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ABSTRACT 

Objective: Most genome-wide association studies (GWAS) of complex traits are 

performed using models with additive allelic effects. Hundreds of loci associated with 

type 2 diabetes have been identified using this approach. Additive models, however, 

can miss loci with recessive effects, thereby leaving potentially important genes 

undiscovered. 

 

Research Design and Methods: We conducted the largest GWAS meta-analysis using 

a recessive model for type 2 diabetes. Our discovery sample included 33,139 cases and 

279,507 controls from seven European-ancestry cohorts including the UK Biobank. We 

then used two additional cohorts, FinnGen and a Danish cohort, for replication. For the 

most significant recessive signal, we conducted a phenome-wide association study 

across hundreds of traits to make inferences about the pathophysiology underlying the 

increased risk seen in homozygous carriers. 

 

Results: We identified 51 loci associated with type 2 diabetes, including five variants 

with recessive effects undetected by prior additive analyses. Two of the five had minor 

allele frequency less than 5% and were each associated with more than doubled risk. 

We replicated three of the variants, including one of the low-frequency variants, 

rs115018790, which had an odds ratio in homozygous carriers of 2.56 (95% CI 2.05-

3.19, P=110-16) and a stronger effect in men than in women (interaction P=710-7). 

Colocalization analysis linked this signal to reduced expression of the nearby PELO 

gene, and the signal was associated with multiple diabetes-related traits, with 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.08.21258700doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.08.21258700
http://creativecommons.org/licenses/by-nc-nd/4.0/


homozygous carriers showing a 10% decrease in LDL and a 20% increase in 

triglycerides. 

 

Conclusions: Our results demonstrate that recessive models, when compared to 

GWAS using the additive approach, can identify novel loci, including large-effect 

variants with pathophysiological consequences relevant to type 2 diabetes.   
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INTRODUCTION 

Type 2 diabetes affects nearly 1 in 12 adults globally (1), but its genetic architecture is 

still not fully understood. Over the last decade, large genome-wide association studies 

(GWAS) have used additive models to identify hundreds of associated loci (2-4). Additive 

models are most powerful when the effect of two copies of a risk allele is twice that of one 

copy. This model is computationally simple and statistically powerful, but it does not 

always match the pattern of inheritance of Mendelian disorders, including monogenic 

forms of diabetes, which can be transmitted in a dominant or recessive fashion (5). 

Variants with recessive effects, particularly low-frequency variants, can go undetected by 

additive models (6), suggesting that non-additive models have the potential to generate 

new biological insights. 

 

To date, a handful of studies have used recessive models to identify genetic associations 

with type 2 diabetes, but these have been limited by small sample sizes (6-8). 

Nevertheless, some promising findings have emerged. In a Greenlandic population, 

homozygous carriers of two copies of a nonsense mutation in the TBC1D4 gene, which 

facilitates glucose transfer into skeletal muscle in the setting of insulin stimulation, were 

found to have a tenfold increase in diabetes risk compared to other individuals in the 

same population (7). Hyperglycemia due to this variant occurs postprandially, so the 

diagnosis of type 2 diabetes in homozygous carriers often requires an oral glucose 

tolerance test, creating an opportunity for precision medicine (9). More recently, members 

of our group conducted GWAS with non-additive models for several age-related diseases 

(10) and identified multiple new loci, including one rare variant (rs77704739) associated 
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with type 2 diabetes. This variant was also associated with reduced expression of the 

PELO gene, whose connection to diabetes is not well understood. 

 

We have conducted the largest GWAS meta-analysis using a recessive model reported 

to date for type 2 diabetes. Over the last few years, GWAS sample sizes have grown 

exponentially (11), and reference panels for imputation have improved, making it easier 

to ascertain low-frequency variants accurately (12). To take advantage of these 

developments, we combined data from seven discovery cohorts and two replication 

cohorts to conduct the largest recessive-model GWAS yet reported for type 2 diabetes or 

any other disease. We identified and replicated multiple variants missed by larger additive 

studies, confirmed and fine-mapped the association near PELO, and conducted a 

phenome-wide association analysis to identify other impacted traits to better understand 

the pathophysiology underlying this novel association.  

