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Abstract 25 

Introduction 26 

Dosing of renally cleared drugs in patients with kidney failure often deviates from 27 

clinical guidelines but little is known about what is predictive of receiving 28 

inappropriate doses.   29 

Methods and materials 30 

We combined data from the Danish National Patient Register and in-hospital data 31 

on drug administrations and estimated glomerular filtration rates for admissions 32 

between 1 October 2009 and 1 June 2016, from a pool of about 2.9 million persons. 33 

We trained artificial neural network and linear logistic ridge regression models to 34 

predict the risk of five outcomes (>0, ≥1, ≥2, ≥3 and ≥5 inappropriate doses daily) 35 

with index set 24 hours after admission. We used time-series validation for 36 

evaluating discrimination, calibration, clinical utility and explanations. 37 

Results 38 

Of 52,451 admissions included, 42,250 (81%) were used for model development. 39 

The median age was 77 years; 50% of admissions were of women. ≥5 drugs were 40 

used between admission start and index in 23,124 admissions (44%); the most 41 

common drug classes were analgesics, systemic antibacterials, diuretics, 42 

antithrombotics, and antacids. The neural network models had better 43 

discriminative power (all AUROCs between 0.77 and 0.81) and were better 44 

calibrated than their linear counterparts. The main prediction drivers were use of 45 
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anti-inflammatory, antidiabetic and anti-Parkison's drugs as well as having a 46 

diagnosis of chronic kidney failure. Sex and age affected predictions but slightly. 47 

Conclusion 48 

Our models can flag patients at high risk of receiving at least one inappropriate 49 

dose daily in a controlled in-silico setting. A prospective clinical study may 50 

confirm this holds in real-life settings and translates into benefits in hard 51 

endpoints.  52 
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Introduction 53 

Renal diseases affect patients’ susceptibility to, and modify the effects of many 54 

drugs, and they reduce renal clearance exposing patients to higher steady-state 55 

concentrations when given standard doses. The kidneys excrete active forms 56 

and/or metabolites of many drugs, so renal dysfunction necessitates dose-57 

adjustment of renally cleared drugs with narrow therapeutic indices to prevent 58 

adverse events and accidental over-dosing.  59 

Inadequate dose-adjustment of such drugs has been linked to polypharmacy [1,2] 60 

and can cause noxious events [3] or accidental over-dosing [4]. Although not a new 61 

issue, [5,6] deviating from guidelines is widespread with prevalence estimates up 62 

to 70% [1,2,7-9]. Despite large inter-individual variability in clearance and 63 

response, dose adjustment for many drugs is crude and based on the estimated 64 

glomerular filtration rate (eGFR), for example, halving the dose when eGFR < 60 65 

ml/min/1.73 m2.  66 

Appropriate alerts in order-entry systems may facilitate rational clinical decision-67 

making, [10,11] and convincing examples have showcased how computerised 68 

systems can underpin rational pharmacotherapy [4,12]. However, downsides of 69 

extensive computerisation of healthcare emerge [13]; alert fatigue [14] is 70 

particularly problematic, and strategies and interventions have been proposed to 71 

mitigate its negative effects [15]. 72 

At Danish hospitals, prescriptions are mostly dispensed and administered by 73 

nurses who record detailed meta-data [16]. Prescriptions are usually made and 74 
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revised by physicians regularly during clinical rounds, typically in the morning or 75 

early afternoon. Electronic decision support is generally immature and neither 76 

prescribing physicians nor dispensing nurses are warned if dose-adjustment be 77 

advised or even required.  78 

We suspect that the need for dose-adjustment in patients with renal dysfunction 79 

often goes unrecognised. Thus, with this paper we study its predictability to 80 

inform clinicians and healthcare personnel upfront about which patients with renal 81 

dysfunction are at elevated risk of inappropriate drug dosing. To this end we used 82 

and compared predictive modelling methods from classical statistical modelling 83 

and machine learning. 84 

Methods 85 

Study design, patients and data 86 

We conducted a register-based prediction study with prospective data for patients 87 

admitted to 12 public hospitals in two Danish regions comprising about 2.9 million 88 

persons (more than half the Danish population). We collected diagnosis data from 89 

the Danish National Patient Register, demographic data from the Danish Civil 90 

Registration System [17], as well as medication and biochemical data from 91 

electronic patient records. Diagnoses were encoded using the 10th revision of the 92 

