 4.5 5.2 3.1 

Inverse score tuning 3100 40758 5918 948 219  4.8 3 4.2 6.1 4.4 

Model 21 7247 136492 11276 2202 658  12.2* 13 12.4* 12.1* 12.2* 

Model 33 3457 44297 6552 1068 348  7.4* 4 5.3 8.0 9.2* 

Mean MIS of models 6486 114911 10333 2114 633       

* The method is significantly worse than the method with the best mean rank. MIS – Mean interval score. 
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Table 3  For point forecasts of incident mortality, MAE and mean ranks for the 39-week out-of-sample period. 

Boxed numbers indicate the best method in each column. 

 MAE  Mean rank 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean 99 1711 146 43 13  6.1 8 6.5 5.5 6.1 

Median  86 1632 114 41 13  4.2 6 4.6 3.8 4.1 

Ensemble 87 1630 114 41 13  4.8 5 4.8 4.2 5.3 

Sym trim 95 1632 141 41 13  4.9 7 5.4 4.5 4.6 

Previous best 100 1889 130 48 16  8.4* 9 7.7 8.5* 8.9* 

Inverse score 95 1585 143 42 13  4.9 4 5.5 4.9 4.5 

Inverse score tuning 82 1356 116 43 13  5.4 2 4.8 5.6 6.1 

Model 1 83 1460 112 44 13  10.4* 13 10.8* 10.3* 9.9* 

Model 14 114 2097 155 55 16  4.6 3 5.4 6.1 2.5 

Model 20 117 2216 155 56 17  10.7* 10 10.3* 11.1* 10.8* 

Model 21 118 2247 157 56 17  10.5* 11 10.5* 10.4* 10.7* 

Model 22 119 2401 151 55 16  11.1* 12 11.1* 11.1* 11.2* 

Model 33 80 1277 114 42 13  4.8 1 3.5 5.0 6.3 

Mean MAE of models 130 2309 188 57 17       

* The method is significantly worse than the method with the best mean rank. MAE – Mean absolute error. 

 

Table 4  For point forecasts of cumulative mortality, MAE and mean ranks for the 39-week out-of-sample 

period. Boxed numbers indicate the best method in each column. 

 MAE  Mean rank 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean  270 4754 430 87 30  5.5 8 5.6 5.2 5.4 

Median  240 4438 359 84 30  4.4 5 5.1 3.8 4.3 

Ensemble 238 4373 357 85 30  4.8 4 4.5 4.3 5.8 

Sym trim 244 4639 359 84 29  4.5 7 5.5 4.3 3.5 

Previous best 253 3976 398 108 32  7.5* 2 6.7* 8.6* 7.4* 

Inverse score 262 4576 417 87 29  4.8 6 5.2 5.0 4.1 

Inverse score tuning 236 4291 353 86 29  4.3 3 4.4 4.6 4.0 

Model 21 346 6914 480 128 42  9.6* 10 9.6* 9.5* 9.7* 

Model 33 231 3910 360 88 30  4.7 1 3.0 4.8 6.4 

Mean MAE of models 338 6102 515 120 38       

* The method is significantly worse than the method with the best mean rank. MAE – Mean absolute error. 
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Tables S1 and S2 in the supplementary information provide a broad summary of the results of Tables 1 to 4 

in terms of the frequency with which a method is ranked in the top three, based on the scores and mean ranks, 

respectively, for the different types of mortality and forecast. These tables reflect the dominance of the inverse 

score methods, for both mortalities and both forecast types, although the superiority was less for point forecasts. 

The inverse score with tuning is best overall according to both the scores and mean ranks.     

Looking at the results for the statistical testing of the mean ranks, we see that the methods that performed 

poorly were identified as being statistically significantly worse than the best methods. Tables 1 to 4 report results 

averaged across the four forecast horizons (1 to 4 weeks ahead). We found similar relative performances of the 

methods when looking at each forecast horizon separately (see Tables S3 and S4 in the supplementary 

information).  

 

Changes in performance over time  

Tables 5 and 6 show the MIS and MAE for the four quarters of our 1-year sample of data. Note that, for the first 

13-week period, results were not obtainable for the methods for which a previous in-sample period was needed 

to estimate method parameters. The relative performances of the methods in Tables 5 and 6 are reasonably 

consistent with the results in Tables 1 to 4, where we averaged across the 39-week out-of-sample period. In 

Tables 5 and 6, we note the much higher values of the scores in the third quarter, caused by the much higher 

levels of mortality during that period. It is interesting to see from Tables 5 and 6 that, for forecasts of both 

incident and cumulative mortalities, the leading methods in the most recent 13-week period were the median 

combination and the ensemble, which, after the first quarter, was computed using the median. In the second and 

third quarters, the mean was more accurate than the median for both incident and cumulative mortalities.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.11.21260318doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.11.21260318
http://creativecommons.org/licenses/by/4.0/


Table 5  For incident mortality, scores for each quarter of our 52-week dataset. The unit of the scores is deaths. 

For each quarter, boxed numbers indicate the best method for each column. 

 MIS  MAE 

Method All U.S. High Med Low  All U.S. High Med Low 

First 13-week period            

   Mean  503 5992 978 166 42  56 1064 81 23 6 

   Median  419 6297 728 150 34  48 821 73 22 5 

   Model 1 450 7226 703 199 48  52 772 84 23 6 

Second 13-week period            

   Mean  452 7683 668 206 57  53 1004 68 27 9 

   Median  536 8361 791 278 79  55 1020 70 28 10 

   Ensemble 547 8570 803 286 79  55 1006 71 28 10 

   Sym trim  522 8756 745 267 71  54 1020 69 28 9 

   Asym exterior trim  586 11146 771 289 77  NA NA NA NA NA 

   Asym interior trim 468 7683 717 208 55  NA NA NA NA NA 

   Previous best 456 5649 638 313 112  53 826 74 30 10 

   Inverse score 416 7147 593 207 53  50 876 66 27 9 

   Inverse score tuning 416 7147 593 207 53  50 876 66 27 9 

   Model 1 373 6075 465 251 67  44 593 62 29 9 

   Model 33 463 5505 718 301 72  46 566 71 28 8 

Third 13-week period            

   Mean  1148 14161 2156 391 132  143 2874 189 60 20 

   Median  1168 18290 1956 405 135  143 2819 193 59 20 

   Ensemble 1203 17663 2066 434 142  143 2787 194 59 20 

   Sym trim 1216 15104 2290 399 141  144 2819 195 59 20 

   Asym exterior trim  1325 18193 2413 417 152  NA NA NA NA NA 

   Asym interior trim 1204 14325 2341 377 122  NA NA NA NA NA 

   Previous best 1307 21529 1903 671 158  167 3436 214 70 26 

   Inverse score 1029 12431 1914 377 125  139 2685 187 60 20 

   Inverse score tuning 838 11675 1343 396 139  128 2140 183 61 20 

   Model 1 1155 21363 1520 613 142  145 2857 193 64 18 

   Model 33 1051 14483 1634 530 198  121 1924 179 60 20 

Fourth 13-week period            

   Mean  1125 7176 2125 769 124  99 1181 183 41 10 

   Median  595 6391 682 646 116  56 953 72 34 9 

   Ensemble 594 6624 668 645 114  57 1001 71 34 9 

   Sym trim 890 6968 1499 701 114  85 953 160 35 9 

   Asym exterior trim  1078 7176 1987 765 124  NA NA NA NA NA 

   Asym interior trim 1022 7552 1828 739 116  NA NA NA NA NA 

   Previous best 856 7529 1076 965 133  74 1315 96 42 10 

   Inverse score 875 7551 1389 726 118  96 1131 178 40 10 

   Inverse score tuning 782 7768 1055 758 121  66 994 92 40 10 

   Model 1 638 5108 828 690 133  55 829 75 36 10 

   Model 33 722 5782 1036 686 146  70 1363 87 37 11 
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Table 6  For cumulative mortality, scores for each quarter of our 52-week dataset. The unit of the scores is 

deaths. For each quarter, boxed numbers indicate the best method in each column. 