 

RESEARCH DESIGN AND METHODS 

Study Population and Outcome Definition 

We used data from multiple European-ancestry cohorts (Supplemental Table 1) including 

the UK Biobank (13), five cohorts known collectively as 70K for T2D (4), and the Mass 

General Brigham (MGB) Biobank (14). The UK Biobank is a sample of approximately half 

a million people recruited in the United Kingdom between the ages of 40 and 69 years. 

The 70K for T2D cohort consists of five studies with publicly available data, and the MGB 

Biobank consists of approximately 50,000 people recruited within a hospital system in the 
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United States. We only considered individuals whose family relatedness was lower than 

that of third-degree relatives.  

 

Definitions of type 2 diabetes varied according to cohort. In the UK Biobank, for example, 

we used a validated algorithm designed specifically to identify cases of diabetes in that 

cohort (15). In the MGB Biobank, type 2 diabetes was defined according to an algorithm 

developed by the Biobank team (16) to have 99% positive predictive value. In the UK and 

MGB Biobanks, which both have a relatively low prevalence of type 2 diabetes, we 

excluded controls younger than 55 years, as the mean age of onset for type 2 diabetes 

is around 50 years (17).  

 

Recessive Genome-Wide Meta-Analysis  

Genotyping, phasing, and imputation as well as sample and variant quality control were 

done according to cohort-specific protocols (Supplemental Table 1). For the recessive 

analysis in each cohort, we controlled for age, sex, body mass index (BMI), and principal 

components. For the UK Biobank, we also controlled for the genotyping platform, as two 

different genotyping arrays were used. For one of the five cohorts within 70K for T2D (6% 

of the cases in our discovery sample), age and BMI were not available. In our models, we 

used the minor allele in Europeans – not necessarily the non-reference allele – as the 

recessive allele to maximize our chances of identifying variants missed by prior GWAS. 

 

For the UK and MGB Biobanks, computations were done using Hail version 0.2 

(https://hail.is), and the 70K for T2D cohort was analyzed using the program SNPTEST 
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(https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html). After generating 

summary statistics using a recessive model for each cohort, we used the program METAL 

to meta-analyze the results (18), weighting cohorts by the inverse of the standard error 

for each variant. Our threshold for genome-wide significance was P=510-8, and we 

considered signals within 0.5 megabase pairs (Mb) to be part of the same locus. For 

comparison, we repeated our approach using an additive model. To visually inspect each 

genome-wide significant locus, we used the program LocusZoom (19). We estimated the 

power of our recessive and additive models to detect variants acting recessively across 

a range of allele frequencies and effect sizes using a simulation-based approach, 

assuming a baseline case prevalence of 10%, similar to our case-control ratio. 

 

Defining Novel Recessive Signals  

We compared our results to the largest additive GWAS with available summary statistics 

(2, 3), and we defined signals as novel if they were not in significant linkage disequilibrium 

(LD) with a known signal (r2 < 0.3). This analysis was done using R version 3.6 

(https://www.R-project.org) and the R package ‘LDlinkR’ (20, 21). The LD information was 

calculated using a British reference panel (1000 Genomes Project). For each signal, we 

used PLINK version 1.9 (22) to calculate a dominance deviation P value (23) using UK 

Biobank data. Signals were deemed to be non-additive if this P was less than 0.05. To 

ensure that signals near the major histocompatibility complex (MHC) region were not due 

to contamination of our cases with cases of type 1 diabetes, which is known to be heavily 

associated with haplotypes in the MHC region, we performed conditional analysis in the 
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UK Biobank sample, adjusting for MHC haplotypes relevant to type 1 diabetes (24). We 

excluded variants that lost significance by more than one order of magnitude.   