International Classification of Diseases (ICD-10), drugs with the Anatomical and 93 

Therapeutic Chemical classification (ATC). 94 
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The units of analysis were inpatient admissions, defined as chains of successive in-95 

hospital visits at most 24 hours apart. We included admissions starting between 1 96 

October 2009 and 1 June 2016, with at least one eGFR measurement ≤30 during the 97 

first 24 hours of admission. We excluded minors (age <18 years). Admission time 98 

uses hour resolution (an admission starting at 9:54 is recorded as starting at 9:00) 99 

so to ensure at least 24 hours of observation time before inclusion, index was set at 100 

hour of admission + 25 hours. Prior sample-size estimation was foregone.  101 

Outcomes 102 

The outcome variables were based on the daily rate = r/E of inappropriate doses 103 

during follow-up, capped at 30 days. r is the number of given inappropriate doses 104 

of select drugs cleared mainly renally and with narrow therapeutic indices; E the 105 

time-at-risk (figure 1). To obtain well-defined times-at-risk, we set the eGFR 106 

threshold to ≤30 ml/min/1.73m2 (unit omitted from here onward) and used the 107 

rules in supplementary table S1 for counting the number of inappropriate doses, 108 

based on the official reference guidelines for Danish physicians (pro.medicin.dk) as 109 

of January 2021. 110 

We used two rules, one definitive (maximum daily dose = 0 mg) and one of dose-111 

adjustment (reduced daily dose). Operationalisation of the definitive rule is 112 

straightforward: if the last eGFR ≤30, there should be no administrations until an 113 

eGFR >30 is measured. The dose-adjustment rule is slightly more involved as 114 

inappropriate dosing comes in two forms: (a) on a given day there are more than 115 

one eGFR measurements, of which at least one is ≤30, and the cumulative daily 116 
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dose surpasses the threshold in the period(s) between above-threshold 117 

measurements, or (b) all eGFR measurements of a given day are ≤30 and the 118 

cumulative daily dose surpasses the threshold. 119 

Variables and features 120 

Variables are original data (e.g. sex and age at admission) and features the results 121 

of rendering the variables appropriate as model inputs (e.g. one-hot-encoded day 122 

of admission). Based on clinical and pharmacological experience we hand-picked 123 

pertinent variables likely to be informative to the prediction problem and 124 

realistically available in the clinical setting. These fall into three categories. 125 

Demographic: age at admission (numeric), sex (binary). Clinical: number of 126 

distinct drugs (ATC level 5) administered between admission and index (numeric); 127 

therapeutic drug classes (ATC level 2) used between admission and index (one-128 

hot-encoded); the Elixhauser score at admission (numeric, AQHR adaptation) [18]; 129 

ICD-10 chapters of diagnoses recorded in the past five years before admission 130 

(one-hot-encoded); record of chronic kidney failure in the past five years before 131 

admission (ICD-10 N18* diagnoses, one-hot-encoded). Contextual: hour of 132 

admission (numeric, transformed as f(t) = abs(12 – t); see supplementary figure S1); 133 

weekday of admission (one-hot-encoded); number of admissions in the past 5 134 

years before admission (numeric). 135 

Missing values, only present for hour of admission and discharge, were imputed 136 

by sampling from the empirical distributions of valid values.   137 
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Models and training 138 

We tried two model architectures (linear logistic ridge regression and artificial 139 

neural network) with several binary outcomes defined by increasing thresholds of 140 

the daily rate of inappropriate doses (>0, ≥1, ≥2, ≥3 and ≥5). The neural network 141 

models were multilayer perceptrons (MLPs) enabling speedy training and 142 

evaluation. 143 

All admissions starting before 1 July 2015 were assigned to the development set 144 