 MIS  MAE 

Method All U.S. High Med Low  All U.S. High Med Low 

First 13-week period            

   Mean  1568 14137 3516 301 148  140 1863 258 46 15 

   Median  1811 14288 4268 275 156  144 2318 250 42 13 

   Model 1 1686 12850 3992 267 141  140 2034 252 43 14 

Second 13-week period            

   Mean  1099 15757 1813 505 116  126 2541 162 56 18 

   Median  1296 17304 2136 653 156  128 2508 167 59 19 

   Ensemble 1314 17665 2163 658 159  127 2425 166 59 19 

   Sym trim  1331 23368 1990 570 137  127 2530 163 57 19 

   Asym exterior trim  1444 26815 2081 613 146  NA NA NA NA NA 

   Asym interior trim 937 15757 1338 486 115  NA NA NA NA NA 

   Previous best 1153 10366 2031 680 207  118 1467 186 68 20 

   Inverse score 943 12051 1575 489 110  120 2313 158 56 18 

   Inverse score tuning 943 12051 1575 489 110  120 2313 158 56 18 

   Model 1 1282 16376 2079 685 192  134 1576 198 91 28 

   Model 33 1236 14458 2081 701 149  104 1317 165 60 17 

Third 13-week period            

   Mean  6747 103950 13424 690 409  445 9141 661 115 49 

   Median  7735 132486 14540 790 538  440 8696 670 115 49 

   Ensemble 7436 115628 14588 797 560  435 8479 669 115 49 

   Sym trim 6952 107828 13792 712 418  452 9276 675 114 48 

   Asym exterior trim  6943 107979 13733 727 426  NA NA NA NA NA 

   Asym interior trim 4374 70222 8224 747 278  NA NA NA NA NA 

   Previous best 6833 104759 13106 1231 402  456 8002 721 150 55 

   Inverse score 6243 83841 13147 689 327  439 8894 659 114 48 

   Inverse score tuning 6101 84170 12660 741 311  420 8058 655 110 47 

   Model 1 16575 359767 24754 3511 1271  687 15911 908 188 69 

   Model 33 6794 101831 13186 1000 607  404 7123 648 120 49 

Fourth 13-week period            

   Mean  2661 22735 4868 1693 243  235 2216 479 91 20 

   Median  1848 13909 3164 1443 229  138 1743 221 78 19 

   Ensemble 1804 14326 2999 1450 225  139 1882 216 79 20 

   Sym trim 2625 22735 4885 1594 214  138 1708 220 81 19 

   Asym exterior trim  2714 22735 5004 1724 237  NA NA NA NA NA 

   Asym interior trim 6939 21280 18101 1638 234  NA NA NA NA NA 

   Previous best 2488 30259 3625 1904 301  174 2265 269 108 21 

   Inverse score 2656 24009 4791 1692 228  223 2173 443 91 20 

   Inverse score tuning 2163 24744 3191 1729 240  155 2211 228 95 20 

   Model 1 3379 18523 6319 2438 488  194 2656 310 102 26 

   Model 33 2246 14769 4131 1588 283  179 3271 250 82 24 
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Effect of type of model on performance 

Tables 7 and 8 compare the accuracy of the interval forecasts from compartmental models and non-

compartmental models of incident and cumulative mortalities, respectively. For most combining methods, for 

the category including all series, the combined forecasts of incident mortality from forecasts of compartmental 

models were more accurate than the combined forecasts from forecasts of all models (Table 7), while for most 

combining methods for cumulative mortality, the reverse was true (Table 8).  

 

Table 7  For 95% interval forecasts of incident mortality, MIS for all models, compartmental models and non-

compartmental models. The unit of the scores is deaths. Boxed numbers indicate the best method in each series. 

 All series  High  Med  Low 

Method All Comp 
Non-

comp 
 All Comp 

Non-

comp 
 All Comp 

Non-

comp 
 All Comp 

Non-

comp 

Mean 900 763 1095  1631 1111 2123  443 463 477  104 112 112 

Median  778 890 765  1172 1317 1150  435 488 436  110 125 110 

Sym trim 878 872 967  1515 1227 1807  446 504 440  109 120 109 

Asym ext trim  996 877 1117  1716 1215 2179  480 492 504  118 128 125 

Asym int trim 895 666 1220  1625 920 2517  429 428 462  97 98 105 

Envelope 5284 1241 5070  11037 1475 10840  1004 651 909  300 172 279 

Previous best 877 854 1006  1217 1202 1437  637 517 659  135 128 164 

Inv score 770 637 927  1296 935 1686  425 424 451  98 100 107 

Inv score tuning 677 619 812  1000 859 1298  441 428 477  104 103 110 

 

Table 8  For 95% interval forecasts of cumulative mortality, MIS for all models, compartmental models and 

non-compartmental models. The unit of the scores is deaths. Boxed numbers indicate the best method in each 

series. 

 All series  High  Med  Low 

Method All Comp 
Non-

comp 
 All Comp 

Non-

comp 
 All Comp 

Non-

comp 
 All Comp 

Non-

comp 

Mean 3529 3763 3593  6761 6577 7290  925 1012 982  256 308 261 

Median 3700 4232 3528  6769 7292 6685  934 1073 927  310 366 289 

Sym trim 3671 4003 3638  6956 6781 7388  924 1072 927  257 315 256 

Asym ext trim  3737 4028 3746  7006 6885 7450  985 1099 1011  271 332 276 

Asym int trim 3883 2663 3900  8623 4636 8795  921 958 929  208 221 231 

Envelope 6545 3448 6036  11304 5740 10836  1968 1415 1642  663 365 609 

Previous best 3531 3601 3718  6371 6662 6653  1235 1304 1296  303 288 343 

Inv score 3296 3389 3480  6561 6313 7237  920 928 985  221 249 235 

Inv score tuning 3100 3143 3368  5918 6062 6389  948 966 987  219 239 243 
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Performance of methods at the state level 

Fig. 5 presents the MIS for the overall leading method (combining with inverse score with tuning), the popular 

simple benchmark (the mean combination) and the leading model (Model 33) for forecasts at the individual 

state level, of incident and cumulative mortalities. In each plot, the states are ordered on the x-axis by the number 

of cumulative deaths at the end of the final week of our dataset (from low to high). Lower scores are better. 

 

Incident mortality Cumulative mortality 

  

Fig. 5 MIS for 95% interval forecasts of incident and cumulative mortality at (a) high, (b) medium and (c) low 

mortality U.S. locations for the inverse score with tuning combining (black line), mean combining (dashed line) 

and Model 33 (dotted line).  

 

Fig.6 shows the corresponding plots for the MAE.  Model 33 is shown, across the states, as being more 

competitive with the inverse score with tuning in point forecasting (Fig.6) compared to interval forecasting (Fig. 

