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ABSTRACT 

 Alzheimer disease (AD) is the most common type of dementia and is currently estimated to 

affect 6.2 million Americans. It ranks as the sixth leading cause of death in the United States and 

the proportion of deaths due to AD has been increasing since the year 2000 while the proportion 

of many other leading causes of deaths have decreased or remained constant. The risk for AD is 

multifactorial, including genetic and environmental risk factors. Though APOE remains the 

largest genetic risk factor for AD, more than 26 other loci have been associated with AD risk. 

Here, we recruited from a population of Amish adults from Ohio and Indiana to investigate AD 

risk and protective genetic effects. With slightly lower incidence and later age of onset, it is 

thought that the Amish may hold protective genetic variants for AD. As a founder population 

that typically practices endogamy, variants that are rare in the general population may be at 

higher frequency in the Amish population. We characterized the genetic architecture of AD risk 

in the Amish and compared this to a non-Amish population, elucidating the lower relative 

importance of APOE and differing genetic architecture of the Amish compared to a general 

European ancestry population. 

 

INTRODUCTION 

Alzheimer disease (AD), the most common type of dementia, is the sixth leading cause of 

death in the United States and occurs in over 35% of individuals age 85 and older.1,2 It is 

currently estimated that 6.2 million Americans are living with AD.1 Deaths attributable to AD 

increased by 146.2% from the years 2000 to 2018 whereas other leading causes of death 
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remained constant or decreased.1 This burden of AD is expected to increase in the coming years 

due to increased longevity and decreased fertility, known as population aging.1,3,4 The cost of 

managing AD will continue to increase with an expected annual global cost surpassing $50 

billion by 2050.1,5,6 People living with AD also suffer from severe degradation of their quality of 

life including reduced independence and being at higher risk of somatic and psychiatric 

comorbidities.7–9 Improved understanding of AD risk and subsequent improvements to 

screening, prediction, and prevention efforts are needed to reduce these burdens. As current 

medications only marginally and temporarily delay the progression and lessen the severity of 

AD, its growing prevalence serves as an imperative issue. 

Risk for AD is multifactorial, including genetic and environmental risk factors.8,10,11 While 

only 2-5% of all cases of AD are strongly familial (e.g. result from high penetrance mutations),12 

the overall heritability of late-onset AD is estimated to be as high as 70% based on twin studies 

and genome-wide association studies (GWASs); however, such estimates can vary by population 

and environment.13–15 Genetic risk for AD is complex, including more than 26 independent 

associated loci spanning diverse population groups.16–18 Despite this large number of loci, the 

currently confirmed loci associated with AD risk account for only a small proportion of the 

overall heritability of AD.15,16 Increased sample sizes and diversity of study populations will help 

GWASs to elucidate the remainder of the heritability.  

The largest genetic risk for AD is conferred by the apolipoprotein E (APOE) locus19 on 

chromosome 19 with 3 to 15 times increased risk for those holding either one or two copies of 

the e4 risk allele compared to those holding no risk alleles.20 This association between AD and 

APOE has been replicated across many different and diverse populations.21–23 

One such population is the Amish: descendants of German and Swiss Anabaptist immigrants 

who settled in the United States during the eighteenth and nineteenth centuries. Communities 

currently living in Holmes County, Ohio and Elkhart & LaGrange Counties, Indiana are mostly 

descendants from the German Palatinate, while the communities in Adams County, Indiana 

largely descend from Swiss Anabaptist immigrants.24–26 The expansion of the Amish from a 

population of less than 1,000 founders in the United States27 with subsequent cultural and 

religious isolation has restricted the introduction of new genetic variation. This leads the Amish 

to be representative of a subset of a more general European gene pool. Because of these factors, 

the Amish are a unique population that can serve as an ideal candidate for genetic research. Due 

to endogamy, some variants rare in the general European population may be at higher frequency 

in the Amish, allowing for detection and consideration of effects that may not otherwise be 

captured in studies of the general population.28 This situation is ideal for investigation of 

susceptibility genes for complex traits, including AD.  