(42,250 admissions [81%] of 27,253 patients) and the rest to the independent hold-145 

out test set (10,201 admissions [19%] of 8,412 patients). Because admissions 146 

constitute the unit of analysis, some patients likely appear in both the development 147 

and test sets. Information may leak between the sets [19] so as a sensitivity 148 

analysis, we evaluated the performance also in the subset of test-set patients not in 149 

the development set. 150 

We used the multivariate TPEsampler from Optuna [20] to find the best-performing 151 

hyperparameters by sampling 100 configurations, each using 5-fold stratified-and-152 

grouped cross-validation, from the following proposal distributions (discrete 153 

values in round brackets, bounds of log-uniform distributions in squared): 154 

optimiser (Adam, RMSprop), learning rate [10-6, 10-1], activation function (tanh, 155 

sigmoid), L2 penalty [10-6, 10-2], number of hidden layers (1, 2, 3, 4), number of 156 

nodes per hidden layer [16, 32, 65, 128], batch size (32, 64, 128, 256, 512), class 157 

handling (see below).  158 
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Only relevant hyperparameters were sampled and we ran Optuna on linear and 159 

MLP models separately because they have disparate hyperparameter sets. MLP 160 

models with more hidden layers and more nodes therein can learn more complex 161 

relationships but become prone to overfitting which we countered with early 162 

stopping [21] and L2 regularisation (handles collinearity better than L1 163 

regularisation) [22,23]. The batch size is the number of observations from which 164 

the model learns at a time; small batches can give outliers undue influence while 165 

full-batch training (batch size = number of units) can become computationally 166 

impractical [19]. Class imbalances in binary outcomes can misguide training, so we 167 

tested the following remedies: synthetic minority oversampling technique 168 

(SMOTE), random over-sampling of minority class, NearMiss, random under-169 

sampling of majority class, class weighting, and none. SMOTE creates a dataset 170 

similar to the minority class but of the same size as the majority class [24]; 171 

NearMiss downsizes the majority class in a systematic way to retain as much 172 

information as possible in fewer data points [25]. Class weighting retains the 173 

original data but gives more weight to minority-class observations.   174 

Hyperparameter optimisation models trained for maximum 500 epochs with 50-175 

epoch patience on improvement in the validation loss. The final models were 176 

trained on the full development set until the loss reached that obtained in the best 177 

cross-validation fold for the best configuration [21]. 178 
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Evaluation and explanation 179 

Discrimination was assessed with receiver operating characteristic (ROC) curves 180 

and areas under the ROC curves (AUROC), calibration-in-the-small by plotting 181 

decile-binned predicted probabilities against corresponding bin-wise observed 182 

event proportions [26] with 95% Jeffrey intervals [27]; results from a perfectly 183 

calibrated model fall on the diagonal. We used the decision-curve analytic 184 

framework to gauge the models' potential clinical utility [28,29]. 185 

For explanation and scrutiny of prediction drivers, we used the SHAP 186 

DeepExplainer yielding one shap value per feature per unit [30]. The shap value 187 

for a risk prediction model is the absolute change in risk of a given unit's value for 188 

each feature: the cohort-wide mean risk plus the sum of one unit's shap values 189 

equals that unit's risk. 190 

Analysis and ethics 191 

The full analytical pipeline was built with Snakemake [31] (schematic overview in 192 

supplementary figure S2) to facilitate transparency and reproducibility; blinding 193 

was impractical and so foregone, but all analytic code is available online (DOI: 194 

10.5281/zenodo.4560078). Univariate distributions were summarised by median 195 

(inter-quartile range) and count (proportion), as appropriate. This report adheres 196 

to pertinent items in the MINIMAR guideline [32] and TRIPOD statement [33]. 197 

All data have been marshalled on Computerome, a secure high-performance 198 

Danish computing infrastructure, after obtaining approval from the Danish Patient 199 
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Safety Authority (3-3013-1723; then competent authority for ethical approval), the 200 

Danish Data Protection Agency (DT SUND 2016-48, 2016-50, 2017-57) and the 201 

Danish Health Data Authority (FSEID 00003724). 202 
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Table 1: Univariate summary statistics of select features. Values are median (inter-quartile range) and count 

(proportion) as appropriate. Distinct patients and Distinct women show counts of actual patients (as a patient can 

contribute more than one unit.) 