5). The adverse effects of reporting delays of death counts (highlighted in Fig. 1) on forecast performance is 

apparent for the states of Ohio, Oklahoma, Delaware and West Virginia, with both combining methods and the 

individual model underperforming for these states. Figs. 5 and 6 also show the mean combination having similar 

performance to the leading method for most states in the medium and low mortality categories for both interval 

and point forecasts of both incident and cumulative mortalities. This is not reflected in Tables 1 to 4 due to 

adverse effects of reporting delays on performance being greatest for the mean, particularly in the states of Ohio 

(Figs. 5, 7 and 8) and Delaware (Fig.6). The impact of reporting delays on interval forecasts differed across 
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mortalities. In particular, the inverse score with tuning method was less affected than the mean and Model 33 

for forecasts of incident mortality in Ohio (a, in Fig.5, Incident mortality) and forecasts of cumulative mortality 

in Delaware (c, in Fig.6). Also, the performance of the mean was adversely affected for forecasts of cumulative 

mortality in Delaware (c, in Fig. 6) but not forecasts of incident mortality in this state (c, in Fig. 5, Incident 

mortality). The adverse effects of reporting delays on the performance of the other simple benchmark, the 

median, were lower (not shown).  

 

Incident mortality Cumulative mortality 

  

Fig. 6 MAE for point forecasts of incident and cumulative mortality at (a) high, (b) medium and (c) low 

mortality U.S. locations, for the inverse score with tuning combining (black line), mean combining (dashed line) 

and Model 33 (dotted line).  

 

As a sensitivity analysis, we evaluated the impact on our results when excluding all the six states, shown in 

Fig.1, that had notable effects of reporting delays on death counts. The revised results corresponding to those 

presented in Tables 1 and 2 are shown in Tables S5 and S6, respectively, in the supplementary information. 

There were improvements in the performance for all methods, and only slight changes in the ranking of methods. 

The relative performance of the simple combining methods (mean and median) improved, in comparison with 

inverse score with tuning. With regard to our significance testing results, there were no changes in our 

conclusions for the methods that were significantly worse than the method with the best mean rank.  
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Calibration of interval forecasting methods 

The calibration of the interval forecasting methods for incident and cumulative mortalities is summarised in 

Table 9. The table shows that there was a general tendency for underestimation in the widths of the 95% 

intervals. This is quite common in studies of interval forecasting (see, for example, (39)). When models 

underestimate the interval width, combining with the asymmetric interior trimmed mean is useful, as it leads to 

wider than average intervals. It is, therefore, not surprising that this combining method performs well in Table 

9. The envelope method also performed well, which is understandable, because this method also leads to wider 

than average intervals (as shown in Fig 4). However, this method is not particularly appealing, as it seems likely 

to deliver intervals that are too wide, and this can be seen in Table 9. We should also note that very sizeable 

overestimation will lead to a result of 100% for the calibration in Table 9, which is quite close to the ideal of 

95%, while sizeable underestimation can lead to calibration far from 95%. This highlights a limitation of 

calibration for evaluating interval forecasts, and supports our far more extensive use of the interval score in this 

paper. In Table 9, we also note the relatively good performance of the inverse score methods, which were the 

best performing combining methods overall, when judged in terms of the MIS. 

 

Table 9  Average calibration of the 95% interval forecasts for incident and cumulative mortality in the 39 week 

out-of-sample period. Boxed numbers indicate the best method in each column. Ideal is 95%. 

 Incident mortality  Cumulative mortality 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean  87.2 93.4 87.2 89.7 84.4  85.7 79.6 81.5 90.4 85.5 

Median 85.6 89.3 85.6 88.1 83.0  82.4 71.6 78.8 87.9 81.0 

Ensemble 85.3 88.6 84.9 87.7 83.0  82.2 71.6 79.0 87.4 80.8 

Sym trim  86.6 89.3 87.0 88.8 83.8  84.2 74.9 80.1 88.9 84.0 

Asym exterior trim  81.9 86.6 82.0 84.5 79.0  80.9 72.2 76.9 85.5 80.8 

Asym interior trim  91.9 94.0 91.4 93.7 90.3  91.6 85.5 90.5 92.9 91.9 

Envelope 98.7 100.0 99.6 99.5 96.9  98.1 99.4 96.9 99.3 97.9 

Previous best 83.7 89.3 84.9 84.9 81.1  80.3 84.2 79.8 81.6 79.3 

Inverse score 90.0 98.7 90.1 92.8 86.7  88.6 82.3 84.8 92.6 88.7 

Inverse score tuning 89.7 98.7 90.5 91.7 86.4  88.0 86.9 85.2 91.3 87.5 

Model 1 91.7 98.0 93.6 93.1 88.1  NA NA NA NA NA 

Model 14 66.4 85.4 63.8 69.7 64.5  NA NA NA NA NA 

Model 20 67.2 82.9 63.7 67.8 69.3  NA NA NA NA NA 

Model 21 67.2 82.9 64.0 68.0 68.8  61.8 69.7 56.6 62.2 66.3 

Model 22 87.4 77.4 87.1 88.6 87.1  NA NA NA NA NA 

Model 33 83.9 84.8 87.2 85.7 78.9  81.8 72.4 82.2 85.6 78.1 

NA - not applicable 
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Discussion 

We have provided an empirical comparison of combining methods for point and interval forecasts of incident 

and cumulative mortality due to COVID-19. Our main findings are that weighted combining performed well 

for both mortalities, and for both interval and point forecasting. Inverse score with tuning was the most accurate 

method overall. In the most recent quarter, the median combination and ensemble were leading methods for 

both mortalities and both interval and point forecasts. The median performed better than the mean in point 

forecasting of both mortalities. The mean was better than the median in interval forecasts of cumulative 

mortality, while for interval forecasts of incident deaths, neither was notably better than the other. We were able 

to include only a few individual models in the comparison, and of these, only two were competitive against the 

leading combining methods. The leading individual model performed well, particularly for forecasts for the 

high mortality category, and this model was most accurate in point forecasting incident mortality. For most 

combining methods, overall, the combined incident forecasts from compartmental models were more accurate 

than the combined forecasts from all models, whilst the reverse was the case for forecasts of cumulative 

mortality. The adverse effects on performance of updates in death counts, due to reporting delays, was greatest 

for the mean combination, with different impacts on the predictions of incident and cumulative mortalities, but, 

overall, the effects on the comparison were minor.  

Drawing comparisons with other studies, this research follows our earlier analysis of point and 95% interval 

forecasts of cumulative COVID-19 mortality from Weeks 18 to 57 (26). Our current results are based on a later 

and extended period from Weeks 21 to 72. The overall superiority of the inverse score methods and the relative 

performance of the mean and the median combinations are consistent with the findings from our earlier analysis 

of forecasting cumulative mortality, although our current analysis shows that, later in the pandemic, the median 

becomes more dominant than the mean. In contrast with our earlier study, we have considered individual models 

and the impact of reporting delays on forecast accuracy. We have highlighted some similarities of results of 

forecasts of incident mortality and cumulative mortality, and several differences, in terms of the relative 

performance of the mean and median, the performance of individual models, the impacts of model diversity and 

reporting delays on forecast accuracy. Our conclusion that forecasts from the combining methods are able to 

outperform forecasts from individual models is consistent with findings in other studies within and outside the 

field of epidemic prediction (18-22, 40).  