 

Replication 

We attempted to replicate our novel findings in two cohorts: FinnGen and a Danish cohort 

(Supplemental Table 2). FinnGen is a study based in Finland that combines genotyping 

with digital health data for over 100,000 people, and the Danish cohort consists of over 

20,000 individuals (22% cases) from Denmark. The program SNPTEST was used to 

analyze both cohorts. We meta-analyzed the results from the replication cohorts with our 

initial results using the R package ‘rmeta’.  

 

Credible Sets 

For each novel variant, we identified the set of variants with 99% probability of containing 

the causal variant. We used a Bayesian refinement approach (25), considering variants 

in LD with the lead variant (r2 > 0.1). Each credible set is akin to a confidence interval for 

the true causal variant. Within a locus, each variant is assigned an approximate Bayes 

factor (ABF) based on the following equation: 

𝐴𝐵𝐹 =  √1 − 𝑟𝑒𝑟𝑧2/2 

where 𝑟 = 0.04/(𝑆𝐸2 + 0.04) and 𝑧 =  𝛽/𝑆𝐸. The beta and standard error are the 

estimated effect size and corresponding standard error from the recessive-model logistic 

regression. This calculation assumes a Gaussian prior with mean 0 and variance 0.04. 

The posterior probability for a variant is equal to its ABF divided by the sum of all ABF 

values for the locus. Variants are ranked by ABF in decreasing order, and the cumulative 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.08.21258700doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.08.21258700
http://creativecommons.org/licenses/by-nc-nd/4.0/


probability is calculated starting at the top of the list and stopping when the value exceeds 

99%.  

 

Colocalization with Gene Expression 

To shed light on variants’ functional consequences, we used the Genotype-Tissue 

Expression (GTEx) project, version 8 (26). This database links genetic variants with 

tissue-specific gene expression, allowing for the identification of expression quantitative 

trait loci (eQTLs). For our most significant variant, which was an eQTL for the gene PELO, 

we performed colocalization analysis to confirm that our GWAS signal matched the signal 

influencing gene expression. Colocalization analysis compares P values for two traits 

across a locus to generate a posterior probability for the hypothesis that both traits are 

being influenced by the same variant. Due to the rarity of homozygous carriers of our 

variants, we used additive summary statistics from GTex for this analysis. We used the R 

package ‘coloc’ (27) and considered a window of 1 Mb around our leading signal. 

 

Phenome-Wide Association Study  

For the variant located near the PELO gene, we performed a phenome-wide association 

study (PheWAS) in the UK Biobank, which provides detailed information about each 

participant’s health, dietary habits, and lifestyle characteristics. Phenotypes were curated 

and transformed using the PHEnome Scan ANalysis Tool, or PHESANT (28). As in our 

GWAS, we used a recessive model. We used logistic regression for binary phenotypes 

and linear regression for continuous phenotypes. We controlled for age, sex, ten principal 

components, and the genotyping platform. Limiting our binary phenotypes to those with 
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more than five cases among homozygotes for the risk variant, we analyzed 1,731 binary 

phenotypes. We also analyzed 30 biomarkers such as cholesterol levels as well as 1,345 

other continuous phenotypes. For significant associations, we used colocalization 

analysis to quantify the probability that the phenotype shared the same causal variant as 

type 2 diabetes. We also performed a PheWAS in the Danish cohort looking at 16 

glycemic traits, using the same covariates as above. 

 

Sex-Stratified Analysis 

To test whether the genetic effects of the variant near the PELO gene differed by sex, we 

performed a sex-stratified analysis within the UK Biobank for the biomarkers in our 

dataset and also for type 2 diabetes itself. We assessed the significance of the difference 

between sexes by including an interaction term in our regression model. We then 

confirmed sex-specific differences for type 2 diabetes in our two replication cohorts. 