Variate 
Development set 

(N = 42,250) 

Test set 

(N = 10,201) 

Test set  

(not in devel. set) 

(N = 5,980) 

Women 20,743 (49%) 4,854 (48%) 2,940 (49%) 

Distinct patients 27,253 8,412 5,341 

   Distinct women 13,759 (50%) 4,049 (48%) 2,629 (49%) 

Time at risk, days 3.5 (1.7–7.7) 3.5 (1.7–7.2) 2.9 (1.5–6.4) 

Inappropriate doses (outcomes)    

   > 0 (at least one) 3,786 (9.0%) 1,080 (11%) 740 (12%) 

   ≥ 1 daily 2,241 (5.3%) 588 (5.8%) 333 (5.6%) 

   ≥ 2 daily 1,236 (2.9%) 288 (2.8%) 108 (1.8%) 

   ≥ 3 daily 783 (1.9%) 171 (1.7%) 56 (0.9%) 

   ≥ 5 daily 366 (0.9%) 64 (0.6%) 9 (0.2%) 

Admissions 5 years before admission    

   None 4,988 (12%) 1,082 (11%) 1,074 (18%) 

   1–2 10,100 (24%) 2,367 (23%) 1,873 (31%) 

   3–4 7,712 (18%) 1,919 (19%) 1,232 (21%) 

   5–6 5,490 (13%) 1,303 (13%) 685 (12%) 

   ≥ 7 13,960 (33%) 3,530 (35%) 1,116 (19%) 

Drugs used between admission and 

index    

   None 6,165 (15%) 1,228 (12%) 762 (13%) 

   1–2 9,111 (22%) 1,984 (19%) 1,254 (21%) 

   3–4 8,761 (21%) 2,078 (20%) 1,355 (23%) 

   5–6 7,197 (17%) 1,852 (18%) 1,095 (18%) 

   ≥ 7 11,016 (26%) 3,059 (30%) 1,514 (25%) 

Any diagnosis of chronic kidney failure  13,470 (32%) 3,391 (33%) 732 (12%) 

Top-5 ICD-10 chapters†    

   Cardiovascular (IX) 25,757 (61%) 6,392 (63%) 3,283 (55%) 

   Genitourinary (XIV) 23,025 (55%) 5,819 (57%) 2,306 (39%) 

   Lesions, external causes, etc. (XIX) 20,275 (48%) 4,749 (47%) 2,481 (42%) 

   Metabolic-endocrine (IV) 19,716 (47%) 5,096 (50%) 2,415 (40%) 

   Symptoms/abnormal findings (XVIII) 18,663 (44%) 5,711 (56%) 2,882 (48%) 

Top-5 drug classes‡    

   Analgesics (N02) 15,740 (37%) 4,367 (43%) 2,506 (42%) 

   Systemic antibacterials (J01) 14,719 (35%) 3,257 (32%) 1,938 (32%) 
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   Diuretics (C03) 13,966 (33%) 3,672 (36%) 1,951 (33%) 

   Antithrombotics (B01) 11,842 (28%) 3,181 (31%) 1,795 (30%) 

   Antacids (A02) 10,635 (25%) 2,776 (27%) 1,407 (24%) 

† ICD-10 chapters (Roman numbering) of diagnoses recorded in the last 5 years before admission. 
‡ Drug classes (ATC level 2) administered between admission and index. 

 03 
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Results 204 

Table 1 shows univariate summary statistics of the 52,451 admissions (42,250 + 205 

10,201) of 35,665 patients (27,253 + 8,412) included in the study (see supplementary 206 

table S2 for extended version with all features). Patients in the test sets were similar 207 

to those in the development set with some notable exceptions. Fewer had received 208 

inappropriate doses, especially in the test-set patients not part of the development 209 

set who also had fewer previous admissions. 210 

In the development set, the median age was 77 years (IQR: 67-85) and 20,743 211 

admissions (49%) were of 13,759 women (50%). The median time at risk was 3.5 212 

days (inter-quartile range: 1.7–7.7) and at least one inappropriate dose was given in 213 