The strengths of this study include our consideration of two sets of data, cumulative and incident mortalities, 

extending our earlier analysis, which considered only cumulative deaths. Another study strength relating to the 

scope of this study is our comparison of a broad range of forecasting methods involving individual models, 

simple standard benchmark methods and more complex combinations based on trimming or weighting 

according to historical accuracy. A further study strength relates to our choice of data. The dataset of forecasts, 

produced for multiple locations from multiple models, presented an opportunity to study the wisdom of the 

crowd. The Hub provided the necessary conditions for the crowd being ‘wise’ (14) and without distortion, such 

as by social pressure (41) or restrictions against forecasting teams applying their own judgement (23). These 

conditions include independent contributors, diversity of opinions, and a trustworthy central convener to collate 

the information provided (14).  
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Study limitations include the retrospective design, being based on the most recent version of the ‘truth data’ 

for all the weeks at the time of analysis, instead of the numbers of COVID-19 deaths that were reported at the 

time the forecasts were submitted. We have shown that there were several states for which there were notable 

effects of updates in death counts, due to reporting delays, and this adversely affected the accuracy of the 

forecasts of all the combining methods and models. However, this issue only had a minor effect on the relative 

performances of the methods, and did not alter our overall conclusions. Our reported findings are limited to U.S. 

data and the forecasts from the COVID-19 Forecast Hub, and so it is possible that different results may arise 

when applying the combining methods to forecasts from a different set of models, or using other data, such as 

forecasts for other locations, or predictions of COVID-19 cases or hospitalisations. These are interesting 

potential avenues for future research. The forecasts in our dataset were produced weekly for 1 to 4 week ahead 

horizons, and we acknowledge that conclusions could be different for different time-scales. Our ability to detect 

statistical differences was limited by the small sample sizes, with only 17 locations in each category, missing 

data and a relatively short out-of-sample period.  

This research has important policy implications as forecasts from models have been placed at the forefront 

of public health decision making during the COVID-19 crisis. The reliance of governments on forecasts from 

COVID-19 models have brought these models under increased scrutiny. The limitations of the models and the 

need to appreciate their limits have been discussed extensively (2, 8, 9, 11, 42). It is suggested that relying on 

modelling alone leads to “missteps and blind spots”, and that the best approach to support public policy decision 

making would involve a triangulation of insights from modelling with other information, such as analyses of 

international case studies and previous outbreaks, policy documents, and discussions with frontline staff (42). 

It is essential that modelling offers the most accurate forecasts. The associated uncertainty should be accurately 

represented in forecasts from models. The 95% prediction intervals present a range of possible outcomes, which 

can be used to support situational awareness (43). Given the benefits of combining, the most accurate 

probabilistic forecasts will most often be based on multiple models, rather than an individual model, as 

illustrated by the results of our study. Although individual models can sometimes be more accurate than 

combined methods, relying on forecasts from combined methods provides a more risk-averse approach, as the 

best model will not be clear until records of historical accuracy are available, and also the best performing model 

will typically change over time. In particular, our finding that the performance of the average (mean 

combination) was substantially better than the average performance of the individual models suggests that, at 

the start of an epidemic, when it is not clear which model has the best performance, the statistical expectation 

is that the average method will score better than a model chosen randomly, or chosen on the basis of no prior 

history. This study follows on from our previous analysis to provide further confirmation that the weighted 

methods provided the greatest accuracy, but the performance of the mean and median combination were often 

reasonable. An obvious advantage of these benchmark methods is that they are simple, transparent and 

pragmatic approaches to combining forecasts that do not rely on the need to optimise a parameter or collect data 

on historical accuracy. This is advantageous early in a pandemic, and also later on, if records of historical 

accuracy are uneven for the individual forecasting models. 
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To conclude, we recommend that for COVID-19 models to play the most effective role in supporting health 

policy decision making, probabilistic forecasts should be harnessed from multiple models. In our study of 

mortality data, the intuitive weighted forecasting methods were the most accurate overall, but that did not rule 

out considering the more pragmatic simple combining methods. We identified that the relative performance of 

the different combining methods depends on several factors including the type of data, type of forecast and 

timing. Future research could focus on seeking further clarification of the relative performance of the different 

methods, by studying combined forecasts for other types of data, such as COVID-19 infections and 

hospitalisations, combined forecasts in other locations and for diseases beyond the COVID-19 pandemic. 

Another possible avenue for further research would be to investigate the impact of incorporating combined 

forecasts into health policy decision making.  
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SUPPLEMENTARY INFORMATION 

 

Fig S1 Numbers of weekly incident COVID-19 deaths in U.S. locations between weeks ending 23 May 2020 and 15 May 2021 
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Fig S2 Numbers of weekly cumulative COVID-19 deaths in U.S. locations between weeks ending 23 May 2020 and 15 May 2021 
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Table S1  Frequency of being one of the top three methods in the columns for the scores in Tables 1 to 4 

   Mortality  Forecast type 

Method Total  Incident Cumulative  Interval Point 

Mean 2  2 0  1 1 

Median 6  4 2  1 5 

Ensemble 6  3 3  0 6 

Symm trim 6  2 4  1 5 

Asym exterior trim 0  0 0  0 NA 

Asym interior trim 5  2 3  5 NA 

Envelope 0  0 0  0 NA 

Previous best 2  0 2  1 1 

Inverse score 9  4 5  7 2 

Inverse score tuning 16  7 9  8 8 

Model 1 6  6 NA  2 4 

Model 14 0  0 NA  0 0 

Model 20 0  0 NA  0 0 

Model 21 0  0 0  0 0 

Model 22 0  0 NA  0 0 

Model 33 11  7 4  5 6 

NA – not applicable 

 

Table S2  Frequency of being one of the top three methods in the columns for the mean ranks in Tables 1 to 4  

   Mortality  Forecast type 

Method Total  Incident Cumulative  Interval Point 

Mean 2  1 1  2 0 

Median 7  5 2  1 6 

Ensemble 5  3 2  0 5 

Symm trim 5  1 4  1 4 

Asym exterior trim 0  0 0  0 NA 

Asym interior trim 8  3 5  8 NA 

Envelope 0  0 0  0 NA 

Previous best 1  0 1  0 1 

Inverse score 12  6 6  10 2 

Inverse score tuning 13  5 8  7 6 

Model 1 0  0 NA  0 0 

Model 14 3  3 NA  0 3 

Model 20 0  0 NA  0 0 

Model 21 0  0 0  0 0 

Model 22 0  0 NA  0 0 

Model 33 7  5 2  2 5 

NA – not applicable 
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Table S3  For incident mortality, scores in the 39 week out-of-sample period for each of the four lead times. 

The unit of the scores is deaths. Lower values are better. For each horizon, boxed numbers indicate the best 

method for each of the following four categories of series: all, U.S., high, medium and low. 