 

RESULTS 

Genome-Wide Meta-Analysis Using a Recessive Model 

Our discovery sample consisted of 33,139 cases of type 2 diabetes and 279,507 controls 

from seven cohorts. We meta-analyzed 11,634,328 variants and fitted additive and 

recessive models to compare the results. We identified 51 loci (Supplemental Table 3) 

that reached genome-wide significance in the recessive model, and 121 loci using the 

additive model (Figure 1). Of the 51 signals identified with the recessive model, 33% 

deviated from additivity (dominance deviation P < 0.05), and of these, five were distinct 

from the set of previously reported additive signals (Table 1).  
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The strongest recessive signal (rs115018790) was located within an intron of the PELO 

and ITGA1 genes on chromosome 5 (Figure 2) and was in complete LD (r2 = 1) with the 

lead variant (rs77704739) that was previously identified in the GERA cohort (10), one of 

the discovery cohorts in this study. With minor allele frequency (MAF) 0.04, rs115018790 

had an odds ratio (OR) for homozygous carriers of 2.63 (95% CI: 2.03-3.41), much greater 

than the additive-model OR of 1.07 (1.02-1.12). The P value for the recessive model 

(P=310-13) was ten orders of magnitude more significant than the additive one, and the 

dominance deviation test confirmed the variant’s recessive nature (P=310-5). This 

variant was near known additive signals (rs17261179, rs3811978, and rs62357230) 

associated with type 2 diabetes (2), but it was not in strong LD with any of these previously 

identified variants (maximum r2 = 0.08).  

 

We identified another non-additive, low-frequency variant (rs140453320) with large effect 

size on chromosome 5. This variant (MAF=0.01, OR [95% CI] = 6.94 [3.63-13.27], 

P=510-9) lies within an intron of the gene ADAMTS6. The additive P value was 0.48, 

leading to highly significant dominance deviation (P=410-9). This signal was over 1 Mb 

away from any previously known signal associated with type 2 diabetes.  

 

The other three novel non-additive signals were significantly more common, each with 

MAF > 30%. Two of the three were located less than 0.5 Mb from known additive loci, but 

these signals were in weak LD with previously reported associations, with maximum r2 

between 0.1 and 0.3 (Supplemental Table 4). The third (rs755900673) was an indel (OR 
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[95% CI] = 1.13 [1.08-1.17], P=510-9) on chromosome 8 located within an intron of the 

MYOM2 gene, more than 7 Mb away from any locus additively associated with type 2 

diabetes.  

 

We performed power simulations for our top variant (rs115018790, MAF 0.04, OR 2.63) 

and found that a GWAS with an additive model with our case-control ratio would need 

approximately 1.8 million participants to have 80% power to detect a genome-wide 

significant signal whereas a recessive model would only need 160,000 participants. At 

higher allele frequencies, the benefits of the recessive model become much less 

pronounced (Supplemental Figure 1).  

 

Replication 

Our two replication cohorts consisted of 28,336 cases and 62,253 controls. Of the four 

non-additive signals for which we had sufficient power, three replicated, and one did not 

(Table 1, Supplemental Figure 2). Variant rs115018790 replicated in both cohorts (meta-

analysis OR [95% CI] = 2.56 [2.05-3.19], P=110-16).  

 

Two of the other three variants for which we had power also replicated. The indel near 

MYOM2, rs755900673, did not replicate (P=0.84) and showed high heterogeneity 

(P=0.008). Our power to replicate the rare variant near ADAMTS6 was limited because 

there were only 10 homozygous carriers in our replication sample compared to 74 in our 

discovery sample. This signal retained genome-wide significance when we meta-

analyzed the discovery and replication cohorts (P=310-8). 
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Gene Expression Colocalization Analysis 

Using GTEx data (26), we found that rs115018790 was associated with reduced PELO 

expression in multiple tissues. Colocalization analysis, which tests the hypothesis that 

traits are associated and share a single causative variant, confirmed the link between 

rs115018790 and reduced PELO expression in many tissues, including subcutaneous 

adipose tissue (posterior probability 0.99, n=581), skeletal muscle (0.99, n=706), and the 

pancreas (0.96, n=305). Colocalization plots (Supplemental Figure 3) comparing the 

recessive P values for the association with type 2 diabetes to additive P values from the 

gene expression dataset showed a high degree of correlation between the two sets of P 

values, visually confirming rs115018790’s connection to reduced PELO gene expression. 