3,786 admissions (9.0%); ≥1 inappropriate dose daily was given in 5.3% of 214 

admissions and ≥5 inappropriate doses daily were given in 0.9%. The target drugs 215 

most commonly given in inappropriate doses were ibuprofen (M01AE01, 4.1%) 216 

and metformin (A10BA02, 3.4%); inappropriate doses of the other target drugs 217 

were given in <1% of admissions. 218 

Patients in 4,988 admissions (12%) had no admissions in the 5 years before 219 

inclusion; 13,960 (33%) had ≥7 previous admissions. The most common drug 220 

classes used between admission and index were analgesics (N02, 37%), systemic 221 

antibacterials (J01, 35%), diuretics (C03, 33%) antithrombotics (B01, 28%), and 222 

antacids (A02, 25%). Previous diagnoses were most commonly cardiovascular 223 

(chapter IX, 61%), genitourinary (XIV, 55%), related to i.a. lesions and external 224 
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causes (XIX, 48%), endocrine-metabolic (IV, 47%), and symptoms/abnormal 225 

findings (XVIII, 44%).226 
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Table 2: Performance metrics of final models and results of Optuna hyperparameter optimisation. AUROC: area under the receiver operating characteristic curve. MLP: 

multi-layer perceptron. Undersample: random sample of the size of the minority class, from the majority class. Oversample: randomly sample (with replacement) from 

the minority class until reaching a sample size equal to the size of the majority class. SMOTE: synthetic minority oversampling technique [24]. NearMiss: a method for 

non-random, systematic downsampling of the majority class while retaining as much information as possible [25].  

Parameter 
Daily rate >0 Daily rate ≥1 Daily rate ≥2 Daily rate ≥3 Daily rate ≥5 

Linear MLP Linear MLP Linear MLP Linear MLP Linear MLP 

AUROC           

   Development set 0.80 0.81 0.81 0.83 0.81 0.84 0.82 0.83 0.82 0.83 

   Test set 0.77 0.79 0.78 0.79 0.79 0.79 0.81 0.81 0.78 0.80 

   Test set (new 

patients) 
0.78 0.79 0.82 0.83 0.86 0.86 0.89 0.90 0.82 0.79 

Hyperparameters           

   Batch size 512 128 512 32 32 64 256 256 64 64 

   Class handling Undersample SMOTE NearMiss NearMiss Oversample SMOTE Oversample NearMiss Oversample None 

   L2 penalty 1.28 × 10-6 1.66 × 10-6 3.02 × 10-6 1.43 × 10-6 4.38 × 10-6 1.39 × 10-6 1.43 × 10-6 1.30 × 10-6 1.09 × 10-5 3.94 × 10-6 

   Learning rate 1.79 × 10-2 1.20 × 10-4 1.92 × 10-2 3.45 × 10-4 6.73 × 10-3 2.71 × 10-4 3.76 × 10-2 3.08 × 10-4 2.11 × 10-2 4.86 × 10-4 

   Optimiser Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam 

   Activation function — tanh — sigmoid — tanh — sigmoid — sigmoid 

   No. hidden layers — 3 — 1 — 1 — 1 — 2 

   Nodes per hidden 

layer 
— 8 — 8 — 32 — 32 — 8 
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Table 2 shows the hyperparameters of the best configurations with performance 227 

metrics of the final models (see also supplementary figures S3–S12). Generally, 228 

multi-layer perceptron (MLP) models performed slightly better than their linear 229 

counterparts, all obtaining AUROC's between 0.77 and 0.81 in the test set (ROC 230 

curves in supplementary figures S13–S22). The MLP models more consistently 231 

showed good calibration in the development set. For daily rates >0, ≥1 and ≥2 both 232 

MLP and linear models were very well-calibrated in the test set (supplementary 233 

figures S23–S32). The decision curves did not suggest the clinical utility of the MLP 234 

models be superior to that of the linear (supplementary figures S33–S42).  235 

The model-specific shap values offer some insights (supplementary figures S43–236 

S53). First, many features contribute substantively to the predictions of daily rate 237 