Method 
MIS  MAE 

All U.S. High Med Low  All U.S. High Med Low 

 1 week ahead            

   Mean  687 6877 1224 386 88  68 1202 92 34 11 

   Median 618 8679 914 370 95  64 1152 86 33 11 

   Ensemble 621 8541 927 374 95  65 1181 85 33 11 

   Sym trim 638 7222 1075 364* 88†  65* 1152 87 32* 11 

   Asym interior trim 647 6999 1125 361 81*†  68 1223 91 33 11 

   Inverse score 594* 6506 988* 364* 84*†  66* 1159 89 33 11 

   Inverse score tuning 533* 6245 807 370 87†  62* 1032 85* 34* 11* 

   Model 21 527* 6005 770† 394 94  62 1039 84 33 10 

   Model 33 710 8352 1121 449 112  66 1081 93 34 10 

 2 weeks ahead            

   Mean 892 9345 1644 436 97  99 1486 162 40 13 

   Median 705 9795 1072 407 100  76 1385 102 38* 12* 

   Ensemble 713 9739 1087 418 101  77 1426 102 38* 12 

   Sym trim 841 9761 1477 424 98  94* 1390 156 38* 12* 

   Asym interior trim 913 9322 1743 412 91  99 1514 161 39 13 

   Inverse score 742* 8069 1285* 418 91*  96 1385* 161 39 12 

   Inverse score tuning 635* 7693 958 434 96  75 1162* 108 40 12 

   Model 21 645 8660 888 473 102  74 1237 103 40 12 

   Model 33 720 9218 1088 454 120  73 1155 105 38 12 

 3 weeks ahead            

   Mean 979 9660 1863 459 105  107 1809 163 46 14 

   Median 799 12427 1160 446 107  92 1726 124 43* 14 

   Ensemble 813 11915 1217 459 108  92 1708 124 44 14 

   Sym trim 953 11156 1694 456 110  103 1722 157 44 14 

   Asym interior trim 942 9921 1751 447 100  107 1825 162 45 14 

   Inverse score 815* 8952 1432* 436 100*  103* 1666* 159 45 14* 

   Inverse score tuning 686 8912 1018 452 105  88 1451 124 46 14 

   Model 21 806 13889 988 548 113  90 1632 119 46 13 

   Model 33 698 6844 1097 495 140  80 1191 119 43 14 

 4 weeks ahead            

   Mean 1044 13315 1792 491 126  121 2347 165 52 16 

   Median 989 14055 1543 518 138  112 2263 143 49 15 

   Ensemble 1029 14509 1611 539 143  111 2204 145 50 15 

   Sym trim 1077 13641 1814 542 138  118 2263 163 51 15 

   Asym interior trim 1076 13634 1879 495 116*  121 2353 165 52 16 

   Inverse score 929* 12993 1478* 481 117  116* 2130* 162 51 16 

   Inverse score tuning 854† 12906 1216 508 128  104* 1777 145 53 15 

   Model 21 939 16141 1145 632 146  106 1931 141 55 14 

   Model 33 863 10312 1249 598 185  99 1680 137 51 17 

* and † indicate a score significantly lower than the mean combination and median combination, respectively, at the 5% 

significance level. 
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Table S4  For cumulative mortality, scores in the 39 week out-of-sample period for each of the four lead times. 

The unit of the scores is deaths. For each horizon, boxed numbers indicate the best method for each of the 

following four categories of series: all series, U.S., high, medium and low. 

 MIS  MAE 

Method All U.S. High Med Low  All U.S. High Med Low 

1 week ahead            

   Mean 3319 62108 5666 585 249  160 3541 223 40 17 

   Median  3123 57217 5473 451* 263  144* 3036 209* 36* 16* 

   Ensemble 3077 54979 5461 453* 265  143*† 2979 209* 36* 16* 

   Sym trim 3277 63747 5560 483* 231†  148 3190 213 37* 16* 

   Asym interior trim 2204*† 33641*† 4136*† 491* 136*†  156 3402 220 39 17* 

   Previous best 2559*† 31436† 5282 532 165*†  147 2767* 228 44 17 

   Inverse score 3195 55789* 5681 612 199*†  159 3548 222 40 16* 

     Inverse score tuning 2736*† 39628† 5290* 574 175*†  158 3520 219 40 16* 

   Model 33 3271 62685 5503 540 276  142* 2858 213 37 16 

2 weeks ahead            

   Mean 3045 38620 6102 720 219†  223 4031 357 64 24 

   Median 3303 47609 6284 737 282  200 3879 297 64 24 

   Ensemble 3231 44870 6220 740 285  224 4037 359 64 24 

   Sym trim 3105 39643 6213 728 223†  202 3983 297 63 24 

   Asym interior trim 3491 32197 7897 729 158*†  224 4037 359 64 24 

   Previous best 3063 40956 5797 928 235  204 3354 321 81 26 

   Inverse score 2842*† 31725 5927* 713 188*†  217 3898* 347 64 24* 

   Inverse score tuning 2756† 32620 5601† 738 171†  193 3651 289 64 24 

   Model 33 3332 48704 6166 856 305  197 3601 300 67 24 

3 weeks ahead            

   Mean 3594 43109 7178 1022 257†  303 5022 497 100 33 

   Median 3795 52918 7100 1077 318  265 4769 400 98 34 

   Ensemble 3655 46027 7070 1075 329  263 4674 397 98 34 

   Sym trim 3777 48037 7423 1041 263†  270 4996 399 98 33 

   Asym interior trim 4503 36011 10377 1050 230†  305 5058 500 101 34 

   Previous best 3766 53485 6604 1425 344  277 4129 442 127 37 

   Inverse score 3349* 35893 6899* 1012 221*†  292 4763* 480 100 33* 

   Inverse score tuning 3177 39846 6090† 1052 232†  255 4378 389 99 33 

   Model 33 3442 35365 6859 1229 361  257 4220 403 102 34 

4 weeks ahead            

   Mean 4158 50151 8096 1373 300†  395 6422 642 143 44 

   Median 4580 66996 8219 1471 379  350 6070 530 140 44 

   Ensemble 4387 56047 8235 1495 393  348 6016 526 140 45 

   Sym trim 4526 58825 8629 1444 312†  355 6387 527 140 44† 

   Asym interior trim 5335 42720 12085 1413 308  398 6503 647 144 44 

   Previous best 4734 70708 7799 2053 470  381 5654 600 183 50 

   Inverse score 3799* 38510 7736* 1345 275*†  381 6095* 619 143 43* 

   Inverse score tuning 3731 50936 6690† 1428 298†  337 5617 514 142 44 

   Model 33 3781 30433 7680 1646 450  328 4963 522 145 46 

* and † indicate a score significantly lower than the mean combination and median combination, respectively, at the 5% 

significance level. 
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Table S5  Sensitivity analysis for incident mortality, MIS and mean ranks for 95% interval forecasts for the 39 

week out-of-sample period excluding the six U.S. states with notable effects of reporting delays on COVID-19 

death counts. Boxed numbers indicate the best method in each column. 
 

MIS  Mean rank 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean 789 9799 1165 324 69  5.7 4 6.3 4.7 4.3 

Median 723 11239 895 327 73  5.8 9 5.5 4.8 4.9 

Ensemble 737 11176 925 339 74  6.7 8 6.0 6.3 5.3 

Sym trim 758 10445 1038 327 72  5.8 6 5.1 5.4 4.8 

Asym exterior trim  888 12447 1231 359 79  8.4 11 7.9 7.2 7.1 

Asym interior trim  816 9969 1254 304 63  4.7 5 6.1 3.3 3.0 

Envelope 5042 64944 8718 885 220  15.1 16 12.9 14.1 12.8 

Previous best 864 11779 1066 493 87  9.8 10 7.9 10.1 7.8 

Inverse score 686 9130 950 305 64  3.7 3 3.7 3.4 2.8 

Intervals score tuning 651 8939 846 322 68  5.2 2 4.4 5.2 4.5 

Model 22 993 19145 1054 421 85  9.3 12 7.9 8.8 7.7 

Model 21 724 11174 840 394 67  6.3 7 5.1 7.6 3.9 

Model 14 1961 30502 2546 812 153  14.1 13 12.0 13.5 11.9 

Model 20 2005 33948 2496 768 164  13.6 14 12.2 12.8 11.0 

Model 21 2056 35399 2531 781 170  14.3 15 12.6 13.6 11.7 

Model 33 705 8681 913 386 97  7.5 1 4.5 7.3 8.5 

  Mean MIS of models 2208 37870 2705 856 186  
     

 

 

Table S6  Sensitivity analysis for cumulative mortality, MIS and mean ranks for 95% interval forecasts for the 

39 week out-of-sample period excluding the six U.S. states with notable effects of reporting delays on COVID-

19 death counts. Boxed numbers indicate the best method in each column. 