A slightly lower prevalence of AD has been reported within Amish populations, even after 

accounting for the effect of a lower frequency of the APOE e4 risk allele.29–31 Improved 

understanding of what protective or other risk-bearing variants the Amish may be enriched for 

could prove helpful in improving general understanding of genetic risk of AD. 
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We have recruited adults from Amish families living in Holmes County, Ohio and Elkhart, 

LaGrange, and Adams Counties, Indiana. Our current focus is to recruit individuals who are 

cognitively unimpaired relative to age-normed benchmarks (CN) but at elevated risk for 

developing AD. We characterize this population and compare with a non-Amish European-

ancestry population living in the US for age, APOE genotype, and both a genetic risk score 

(GRS) using genome-wide significant variants and a polygenic risk score (PRS) spanning the 

entire genome. 

  

METHODS 

Subjects 

 Individuals included in this study have been recruited over the past 20 years for multiple 

studies of AD or dementia,29,32–34 age-related macular degeneration,35–37 and successful aging.38–

40 For all studies, the primary criteria for enrollment included being age 50 or older, being part of 

the Amish community, and being of Amish descent. All individuals were screened for cognitive 

status. In addition, for the current study, individuals were enrolled if they were known not to be 

cognitively impaired (CI) and were age 76 and older. We prioritized enrollment of individuals 

with at least one family member with probable or confirmed AD. Participants were recruited 

from Amish families living in Holmes County, Ohio and Elkhart, LaGrange, and Adams 

Counties, Indiana. 

 

Cognitive Screening 

Depending on the specific study, at time of enrollment, individuals were cognitively 

screened using a combination of the 3MS education-adjusted examination (all individuals),41 the 

AD8 checklist,42 the CERAD word list learning test,43 and the Trail Making test (for the 

Alzheimer disease and successful aging studies).44 Individuals were classified as CN or CI based 

on established cutoffs.41,44 Individuals initially classified as CI were further evaluated by a 

clinical adjudication board, comprised of neurologists and neuropsychologists, to further classify 

them as having mild cognitive impairment (MCI), AD, cognitive impairment, not dementia 

(CIND), having an unclear status.  

 

Genotyping 

 At time of enrollment, 30 milliliters of blood were collected from all participants for use in 

direct DNA extraction and storage of plasma. Genotype data were collected using an Illumina 

Expanded Multi-Ethnic Genotyping Array45 with custom content (MEGAex+3k) or an Illumina 

Global Screening Array46 (GSA). The MEGAex chip includes over 2 million markers whereas 

the GSA chip includes a base quantity of 660,000 markers. When performing chip genotyping, 

we also included customized content of up to 6,000 variants to the MEGAex chip, including over 

1,100 novel varaints that have already been identified from our previous Amish whole exome 

sequencing (WES) and whole genome sequencing (WGS) studies and other associated variants 

from GWAS and the National Institute on Aging’s Alzheimer’s Disease Sequencing Project47,48 
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(ADSP) studies that are not already on the chip. After genotype data were attained, imputation 

was performed based on a Haplotype Reference Consortium (HRC) panel.49,50 We investigated 

genetic relationships of individuals within the overall study population by calculating kinship 

coefficients using KING 2.26.51 Further, we compared the average genetic relationship across 

subpopulations based on recruitment site and cognitive status. 

 

Quality Control 

Quality control (QC) was performed on MEGAex+3k and GSA genotyping chip sets 

independently, with each containing samples from both Indiana and Ohio. A total of 774 

individuals in the Illumina MEGAex+3k array met the QC threshold of 3% for genotype 

missingness. There were 1,973,806 SNPs in this initial set of autosomal and X chromosome 

SNPs.  All SNPs genotyped in < 5% of the individuals (n=52,393) were dropped. Additionally, 

monomorphic (n=1,235,890) and duplicate (n=1,471) SNPs were excluded. Common SNPs 

(MAF >=1%) were evaluated for deviation from Hardy-Weinberg Equilibrium (HWE) and 

dropped if the p-value was < 1 × 10-6 (n=5,518). Mendelian error checking was performed on the 

related individuals within the set and any identified genotypic errors were zeroed out for all 

members of the affected family. Missingness and HWE were repeated after Mendelian error 

checking.  The final, cleaned MEGAex+3k data set consisted of 774 individuals and 655,441 

SNPs (chromosomes 1-22, X). 