>0 and ≥1 outcomes, while few features almost entirely drive the predictions for 238 

the other outcomes. Second, few features are the dominant prediction drivers 239 

across outcomes and models: use of anti-inflammatory, antirheumatic and 240 

antidiabetic drugs as well as diagnoses of chronic kidney failure. Third, sex and 241 

age contribute little to predictions. Fourth, using more distinct drugs (reflecting 242 

various levels of polypharmacy) pushes the risk up and using fewer drugs pulls 243 

the risk down. Fifth, the linear models tend to give most weight to relatively few 244 

features whereas the MLP models spread out the contributions across more 245 

features. Finally, the number of previous admissions (a proxy for frailty) became 246 

an increasingly important driver with increasing rarity of the outcome, in the MLP 247 

models.  248 
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Figure 2 shows the relationships between values of select features and their shap 249 

values and illustrates how MLP models capture highly non-linear effects and near-250 

linear effects as appropriate (e.g. the effects of age at admission and number of 251 

previous admissions for daily rate >0.)  252 

Discussion 253 

This study reveals that 9.0% of patients with reduced kidney function are exposed 254 

to inappropriate doses of selected renal risk drugs in the follow-up period. Our 255 

models performed quite well with AUROC's between 0.77 and 0.81 with good 256 

calibration-in-the-small for daily rates >0 and ≥1, in the test set. For rarer outcomes 257 

(daily rates ≥2, ≥3 and ≥5) calibration suffered and clinical utility is unlikely to be 258 

substantive. 259 

Apt intervention necessitates comprehension of the nature and extent of the 260 

problem. Use of renal risk drugs and associated problems, including inappropriate 261 

dosing, in patients with renal dysfunction is well-described [34-38]. A cross-262 

sectional study of 83,000 American outpatient Veterans found that 32% of patients 263 

with creatinine clearance between 15 and 29 were given drugs at excessive doses 264 

considering their kidney function [39]. Medication burden had the strongest 265 

cooccurrence with inappropriate dosing and metformin was a prominent drug 266 

among those with inappropriate doses. This agrees with our findings although our 267 

study design has clearer temporality.  268 
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Some have called for a prediction tool to identify elderly at elevated risk of adverse 269 

drug reactions [40], a notion similar to ours in spirit but different in scope. Studies 270 

of factors associated with inadequate dose adjustment are few and often of 271 

retrospective nature eliciting relationships with characteristics after inappropriate 272 

doses have already been given. One study seeking to elicit factors associated with 273 

dosing appropriateness, using a logistic regression, reported the statistically 274 

strongest association to be with severity of chronic kidney failure (p-value = 7%) 275 

[41]. A similar study found dosing errors in 33% of the patients; age (odds ratio, 276 

OR: 1.05), number of drug prescriptions (OR: 1.1) and number of drugs requiring dose 277 

adjustment (OR: 2.0) were associated with dosing errors [42]. A third study found 278 

that, in patients with chronic kidney failure, late-stage chronic kidney disease, number 279 

of prescribed drugs and presence of comorbidity were associated with dosing errors. Ill-280 

defined indices and times-at-risk render such enquiries of little use for a priori 281 

prediction and risk stratification: the ability to intervene presupposes a reliable 282 

estimate of risk in advance, before the event happens.  283 

Carey et al. found only few factors to be genuinely predictive of potentially 284 

inappropriate prescribing in elderly outside the hospital setting [43]. Our models 285 

had AUROC's (0.77–0.81) slightly higher than that of their model (0.76). In a 286 

prospective study from Norway [35] of internal-medicine patients with a mean age 287 

of 71 years, 35% received suboptimal doses; a composite variable (number of 288 

clinical/pharmacological risk factors) was quite strongly associated with non-optimal 289 

dosing (RR: 1.33), less so number of drugs at admission (RR: 1.09), whereas sex and 290 

age were not predictive of non-optimal dosing. Our results agree quite well with 291 
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that finding, probably because the information captured by age and sex 292 

(essentially, proxies of comorbidity) is expressed explicitly in our feature set. 293 

As such, our models fare quite well with performance metrics superior to those of 294 

other published models even though ours came from an independent and 295 

temporally distinct test set. Many studies employing machine learning models for 296 

predicting medical outcomes use normal split-sample validation, putting aside a 297 

random sample of the observations for testing. This has several logical and 298 

practical implications, perhaps most notably that a model developed with data 299 

collected between, say, 2005 and 2015 will likely perform better in a test case from 300 