 MIS  Mean rank 

Method All U.S. High Med Low  All U.S. High Med Low 

Mean 2003 48497 1806 637 124  5.6 6 5.1 4.4 5.3 

Median 2257 56185 2001 679 124  5.8 11 6.1 5.4 3.6 

Ensemble 2145 50481 2021 686 126  6.3 8 6.1 6.0 4.4 

Sym trim 2141 52563 1930 651 121  5.4 9 5.5 4.9 3.8 

Asym exterior trim  2219 53839 2013 687 138  7.6 10 7.1 6.5 6.3 

Asym interior trim 1741 36142 1831 634 120  4.8 1 4.2 4.2 4.6 

Envelope 4738 103456 4480 1750 506  12.4 12 10.5 11.6 10.6 

Previous best 2252 49146 2095 937 170  9.1 7 7.1 9.5 7.7 

Inverse score 1778 40479 1681 635 114  4.2 2 3.8 4.8 2.6 

Inverse score tuning 1765 40758 1603 654 121  5.0 3 3.9 5.5 3.9 

Model 21 6015 136492 6096 1793 358  12.2 13 11.1 11.3 9.9 

Model 33 2074 44297 2047 798 161  7.5 4 4.9 7.8 7.4 

Mean MIS of models 5229 114911 5216 1789 384  
     

 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2021. ; https://doi.org/10.1101/2021.07.11.21260318doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.11.21260318
http://creativecommons.org/licenses/by/4.0/


30 
 

Appendix  Forecasting models 

Contributors Short model name Model description* 

Access and licencing 

information  

Citations 

Wattanachit N, Ray 

EL, Reich N 

 

 

COVID hub-ensemble An ensemble, or model 

average, of submitted 

forecasts to the COVID-19 

Forecast Hub. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/COVIDhub-ensemble 

https://www.medrxiv.org/conten

t/10.1101/2020.08.19.20177493

v1 

COMPARTMENTAL  

Tomar V, Jain C Auquan-SEIR† 

 

Modified SEIR model with 

compartments for reported 

and unreported infections. 

Non-linear mixed effects 

curve-fitting. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/Auquan-SEIR 

Panano B. 

 

 

BPangano-RtDriven 

 

Projects infections and 

deaths for 223 locations 

using an SIR model. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/BPagano-RtDriven 

 

https://bobpagano.com/covid-

19-modeling/ 

Carlson E, Henderson 

M, Kelly C, Kofman 

I, Zhang X 

CovidActNow-

SEIR_CAN 

 

SEIR model forecasts of 

cumulative deaths, incident 

deaths, incident 

hospitalizations by fitting 

predicted cases, deaths, and 

hospitalizations to the 

observations. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/CovidActNow-

SEIR_CAN 

 

Li ML, Bouardi HT, 

Lami  OS, Trikalinos 

TA, Trichakis NK, 

Bertsimas D 

 

 

CovidAnalytics-DELPHI 

 

SEIR model augmented with 

underdetection and 

interventions. Projections 

account for reopening and 

assume interventions would 

be re-enacted if cases 

continue to climb. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/CovidAnalytics-

DELPHI 

https://www.covidanalytics.io/D

ELPHI_documentation_pdf 

Chhatwal J, Ayer T, 

Linas B, Dalgic O, 

Mueller P, Adee M, 

Ladd MA, Xiao J  

Covid19Sim-Simulator 

 

An interactive tool that uses 

a validated SEIR 

compartment model. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/Covid19Sim-

Simulator 

Pei S, Yamana T, 

Kandula S, Yang W, 

Galanti M,  Shaman J 

 

 

CU-select 

 

Metapopulation county-level 

SEIR model for projecting 

future COVID-19 incidence 

and deaths. This forecast is 

the scenario we believe to be 

most plausible given the 

current setting. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/CU-select 

https://doi.org/10.1101/2020.03.

21.20040303 

https://www.medrxiv.org/conten

t/10.1101/2020.05.04.20090670

v2 

 

Pei S, Yamana T, 

Kandula S, Yang W, 

Galanti M,  Shaman J 

CU-nochange 

 

This metapopulation county-

level SEIR model assumes 

that current contact rates will 

https://github.com/reichlab/covi

d19-forecast-
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remain unchanged in the 

future. 

hub/tree/master/data-

processed/CU-nochange 

https://doi.org/10.1101/2020.03.

21.20040303 

Max A, Epshteyn A, 

Kang B, Li C-L, Sava 

D, Parish D, Miller 

D,  Kanal E,  Liu H, 

Nakhost H, Jones I, 

Lai J, Repenning J, 

Yoon J, Ramasamy 

K, Zhang L, Le L, 

Nikoltchev M, 

Siegler M, 

Dusenberry M, Yoder 

N, Rozenfeld O, 

Rangaswamy P, 

Sinha R, Xie R, Arik 

S, Singh S, Tsai T, 

Pfister T, Menon V, 

Karande V, Y, Li Y 

 

Google-Harvard-CPF 

 

Our model improves upon 

standard compartmental 

models by using temporally 

and spatially rich data, and 

integrating covariate 

encodings into compartment 

transitions via end-to-end 

learning. 

 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/Google_Harvard-CPF 

https://arxiv.org/abs/2008.00646 

Lemaitre JC, Bi Q , 

Hulse JD, Grabowski 

MK, Grantz KH, 

Kaminsky J, Lauer 

SA, Lee EC, 

Meredith HR, Perez-

Saez J, Truelove SA, 

Keegan LT,  

Kaminsky K, Shah S, 

Wills J, Aquilanti P-

Y, Raman K, 

Subramaniyan A, 

Thursam G, Tran A. 

JHU_IDD-CovidSP 

 

County-level 

metapopulation model with 

commuting and stochastic 

SEIR disease dynamics with 

social-distancing indicators. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/JHU_IDD-CovidSP 

https://doi.org/10.1038/s41598-

021-86811-0 

 

Kinsey M, Tallaksen 

K, Obrecht RF, Asher 

L, Costello C, 

Kelbaugh M, Wilson 

S 

JHUAPL_Bucky 

 

Metapopulation model using 

public mobility data. Local 

parameters (case reporting 

rates, doubling times, etc) 

are estimated using data 

from CSSE and CDC 

scenario 5. Primary output is 

case incidence. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/JHUAPL-Bucky 

 

Baek J, Farias V, 

Georgescu A, Levi R, 

Sinha D, Wilde J, 

Zheng A 

 

 

MITCovAlliance-SIR 

 

SIR model trained on public 

heath regions. SIR 

parameters are functions of 

static demographic and time-

varying mobility features. 

Two-stage approach that 

first learns magnitude of 

peak infections. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/MITCovAlliance-SIR 

https://arxiv.org/abs/2006.06373 

 

Vespignani A, 

Chinazzi M, Davis 

JT, Mu K, Pastore y 

Piontti A, Samay N, 

Xiong X, Halloran 

ME, Longini IM, 

MOBS-

GLEAM_COVID 

 

Metapopulation, age 

structured SLIR model.  