1,322 individuals had < 3% missing genotypes for the Illumina GSA array. Of the 703,560 

genotyped SNPs, 1,470 were genotyped in < 10% of the individuals and were dropped. 

Additionally, monomorphic (n = 144,333) and duplicate (n = 4,656) SNPs were excluded. 

Common SNPs (MAF >= 1%) were evaluated for deviation from HWE and dropped for p-values 

< 1 × 10-6 (n = 847). Mendelian error checking was performed on the related individuals within 

the set and any identified genotypic errors were zeroed out for all members of the affected 

family. Checks for missingness and HWE were repeated after Mendelian error checking. The 

final, cleaned GSA data set consisted of 1,322 individuals and 545,470 SNPs (chromosomes 1-

22, X). 

Imputation was run on the Michigan Server using the HRC reference set. The MEGAex+3k 

and GSA data sets were imputed separately, and each was submitted using the GRCh38 build for 

autosomes and hg19 for the X chromosome. The reference population for HRC was European 

and the phasing was done using the Eagle option. Each data set underwent quality control 

separately after imputation. For rare SNPs (MAF < 0.01) an INFO score minimum of 0.8 was 

required. Common SNPs were considered to have passed QC with an INFO score of 0.4 and 

above. The MEGAex+3k set had 1,059,138 rare (MAF < 0.01) SNPs that passed QC and 

7,722,065 common SNPs. The GSA dataset had a total of 1,423,947 rare SNPs that passed QC 

and 7,777,352 common SNPs that met the threshold. The two separately imputed sets were then 

merged after QC into one set of 2,096 samples using overlapping SNPs contained in both.  The 

final imputed dataset contained 8,311,803 SNPs. Of these, 759,280 were rare and the remaining 

7,552,523 were common. 
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 We compared the Amish population to an existing source of non-Amish, European-ancestry 

individuals living within the US. The ascertainment for this population has been described 

elsewhere.52,53 This population included individuals ascertained from the University of Miami at 

the John P. Hussman Institute for Human Genomics, the Vanderbilt University Center for 

Human Genetics Research, and Duke University.  After standard quality control, a total of 2,470 

adults were included with an approximate 1:1 case-control ratio. Case status was determined by 

autopsy when possible. Otherwise, diagnoses were evaluated by two independent neurologists. 

Other phenotype information includes sex, age of exam, and age of onset in cases. 

 

Comparisons in Genetic Risk of AD 

 The Amish population and comparison group were initially compared for distributions of 

sex, age, and cognitive status. Comparisons by genetic risk factors were performed in subsets of 

the overall population after exclusion of individuals under age 75 years old to account for the late 

age of onset of AD30 in addition to differences in age distribution between the Amish data and 

the non-Amish comparison data (Supplemental Figure 1).  

The GRS was generated using 31 genome-wide significant variants, excluding APOE 

variants, as reported in the recent Jansen et al. (2019)17 genetic meta-analysis. The GRS was 

constructed using PRSice-254 and goodness of fit was assessed in R version 3.5.1.55 Dosage 

information was considered for imputed SNPs. For ease of interpretation, the mean and standard 

deviation of the GRS were scaled to zero and one, respectively. 

The PRS was generated using a pruning and thresholding approach in PRSice-254 and the 

best-fit PRS model, in terms of correlation coefficient R2, across the combined Amish and non-

Amish dataset was used. All SNPs from the Jansen et al. (2019)17 meta-analysis were included 

for PRS construction except for those within 500 kilobases of either APOE SNP (rs429358 and 

rs7412). The parameters for clumping in the construction of PRSs included a 500 kilobase 

window centered on each index SNP and an r2 threshold of 0.1. Dosage information was 

considered for imputed SNPs. A best-fit PRS was chosen in combined data after applying across 

different potential p-value thresholds of included index SNPs. For ease of interpretation, the 

mean and standard deviation of PRS were scaled to zero and one, respectively. 

Distributions of the GRS and PRS were compared across the populations and by Alzheimer 

disease or other dementia case status. GRS and PRS models were compared with an APOE-only 

model, covariate-only (sex and age) model, and a combined APOE and covariate model. 