2013 than in one from 2017. The subset of our test set with patients not part of the 301 

development set is a conceptually appealing way to gauge how the model might 302 

perform in a new population. It does, however, distort the data and somewhat 303 

delink it from the clinical reality: some patients have previous admissions and 304 

those admitted for the first time are probably different from the rest.  305 

Strengths 306 

Here we highlight five principal strengths of this study. First, this is by far the 307 

largest study of its kind to date. Second, time-series validation yielded realistic 308 

performance evaluation in distinct (future) data [44] vis-a-vis many articles on 309 

predictive modelling, perhaps most clearly seen in the surge of COVID-19 papers 310 

[45]. Third, our data were richer than in any other study in this area thanks to the 311 

combined diversity and reliability of longitudinal diagnostic data from the 312 

National Patient Register and deep phenotypic in-hospital data. Fourth, our 313 
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summary statistics are well-aligned with descriptive studies of deviations from 314 

dosing recommendations, and the nature of the general patient population to 315 

which a model as ours would be applied [46]. Finally, the shap-value analysis 316 

suggests that the models picked up clinically relevant information without undue 317 

influence of individual predictors.  318 

Limitations 319 

Like any study, this has potential limitations. First, albeit simple and elegant, using 320 

only eGFR as a proxy for kidney function is not always advisable [47]. It is, 321 

however, considered a reasonable metric for medicinal dosing [48] and used in 322 

Danish guidelines. Second, eGFR can be estimated in several ways [49] and both 323 

the 4-variable MRDR Study and CKD-EPI equations were used in our data. 324 

However, clinicians use the reported eGFR estimate as-is and both equations 325 

perform well for low eGFR values [50]. Third, hard thresholds on eGFR are 326 

arbitrary: the difference in kidney function between eGFRs of 29 and 31 is 327 

minuscule, but the cutoff must be set somewhere. Again, we stayed loyal to the 328 

guidelines as these are, nevertheless, what should support clinicians’ prescribing 329 

decisions. Fourth, many drugs have narrow and intermediate therapeutic indices. 330 

We focused on seven drugs cleared primarily by the kidneys and with narrow 331 

therapeutic indices that are fairly common in a Danish setting and span several 332 

important drug classes. The drugs included also allowed for reasonably 333 

harmonised rules of inappropriate dosing. Finally, our binary outcomes are soft 334 

endpoints and do constitute a simplification. Seemingly inappropriate doses could 335 
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be conscious choices and the outcome variables do not capture information about 336 

actual toxicity experienced by the patient. However, the narrow therapeutic 337 

indices of the included drugs increase the likelihood of noxious effects without 338 

appropriate dose adjustment. 339 

Conclusion 340 

Despite physicians’ awareness of the need for dose adjustment in patients with 341 

kidney dysfunction, a well-performing clinical decision support tool may help 342 

prevent such patients from "flying under the radar" in a busy clinical setting. 343 

Indeed, our models can flag patients at high risk of receiving >0 or ≥1 344 

inappropriate dose daily.  345 

A prospective evaluation is necessary to assess if these results transport to the 346 

clinic and if the models can offer genuine clinical utility for the patients. Receiving 347 

inappropriate doses is a soft endpoint, so clinical evaluation should consider also 348 

hard endpoints, either generic (e.g. length-of-stay, need for post-discharge 349 

rehabilitation and mortality) or specific ones related to the target drugs (e.g. 350 

transfusion and occurrence of known side-effects of these drugs). 351 

Data availability 352 

Due to the sensitive nature of the data, we can neither offer access to nor share our 353 

data with third parties. Data can be obtained from the original sources upon 354 

request.   355 
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Figures 79 

80 

Figure 1: Deriving the outcome variables. This exemplary admission is composed of three successive in-patient vi81 

(i.e. the patient has been transferred twice represented by the arrows). The admission is eligible because it spans m82 

than 24 hours and an eGFR ≤30 was measured before index. Here, apixaban was given while the patient's eGFR w83 

≤30, but dose reduction rendered these administrations appropriate. 84 
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85 

Figure 2: Bivariate relationships between values of select features (x axis) and their corresponding shap values (y 86 

axis). The continuous features are summarised by locally estimated scatterplot smoothing (LOESS), binary feature87 

vertical density bands.  88 
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