Superimposed on the 

worldwide population and 

mobility layers is an agent-

based epidemic model that 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/MOBS-

GLEAM_COVID 
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Dean NE, Viboud C, 

Sun K, Litvinova M, 

Gioannini C, Rossi L, 

Ajelli M 

 

 

defines the infection and 

population dynamics. Makes 

predictions about the future 

that are dependent on the 

assumption that current 

interventions continue. 

https://uploads-

ssl.webflow.com/58e6558acc00

ee8e4536c1f5/5e8bab44f5baae4

c1c2a75d2_GLEAM_web.pdf 

 

Gao Z, Li C, Zheng 

S, Bian J, Xie X, 

LiuT-Y  

MSRA-DeepST 

 

A deep spatio-temporal 

network with knowledge 

based SEIR as a regularier 

under the assumption of 

spatio-temporal process in 

pandemic of different 

regions. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/MSRA-DeepST 

 

Espana G, Oidtman 

R, Cavany S, 

Costello A, Wieler A, 

Lerch A, Barbera C, 

Poterek M, Tran Q, 

Moore S, Perkins A 

NotreDame-Mobility 

 

Ensemble of nine models 

that are identical except that 

they are driven by different 

mobility indices from Apple 

and Google. The model 

underlying each is a 

deterministic, SEIR-like 

model. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/NotreDame-mobility 

 

Koyluoglu U, 

Milliken J 

OliverWyman-Navigator 

 

Forecasts and scenario 

analysis for Detected and 

Undetected cases and death 

counts following a 

compartmental formulation 

with non-stationary 

transition rates. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/OliverWyman-

Navigator 

 

Turtle J, Ben-Nun M, 

Riley P  

PSI-DRAFT 

 

A stochastic/deterministic, 

single-population SEIRX 

model that stratifies by both 

age distribution and disease 

severity and includes generic 

intervention fitting. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/PSI-DRAFT 

 

Shi Y, Shah T, Ban X 

 

 

RPI-UW-Mob_Collision 

 

A mobility-informed 

simplified SIR model 

motivated by collision 

theory. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/RPI-UW-Mob-

Collision 

https://www.medrxiv.org/conten

t/10.1101/2020.07.25.20162016

v1 

Snyder TL, Wilson 

DD 

SWC-TerminusCM 

 

Mechanistic compartmental 

model using disease 

parameter estimates from 

literature. It uses Bayesian 

inference to predict the most 

likely model parameters. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/SWC-TerminusCM 

 

Cobey S, Arevalo P, 

Baskerville E, Carran 

S, Gostic K, 

McGough L, Ranjeva 

S, Wen F 

UChicago-COVIDIL 

 

Compartmental, age-

structured SEIR model that 

infers past SARS-CoV-2 

transmission rates and 

forecasts mortality under 

current and hypothetical 

public health interventions. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/UChicago-CovidIL 
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Gu Q, Xu P, Chen J, 

Wang L, Zou D, 

Zhang W 

 

 

UCLA-SuEIR 

 

Variant of the SEIR model 

considering both untested 

and unreported cases. The 

model considers reopening 

and assumes susceptible 

population will increase 

after the reopen. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/UCLA-SuEIR 

https://www.medrxiv.org/conten

t/10.1101/2020.05.24.20111989

v1 

Chen YQ, Zhao Y, 

Guo L 

UCM-MESALab-

FoGSEIR 

 

FoGSEIR model is a 

modification of integer order 

SEIR model considering 

fractional integrals. The 

model considers the age 

structure and reopening 

intervention to minimize 

infections and deaths. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/UCM_MESALab-

FoGSEIR 

 

Sheldon D, Gibson 

G, Reich N 

UMass-MechBayes 

 

Bayesian compartmental 

model with observations on 

cumulative case counts and 

cumulative deaths. Model is 

fit independently to each 

state. Model includes 

observation noise and a case 

detection rate. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/UMass-MechBayes 

 

Mayo ML, Rowland 

MA,  Parno MD, 

Detwiller ID, 

Farthing MW, 

England WP George 

GE 

USACE-ERDC_SEIR 

 

The ERDC SEIR model 

makes predictions of several 

variables (e.g., reported 

new/cumulative cases per 

day, etc.). Model parameters 

are estimated using 

historical data using 

Bayesian inference. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/USACE-

ERDC_SEIR 

 

Jain S, Tiwari A, 

Deva A, Kulkarni M, 

Shingi S, Bannur N, 

White J, Merugu S, 

Raval  A 

Wadhwani_AI-BayesOpt 

 

A novel model-agnostic 

Bayesian optimization 

("BayesOpt") approach for 

learning the parameters of 

our SEIR model from 

observed data. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/Wadhwani_AI-

BayesOpt 

 

Gu Y YYG-ParamSearch 

 

Based on the SEIR model 

with hyperparameter 

optimization to make daily 

projections regarding 

COVID-19 infections and 

deaths in 50 US states. The 

model accounts for state 

reopenings and its effects on 

infections and deaths. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/YYG-ParamSearch 

https://covid19-

projections.com/about/ 

 

NON-COMPARTMENTAL 

O’Dea E CEID-Walk 

 

A random walk model with 

drift. A least squares line is 

fitted to the tail observations 

of a target time series to 

estimate the drift and step 

variance of a random walk 

model. 

https://github.com/reichlab/covi

d19-forecast-

hub/blob/master/data-

processed/CEID-

Walk/metadata-CEID-Walk.txt 
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Green A, Hu A,  

Jahja M, Ventura V, 

Wasserman L, 

Tibshirani Rob,  

Shankar V, Bien J, 

Brooks L, 

Narasimhan B, 

Rajanala S, Rumack 

A, Simon N, 

Sharpnack J, 

McDonald 

D(University of 

British Columbia), 

Ryan Tibshirani 

(Senior author, and 

the Delphi COVID-

19 Response Team 

CMU-Timeseries § 

 

A basic AR-type time series 

model fit using case counts 

and deaths as features. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/CMU-TimeSeries 

 

Wang Y, Zeng D, 

Wang Q, Xie S 

 

 

 

Columbia_UNC-

SurvCon 

 

Survival-convolution model 

with piece-wise transmission 

rates that incorporates latent 

incubation period and 

provides time-varying 

effective reproductive 

number. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/Columbia_UNC-

SurvCon 

https://www.frontiersin.org/artic

le/10.3389/fpubh.2020.00325 

Ray EL, Tibshirani R COVIDhub-baseline 

 

Baseline prediction model. https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/COVIDhub-baseline 

 

Kalantari R, Zhou M. 

 

 

DDS-NBDS 

 

Jointly modeling daily 

deaths and cases using a 

negative binomial 

distribution based 

nonparametric Bayesian 

generalized linear dynamical 

system. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/DDS-NBDS 

https://dds-covid19.github.io/ 

 

Sherratt K, Bosse N, 

Abbott S, Hellewell 

J,  Meakin S, 

Munday J, Funk S 

 

epiforecasts-ensemble1 

 

A deaths forecast using the 

renewal equation and time-

series forecasts of the time-

varying reproduction 

number. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/epiforecasts-

ensemble1 

https://doi.org/10.12688/wellco

meopenres.16006.1 

Keskinocak P, Aglar 

BEO, Baxter A,  

Asplund J, Serban N 

GT_CHHS-COVID19 

 

Agent-based simulation 

model to project COVID19 

infection spread. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/GT_CHHS-

COVID19 

 

Prakash  BA,  

Rodriguez A, Cui J, 

Tabassum A,  

Adhikari B, Sun J,  

Xiao D, Qiang C 

 

GT-DeepCOVID 

 

Data-driven approach based 

on deep learning for 

forecasting mortality and 

hospitalizations using 

syndromic, clinical, 

demographic, mobility and 

point-of-care data. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/GT-DeepCOVID 
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Murry C and the 

IHME-CurveFitTeam 

 

 

IHME-CurveFit 

 

Non-linear mixed effects 

curve-fitting. This model 

makes predictions about the 

future that are dependent on 

the assumption that current 

interventions continue.  