Additional models were constructed including GRS and PRS to investigate overall predictive 

ability of the risk scores with and without the presence of the other variables. The predictive 

value of the constructed models was assessed by area under the receiver operating characteristic 

(ROC) curve (AUC). 

 

RESULTS 

After quality control and assurance, the genotype information of 2,096 Amish individuals 

was available for analysis. Of these, 1,965 had a cognitive exam performed. The final population 
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included 1,146 females and 819 males (Table 1). Of these, 1,367 were classified after consensus 

expert review as CN, 385 were CI, 18 had mild cognitive impairment (MCI), and 326 were 

unclear or missing (Table 1). Among the 385 with CI, 152 individuals (7.3% of the total sample) 

were considered to have probable or confirmed AD or other type of dementia. The mean and 

median age of the Amish population sample were 75.17 and 79, respectively, with a range of 21 

to 110 years old. This includes 1,198 individuals of age 75 years old or older. After exclusion of 

individuals under age 75 years, APOE genotypes for the Amish and comparison groups 

demonstrate a lower prevalence of e4 alleles and higher prevalence of e2 alleles in affected 

Amish individuals than non-Amish cases (Table 2). The unaffected Amish have a similar 

distribution of APOE genotype to that of the non-Amish controls, except for a lower prevalence 

of the e2|e3 genotype. 

 

Table 1. Demographic information and cognitive status of Amish study population and 

non-Amish comparison group. *In the Non-Amish population, participants’ cognitive status 

was characterized as either AD or CN, whereas in the Amish population, participants were sub-

divided into additional classifications of cognitive status, including CN, MCI, Borderline, or CI 

(of which “AD or other dementia” was a subset of all CI individuals). **Other category includes 

individuals that are cognitively impaired through other mechanisms, including Parkinson’s 

Disease and stroke. Abbreviations: CN = cognitively normal, MCI = mild cognitive impairment, 

AD = Alzheimer disease. 

Trait Amish n (%) Non-Amish n (%) 

Female 1,146 (58.3) 1,449 (62.9) 

Age 75+ 1,198 (61.0) 960 (52.5) 

Cognitive Status*  

CN 1,367 (69.6) 1,126 (48.9) 

MCI 18 (0.9) - 

CI 385 (19.6) 
 

1,177 (51.1) 
 AD or other dementia 152 (7.3) 

Unclear 189 (9.7) - 

Other** 5 (0.3) - 

 

Table 2. APOE distribution by population and AD case status of individuals with known 

APOE genotype. A p-value for two-sample population proportion Z-score test in individuals age 

75 years and older is provided for comparisons between affected Amish vs. non-Amish cases in 

addition to unaffected Amish vs. non-Amish controls. An asterisk (*) denotes a significant 

difference in proportion at α = 0.05. 

APOE 

Genotype 

Affected 

Amish  

n (%)  

Non-Amish 

cases n (%)  

p-value Unaffected 

Amish n (%)  

Non-Amish 

controls n 

(%)  

p-value 

e2|e2 0 (0.0) 0 (0.0) - 1 (0.1) 3 (0.7) 0.052 

e2|e3 14 (10.2) 21 (3.9) 0.003* 84 (9.0) 52 (12.7) 0.038* 

e2|e4 2 (1.5) 13 (2.4) 0.503 15 (1.6) 12 (2.9) 0.112 
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e3|e3 70 (51.1) 201 (37.1) 0.003* 632 (67.4) 264 (64.2) 0.258 

e3|e4 42 (30.7) 240 (44.3) 0.004* 195 (20.8) 78 (19.0) 0.447 

e4|e4 9 (6.6) 67 (12.4) 0.055 11 (1.2) 2 (0.5) 0.234 

Total e2 16 (5.8) 34 (3.1) - 101 (5.4) 70 (8.5) - 

Total e3 196 (71.5) 663 (61.2) - 1543 (82.2) 658 (80.0) - 

Total e4 62 (22.6) 387 (35.7) - 232 (12.4) 94 (11.4) - 

 

Relatedness 

 Average kinship coefficient across all individuals in the Amish study population was 

calculated to be 0.003703 which is equivalent to between third and fourth cousins. Average 

kinship coefficient across subpopulations by primary study site and CI status were similar 

(Supplemental Table 1). 