The signal’s 99% credible set (Supplemental Table 5) contains rs185240714 (posterior 

probability 0.23), which is located in the 5’ untranslated region of the PELO transcription 

start site, further supporting a causal link. 

 

Phenome-wide Association Study 

Using a recessive model, we found that multiple biomarkers (Figure 3) were associated 

with rs115018790 in the UK Biobank. Homozygotes for the risk allele had significantly 

higher triglycerides and lower LDL, HDL, and total cholesterol. Effect sizes were large. 

For example, being a homozygous carrier of the risk allele was associated with a 0.35 

mmol/L (14 mg/dL) decrease in LDL (10% change relative to the mean) and a 0.35 

mmol/L (31 mg/dL) increase in triglycerides (20%). These associations, particularly for 

triglycerides, were less significant using an additive model (Supplemental Table 6), 
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suggesting that rs115018790 acts in a recessive manner for these traits as well. 

Colocalization analysis (Supplemental Figure 3) confirmed that these lipid associations 

are the result of a single shared variant (posterior probability > 0.99 for each trait). It did 

not appear that medication use was responsible for the observed effects on lipids 

because homozygotes for the risk allele were less likely (OR [95% CI] = 0.66 [0.49-0.88], 

P=0.005) to be on LDL-lowering therapy. Other biomarkers associated with rs115018790 

included albumin and C-reactive protein. There was also a nominally significant (P=0.01) 

association with estradiol. The other novel variants did not have comparably significant 

and numerous biomarker associations (Supplemental Table 7).  

 

When we examined non-biomarker phenotypes (Supplemental Table 8) using a recessive 

model, we found that the variant near PELO was associated with a variety of hematologic 

features (decreased blood cell count, increased reticulocyte count and percent, increased 

mean corpuscular hemoglobin and volume, and decreased red blood cell distribution 

width) as well as increased alcohol intake frequency. None of the binary phenotypes 

reached a strict Bonferroni-corrected significance threshold of 1.610-5, but the top two 

phenotypes were metformin use (OR [95% CI] = 2.27 [1.56-3.31], P=210-5) and 

“diabetes diagnosed by a doctor” (1.87 [1.39-2.54], P=610-5). We did not detect 

significant associations with cardiovascular phenotypes such as heart attack or stroke 

after correcting for multiple testing.  

 

In the Danish cohort, our power to detect recessive associations with glycemic traits was 

limited due to the low number of homozygous carriers (Supplemental Table 9). None of 
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the traits were recessively associated with the variant. In an additive analysis, the variant 

was associated with increased insulin and C-peptide levels at the 120-minute timepoint 

of an oral glucose tolerance test.  

 

Sex-stratified Analysis 

Because the variant near PELO was nominally associated with estradiol, we performed 

an analysis stratified by sex and, in the case of women, by menopause status, and we 

found that the effect of rs115018790 on estradiol was only significant in pre-menopausal 

women, with homozygotes for the risk allele having higher estradiol levels (174 pmol/L 

[95% CI: 49-300], P=0.006) than other pre-menopausal women. For other biomarkers 

such as cholesterol and triglycerides, effects were stronger in men than in women (Figure 

3, Supplemental Table 6). For example, the recessive association with triglycerides was 

over twelve orders of magnitude more significant in men (P=310-16) than in women 

(P=0.002).  