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/IHME-CurveFit 

https://www.medrxiv.org/conten

t/10.1101/2020.03.27.20043752

v1 

Wang L, Wang G, 

Gao L, Li X, Yu S, 

Kim M, Wang Y, Gu 

Z. 

 

 

IowaStateLW-STEM 

 

A nonparametric space-time 

disease transmission model. 

The projections assume that 

the data used is reliable, the 

future will continue to 

follow the current pattern, 

and current interventions 

will remain the same till the 

end of forecasting period. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/IowaStateLW-STEM 

https://arxiv.org/abs/2004.14103 

 

Chiang W-H, Mohler 

G 

IUPUI-HkPrMobiDyR 

 

Hawkes processes with 

Dynamic reproduce number. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/IUPUI-

HkPrMobiDyR 

 

https://doi.org/10.1101/2020.06.

06.20124149  

Marshall M, Gardner 

L, Drew C, Burman 

E, Nixon K  

JHU_CSSE-DECOM  

 

County-level, empirical 

machine learning model 

driven by epidemiological, 

mobility, demographic, and 

behavioral data. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/JHU_CSSE-DECOM 

 

Karlem D 

 

 

Karlen-pypm 

 

Discrete-time difference 

equations with long periods 

of constant transmission rate 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/Karlen-pypm 

 

https://arxiv.org/abs/2007.07156 

 

Osthus D, Del Valle 

S, Manore C, Weaver 

B, Castro L, Shelley 

S, Smith M, Spencer 

J, Fairchild G, Travis 

Pitts T, Gerts D, 

Dauelsberg L, 

Daughton A,    Gorris 

M, Hornbein B, Israel 

D, Parikh N, Shutt D, 

Ziemann A 

LANL-GrowthRate 

 

Statistical dynamical growth 

model accounting for 

population susceptibility. 

Makes predictions about the 

future, unconditional on 

particular intervention 

strategies.  

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/LANL-GrowthRate 

 

Gao Z, Li C, Cao W, 

Zheng S, Bian J, Xie 

X, Liu TY, Zhang S, 

Ferres JL 

Microsoft-DeepSTIA† 

 

A deep spatio-temporal 

network with intervention 

and hospital gate under the 

assumption of spatio-

temporal process in 

pandemic of different 

regions. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/Microsoft-DeepSTIA 

 

Espana G, Oidtman 

R, Cavany S, 

Costello A, Wieler A, 

NotreDame-FRED 

 

Agent-based model 

developed for influenza with 

parameters modified to 

https://github.com/reichlab/covi

d19-forecast-
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Lerch A, Barbera C, 

Poterek M, Tran Q, 

Moore S, Perkins A 

represent the natural history 

of COVID-19 

hub/tree/master/data-

processed/NotreDame-FRED 

 

 

Walraven R RobertWalraven-ESG 

 

Multiple skewed gaussian 

distribution peaks fitted to 

raw data. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/RobertWalraven-ESG 

 

Nagraj VP, Turner 

SD, Hulme-Lowe C 

SigSci_TS 

 

Time series forecasting 

using ARIMA for case 

forecasts and lagged cases 

for death forecasts. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/SigSci-TS 

 

McConnell S, 

Donaldson B 

 

 

 

SteveMcConnell_ 

COVIDComplete 

 

A near-term fatality 

prediction model that 

calculates and uses fatality 

trends at the national and 

state level, trends in positive 

virus tests and total virus 

tests, and age-related 

demographics for state 

forecasts. Model forecasts 

are based on predicting near-

term deaths from recent 

positive virus tests. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/SteveMcConnell-

CovidComplete 

https://stevemcconnell.com/covi

d 

Bieggel H, Lega J UA-EpiCovDA 

 

SIR mechanistic model with 

data assimilation. 

EpiCovDA is an extension 

of the EpiGro model. Model 

parameters are fit to Covid-

19 data using a variational 

data assimilation method. A 

prior distribution of the 

parameters is estimated by 

fitting an SIR Incidence-

Cumulative Cases curve to 

data from states that had at 

least 1000 cases by 

04/01/2020. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/UA-EpiCovDA 

Jin X, Wang Y-X, 

Yan X 

UCSB-ACTS 

 

This data-driven machine 

learning model makes 

predictions by referring to 

other regions with similar 

growth patterns and 

assuming the similar 

development will take place 

in the current region. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/UCSB-ACTS 

 

Wu D, Gao L, M 

Yian, Yu R, 

Vespignani A, 

Chinazzi M, Davis 

JT, Mu K, Pastore y 

Piontti A, Xiong X 

UCSD-

NEU_DeepGLEAM 

 

Combines the signal of a 

discrete stochastic epidemic 

computational model 

GLEAM with a deep 

learning spatiotemporal 

forecasting framework to 

further improve predictions.' 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/UCSD_NEU-

DeepGLEAM 

 

Corsetti S, Schwarz T UMich-RidgeTfReg 

 

Nation-level model of 

confirmed cases and deaths 

https://github.com/reichlab/covi

d19-forecast-
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based on ridge regression. 

No assumptions made about 

social distancing. 

hub/tree/master/data-

processed/UMich-RidgeTfReg 

 

Zhang-James Y, Hess 

J, Chen S, Wang D, 

Morley CP, Faraone 

SV. 

UpstateSU_GRU § 

 

County-level forecast using 

recurrent neural network 

seq2seq model with the 

Gated recurrent units (GRU) 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/UpstateSU-GRU 

 

Srivastava A, 

Prasanna VK, Xu FT 

USC-SI_kJalpha  § 

 

A heterogeneous infection 

rate model with human 

mobility for epidemic 

modeling.   Our model 

adapts to changing trends 

and provide predictions of 

confirmed cases and deaths. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/USC-SI_kJalpha 

 

https://arxiv.org/abs/2007.05180 

 

Srivastava A, 

Prasanna VK, Xu FT 

USC-SI_kJalpha_RF  

  

A heterogeneous infection 

rate model with human 

mobility for epidemic 

modeling. Our model adapts 

to changing trends and 

provide predictions of 

confirmed cases and deaths. 
We build a random forest, 

based on the output of 

USC_SIkJalpha model along 

with the data on the 

cumulative case/death, 

weekly increase, and 

previous increase. We then 

sample trees to generate 

quantile forecasts 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/USC-SI_kJalpha_RF 

 

https://arxiv.org/abs/2007.05180 

 

Woody S, et al. at the 

University of Texas 

UT-Mobility 

 

This model makes 

predictions assuming that 

social distancing patterns, as 

measured by anonymized 

mobile-phone GPS traces, 

remain constant in the 

future. Only models  *first-

wave deaths*. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/UT-Mobility 

 

Mehrotra P, Ivan JI, 

and the Walmart 

Labs COVID-19 

Team 

WalmartLabsML_ 

LogForecasting† 

 

A logistic growth prophet 

forecasting model fit using 

case counts and deaths as 

features.The Model is built 

by Prophet model with 

logistic growths to forecast 

the US cumulative deaths. 

By sampling from uniform 

distribution to get the 

quantiles. 

https://github.com/reichlab/covi

d19-forecast-

hub/tree/master/data-

processed/WalmartLabsML-

LogForecasting 

 

* Based on information recorded on the COVID19 Hub with citations as recorded on 18/5/21; † Only provided 

forecasts of numbers of cumulative COVID-19 deaths; § Only provided forecasts of numbers of incident COVID-19 

deaths.  
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