 

Genetic Risk Score 

After GRS construction, we observe, in general, less variance among Amish GRS, 

regardless of affection status, than in the non-Amish comparison group (Figure 1). Though the 

mean and median GRS are greater for the affected Amish than in the unaffected Amish, this 

difference is not statistically significant at α = 0.05. Further, the Amish population has no 

individuals among the 13 highest values of the GRS in the combined analysis, regardless of 

affection or case status. 

 

Figure 1. Distribution of Genetic Risk Scores by Amish and Alzheimer Disease Status. 

Genetic risk scores were constructed using only genome-wide significant single nucleotide 

polymorphisms. Only individuals age 75 years or older were included. GRS was able to 

distinguish (p=0.013) between the non-Amish cases and controls but not between the Amish 

affected and unaffected nor the Amish affected and non-Amish controls. 
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Polygenic Risk Score 

We observed that the values of PRS in the affected Amish individuals are lower than in the 

non-Amish cases. The values of PRS in the non-Amish controls are generally lower than that of 

the unaffected Amish. Overall, the difference in PRS values between the Amish affected and 

unaffected is much smaller than between the non-Amish cases and controls. The 29 highest PRS 

values all belonged to non-Amish individuals with the 13 highest of these belonging to non-

Amish cases. PRS was unable to distinguish between affection status in the Amish (p = 0.7) but 

was able to distinguish between case status in the non-Amish population (p < 0.0001). PRS was 

also able to distinguish (p < 0.0001) between affected Amish and non-Amish controls in addition 

to non-Amish cases and unaffected Amish (p < 0.0001). 

 

Figure 2. Distribution of Polygenic Risk Scores (PRS) by Amish and Alzheimer Disease 

Status. Polygenic risk scores were constructed using a pruning and thresholding approach on all 

variants, excluding those within 500 kilobases of either APOE single nucleotide polymorphism. 

Only individuals age 75 years or older were included. 

 
 

We evaluated the association of the GRS, PRS, sex, age, and APOE genotype with the 

primary outcome of AD or other dementia by building a series of logistic regression models, 

after stratification by source population. Age was associated with the primary outcome across all 

models at α = 0.05.  

We found that none of the APOE genotype categories are associated with affected vs. 

unaffected status in the Amish whereas each of the APOE genotype categories including at least 

one e4 allele were associated with case status in the non-Amish population at α = 0.1 (e2|e4 p-

value = 0.062; e3|e4 p-value = 0.004; e4|e4 p-value = 0.0003).  
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The GRS and PRS were associated (p < 0.05) with the primary outcome across all tested 

models including PRS in the non-Amish populations. However, GRS and PRS were not 

significantly associated with the primary outcome in the Amish population, despite having an 

odds ratio (OR) > 1 across all models including GRS and PRS. 

We also evaluated goodness of fit through AUC across each of these models (Table 3). We 

determined that the AUC of the sex and age only (covariate) model is larger in the Amish (0.693) 

than the non-Amish population (0.601). By contrast, we determined that the AUC for an APOE 

genotype only model is larger in the non-Amish population (0.712) than in the Amish population 

(0.594). The GRS models performed similarly in the Amish and non-Amish populations. A 

higher AUC was observed for the PRS models in the non-Amish population than in the Amish 

population. 

 

Table 3. Goodness of fit of predictive models by sex, age, APOE genotype, genetic risk 

score, and polygenic risk score. For each constructed logistic regression model, area under the 

curve of a receiver operating characteristic curve is presented. The outcome of interest in each 

model is probable or confirmed Alzheimer disease or other dementia. Abbreviations: COV = Sex 

and age covariates; GRS = genetic risk score including only genome-wide significant single 

nucleotide variants, excluding APOE variants; PRS = polygenic risk score using a pruning and 

thresholding approach, excluding single nucleotide polymorphisms within 500 kilobases of 

APOE variants. 