 

We also performed a sex-stratified analysis for type 2 diabetes itself. In the UK Biobank, 

we found that the association was limited to men (OR [95% CI] = 3.05 [2.10-4.43], 

P=510-9) as opposed to women (0.89 [0.42-1.87], P=0.75), with an interaction P value 

of 710-7. We replicated this finding in our replication cohorts (Supplemental Table 10). 

Meta-analysis across cohorts confirmed a large effect in men (OR=2.99 [2.18-4.10], 

P=110-11) and little to no effect in women (OR=1.41 [0.87-2.28], P=0.15). 

 

Comparison with Known Lipid-Associated Variants 
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To put effect sizes into context, we compared rs115018790 to previously described lipid-

related variants of large effect size (29) using UK Biobank data. The LDL-lowering effect 

(0.35 mmol/L or 14 mg/dl) of rs115018790 in homozygotes was comparable to the effect 

(0.34 mmol/L or 13 mg/dl) of carrying one copy of a well-known protective variant 

(rs11591147) associated with the PCSK9 gene. The triglycerides-increasing effect (0.35 

mmol/L or 31 mg/dl) of rs115018790 in homozygotes was larger than the change (-0.29 

mmol/L or -26 mg/dl) seen in homozygotes for a known variant (rs1569209) linked to the 

lipoprotein lipase (LPL) gene, known to be involved in triglyceride metabolism. For men, 

the size of rs115018790’s effect (0.58 mmol/L or 51 mg/dl) was almost double that of the 

LPL variant.  

 

DISCUSSION 

Type 2 diabetes is a highly polygenic trait, and hundreds of loci associated with the 

disease have been identified, mostly via large GWAS meta-analyses conducted under 

additive genetic models (2, 3). This prior work has produced useful results, identifying 

potential therapeutic targets and also allowing for the creation of polygenic scores 

capable of quantifying one’s genetic risk (30). A sizeable fraction of the heritability of type 

2 diabetes, however, remains unexplained by loci identified using additive models. 

Recessive modeling offers a way to identify new associations, creating opportunities for 

discovery and improved genetic risk stratification. 

 

Our work takes advantage of the increasing number of genetic datasets now available, 

and it is currently the largest GWAS using a recessive model yet reported for type 2 
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diabetes or any other complex disease. We were able to identify multiple variants acting 

recessively, including two low-frequency variants of large effect size. Most of the variants 

identified via additive analyses have ORs less than 1.1, but the most significant variant 

we identified had an OR of 2.56 in homozygous carriers. Our minimum sample size to 

detect this variant was ten times smaller because we used a recessive, not an additive, 

model.  

 

This variant was located near the PELO gene, and one of the six variants in the 99% 

credible set was in the gene’s upstream 5’ untranslated region, suggesting a role for this 

variant in gene expression regulation, a link we confirmed across multiple tissues using 

colocalization approaches. Members of our group first identified this association in one of 

our cohorts while conducting recessive-model GWAS for multiple age-related diseases 

(10). In this study, we confirmed the association with a larger sample size, fine-mapped 

the region, and used the power of the UK Biobank to demonstrate that the phenotypic 

effects of this variant are not limited to type 2 diabetes.  

 

Homozygous carriers of the PELO variant exhibit significantly different circulating 

triglyceride and cholesterol levels compared to other individuals. These effects were most 

pronounced in men but were also seen in women, and the effect sizes were clinically 

relevant and comparable to previously discovered genetic variants that revealed novel 

therapeutic targets. The reduction in LDL associated with rs115018790 was 

approximately 10% (given an average LDL of 3.62 mmol/L or 140 mg/dl) whereas statins, 

the most commonly used LDL-lowering medications, typically lower LDL by 30 to 60% 
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(31). As would be expected for carriers of an LDL-lowering variant, homozygotes for the 

minor allele at rs115018790 were less likely to be on statin medication. For triglycerides, 

the effect size (20%) was even larger. 