Group COV APOE  COV + 

APOE 

GRS  GRS + 

APOE 

GRS + 

COV 

GRS + 

COV + 

APOE  

PRS PRS + 

APOE 

PRS + 

COV 

PRS + 

COV + 

APOE  

Amish  0.693 0.594 0.741 0.534 0.608 0.695 0.744 0.506 0.595 0.693 0.741 

Non-

Amish 

0.601 0.712 0.765 0.551 0.731 0.613 0.769 0.687 0.788 0.710 0.812 

 

DISCUSSION 

This study characterized and evaluated the genetic risk for AD in an Amish population and 

compared it to a non-Amish population of predominantly European ancestry. The results indicate 

that there exists not only less variation in APOE genotype within the Amish, but also that APOE 

genotype may not play as large of a role in development of AD or other dementia as within a 

typical European ancestry population. Our results support the notion that APOE has a smaller 

effect on AD risk in the Amish population than in a non-Amish population,30  possibly due to the 

lower prevalence of APOE e4 in the Amish population. 

Non-APOE GRS and PRS have only moderate predictive value on their own but in addition 

to covariates, they do provide a meaningful increase in predictability in a logistic regression 

model for case/affected status. We determined that, based on a GRS of genome-wide significant 

SNPs from a recent meta-analysis of GWASs,17 there exists more variation among genetic risk in 

a non-Amish population than in an Amish population. When extending to a PRS analysis, this 
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phenomenon is much more prominent. The PRS model also added additional distinguishing 

ability in AD or other dementia status in the non-Amish population. We also determined that a 

non-APOE GRS and PRS do not seem to differ greatly between affected Amish and non-Amish 

cases, suggesting that risk scores created using effect size weights derived from non-Amish 

European samples may not accurately predict risk in the Amish. This is somewhat similar to 

previous findings29 of GRSs that included APOE but highlights that APOE still plays an 

important role in AD prediction in the Amish.  

In predicting the primary outcome of AD or other dementia, our results suggest that age is 

the most crucial risk factor in the Amish population whereas APOE and PRS bear greater 

importance in the non-Amish population. We observe much worse predictive ability when using 

a PRS that includes SNPs that do not meet genome-wide significance criteria in the non-Amish 

population compared to the Amish population, suggesting that the underlying genetic 

architecture for AD risk is dissimilar to that of a general European ancestry population, 

especially among SNPs that do not meet criteria for genome-wide significance in the non-Amish 

population. 

The lower prediction ability in the Amish for GRS and PRS comprising known AD risk 

factors suggests that the risk profile in the Amish is significantly different – either through 

variation in the effect size for these known alleles, the existence of unidentified AD risk factors, 

or, likely, both. When combining this with information that the Amish have lower prevalence of 

cognitive impairment and dementia,29,30,56 it becomes clear that between their genetic risk factors 

and lifestyle, the Amish are somewhat protected from these outcomes in a way that using risk 

estimates  from a general European ancestry population cannot explain. This warrants further 

investigation as the Amish are a sub-population of European immigrants that have practiced 

endogamy since arriving in the United States. Our results add to mounting evidence that there is 

genetic risk in the Amish that is not captured by genetic risk scores derived from non-Amish 

populations. 

We conclude that there are evident differences in the genetic architecture for AD risk in the 

Amish compared to a non-Amish European ancestry population, especially in terms of APOE 

distribution, PRS distribution, and their conferred risk. Future genomic studies including the 

Amish should consider using effect estimates from an Amish analysis to determine if there are 

substantial differences in predictive ability than are seen after PRS construction using effect 

estimates from a non-Amish population. Identification of why the Amish appear to be relatively 

protected from AD and cognitive impairment, in general, warrants further study to identify risk 

factors enriched in the Amish that may enhance previously identified pathways important in the 

development of AD and identify additional pathways or mechanisms that contribute to or protect 

against cognitive decline. By extending this cohort through new recruitment and longitudinal 

follow-up, the power of this cohort to identify both novel risk and protective genetic loci, and 

potential predictors of progression from normal to AD will be increased. This will allow for 

better detection of rare effects and better understanding of the differences in the genetic risk of 

AD between the Amish and non-Amish populations.  
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