 

The overall consequences of the effect of variant rs115018790 on lipid levels remain 

unclear. Low LDL is known to protect against cardiovascular events. High triglycerides 

and low HDL, on the other hand, are associated with cardiovascular disease, although 

for these two lipid particles, it is not clear whether the relationship is causal (32, 33). For 

homozygotes at rs115018790, the protective effects of lower LDL may be offset by the 

high triglycerides and lower HDL, meaning that the net effect on cardiovascular risk could 

be beneficial, harmful, or neutral. Our PheWAS did not reveal associations with 

cardiovascular events such as myocardial infarction or stroke. This lack of association, 

however, must be interpreted with caution in the setting of limited power, automatically 

curated phenotypes, and “healthy volunteer” selection bias in the UK Biobank (34). 

 

The mechanism by which PELO affects diabetes risk is not clear. The gene is ubiquitously 

expressed, and its genetic deletion in mice leads to embryonic lethality (35). It is 

evolutionarily conserved and plays a role in rescuing stalled ribosomes, thus affecting the 

translation of multiple mRNA transcripts (36). It has a known role in sustaining protein 

synthesis in developing blood cells and platelets (37). A recent CRISPR loss-of-function 

screen in human pancreatic beta cells suggests that PELO may also play a role in insulin 

secretion (38). The sex-specific effect on diabetes risk in our study was striking, and more 

investigation is needed to determine what factors underlie the increased risk in men. 
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One limitation of our study is the restriction of the analyses to participants of European 

ancestry. Estimation of recessive effects requires large sample sizes, as homozygous 

carriers of low-frequency variants are rare. Progress has been made in terms of recruiting 

diverse participants for genetic studies, but people of European ancestry still make up the 

bulk of available datasets. In the future, non-additive methods may yield new insights 

when applied to non-European populations, work that could be particularly fruitful given 

the increased genetic diversity of these populations (39) and the increasing availability of 

multi-ethnic cohorts (40). 

 

It is worth noting that most of the associations detected in our recessive analysis had 

already been uncovered in prior additive GWAS. This observation matches our power 

simulations comparing additive and recessive models. In these simulations, the benefit of 

the recessive model was significant at the low end of the allele-frequency spectrum 

whereas both models had similar power to detect high-frequency variants with recessive 

effects.  

 

Our work illustrates the value of performing non-additive analyses to uncover low-

frequency recessive variants. By conducting what is currently the largest GWAS using a  

recessive model for type 2 diabetes, we confirmed that a variant linked to reduced PELO 

gene expression appears to have significant effects not just on diabetes but also on lipid 

metabolism. Recessive models of type 2 diabetes and glycemic traits as part of larger 
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and more diverse genetic discovery efforts are likely to provide additional associations 

that will in turn provide a better understanding of diabetes pathophysiology.  
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Table 1: Novel recessively acting variants. Position is from genome assembly GRCh37 (hg19). For replication, variant 

rs140453320 was only assessed in FinnGen as there were only three homozygotes in the Danish cohort. Dominance 

deviation P values were calculated in the UK Biobank.
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Figure 1: Miami plot comparing recessive and additive results. Non-additive signals 

are purple and labeled. The dark red line is the threshold for genome-wide significance. 
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Figure 2. Replication of variant rs115018790. Panel A shows a forest plot of the discovery and replication cohorts. Cohort-

specific odds ratios are denoted by boxes proportional to the size of the cohort, and error bars represent the 95% confidence 

interval. Panel B shows discovery GWAS P values at the PELO locus. Each dot represents a variant, with its genomic 

position (hg19) on the x axis and its P value (-log10) on the y-axis. Nearby genes are shown at the bottom of the plot.  
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Figure 3: Biomarker associations for variant rs115018790. The figure to the left shows 

effect sizes normalized by each trait’s standard deviation. The error bars in the figure to 

the left represent 95% confidence intervals. 
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