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 47 
Abstract: 48 
As the national reference laboratory for febrile illness in Madagascar, we processed samples 49 
from the first epidemic wave of COVID-19, between March and September 2020. We fit 50 
generalized additive models to cycle threshold (Ct) value data from our RT-qPCR platform, 51 
demonstrating a peak in high viral load, low-Ct value infections temporally coincident with peak 52 
epidemic growth rates estimated in real time from publicly-reported incidence data and 53 
retrospectively from our own laboratory testing data across three administrative regions. We 54 
additionally demonstrate a statistically significant effect of duration of time since infection onset 55 
on Ct value, suggesting that Ct value can be used as a biomarker of the stage at which an 56 
individual is sampled in the course of an infection trajectory. As an extension, the population-57 
level Ct distribution at a given timepoint can be used to estimate population-level 58 
epidemiological dynamics. We illustrate this concept by adopting a recently-developed, nested 59 
modeling approach, embedding a within-host viral kinetics model within a population-level 60 
Susceptible-Exposed-Infectious-Recovered (SEIR) framework, to mechanistically estimate 61 
epidemic growth rates from cross-sectional Ct distributions across three regions in Madagascar. 62 
We find that Ct-derived epidemic growth estimates slightly precede those derived from incidence 63 
data across the first epidemic wave, suggesting delays in surveillance and case reporting. Our 64 
findings indicate that public reporting of Ct values could offer an important resource for 65 
epidemiological inference in low surveillance settings, enabling forecasts of impending 66 
incidence peaks in regions with limited case reporting.  67 
 68 
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 93 
Introduction.  94 

Madagascar reported its first case of coronavirus disease 2019 (COVID-19) on 19 March 95 
2020, in part with a government-sponsored surveillance platform testing all incoming 96 
international travelers [1]. Subsequent to this introduction, the first wave of the COVID-19 97 
epidemic was geographically staggered, with early cases in May 2020 largely concentrated in the 98 
eastern city of Toamasina, part of the Atsinanana administrative region, followed by a more 99 
severe outbreak which peaked in July 2020 in the capital city of Antananarivo, part of the 100 
Analamanga administrative region. Test positive rates exceeded 50% at the epidemic peak for 101 
both regions and at the national level, indicating widespread underreporting [2], a common 102 
feature of COVID-19, for which some 20-40% of infections are thought to be entirely 103 
asymptomatic [3–6]. Early reporting on the first epidemic wave in Madagascar indicated an 104 
extremely high (56.6%) proportion of asymptomatic cases, based on targeted surveillance of 105 
symptomatic patients and their contacts [1].  106 

Madagascar closed its borders to international air travel on 20 March 2020 and, 107 
subsequent to identification of the first case, implemented several non-pharmaceutical 108 
interventions aimed at curbing epidemic spread, including non-essential business closures, 109 
curfews, stay-at-home orders, and mandates for social distancing. These restrictions were relaxed 110 
after the first epidemic subsided in September 2020 but have since been re-implemented in the 111 
face of a second epidemic wave. In other regions of the globe, widespread efforts to estimate the 112 
effective reproduction number, Rt, for COVID-19 at national, regional, and local levels [7] have 113 
been used to inform public health interventions and retrospectively assess their effectiveness [8]: 114 
disease transmission rates are increasing at Rt > 1 and decreasing at Rt < 1. Estimation of Rt, or 115 
its related counterpart, r, the epidemic growth rate [9,10], from available case count data is 116 
challenged by limitations or variability in surveillance, uncertainty surrounding the shape of 117 
disease parameter distributions, and delays in reporting [8]. Despite the enormity of these 118 
challenges in the limited surveillance settings common to many lower- and middle-income 119 
countries (LMICs), real-time estimation of Rt from COVID-19 case-counts has been attempted 120 
for most regions of the globe [7] and has been implemented locally in Madagascar [11].  121 

Recent methodological advances have introduced a new resource to the epidemiological 122 
toolkit by which to conduct real time estimation of epidemic trajectories [12], one that leverages 123 
the often-discarded cycle threshold, or Ct, value, that is returned as an-inverse log-10 measure of 124 
viral load from all RT-qPCR-based platforms [13]. After observing that SARS-CoV-2 viral 125 
loads—and, as a consequence RT-qPCR Ct values—demonstrate a predictable trajectory 126 
following the onset of infection [14–16], Hay et al. 2020 showed that the Ct value can be used as 127 
a biomarker of time since infection and, consequently, be leveraged to back-calculate infection 128 
incidence, in a manner analogous to previous work leveraging serological titer information in 129 
other systems [17–19]. Probabilistically, a randomly-selected infection is more likely to be early 130 
in its infection trajectory when identified during a growing epidemic and later in its trajectory in 131 
a declining epidemic [20,21], and as a consequence, the population-level distribution of Ct values 132 
for any viral infection is expected to shift across the duration of an epidemic. Indeed, low-Ct-133 
high-viral-load infections have been observed to coincide with growing COVID-19 epidemics 134 
and high-Ct-low-viral-load infections with declining epidemics in several settings [15,22,23]. 135 
Exploiting this phenomenon, Hay et al. 2020 developed a method that embeds a within-host, 136 
viral kinetics model in a population-level disease transmission model to derive epidemic 137 
trajectories from cross-sectional Ct samples. Because this method depends on quantitative 138 
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information captured in the biological sample itself, rather than the relationship between case 139 
count and reporting date, Ct value estimation more accurately predicts true epidemic trajectories 140 
than traditional incidence estimation in settings with uneven surveillance [12].  141 

During the early phase of the COVID-19 epidemic in Madagascar, the Virology Unit 142 
laboratory (National Influenza Centre) at the Institut Pasteur of Madagascar (IPM) processed the 143 
majority of all SARS-CoV-2 testing samples derived from 114 districts across 6 major provinces 144 
in the country. Consistent with findings reported elsewhere [15,22,23], we observed a 145 
population-level decline in Ct values derived from RT-qPCR-testing in our laboratory, coincident 146 
with the epidemic peak across the first wave of COVID-19 in Madagascar. We here adopt the 147 
methods presented by Hay et al. 2020 to estimate COVID-19 epidemic growth rates at the 148 
national level (2018 population ~26 million [24]) and in two major administrative regions of 149 
Madagascar: Atsinanana (east coast of Madagascar; 2018 population ~1.5 million [24]) and 150 
Analamanga (including Antananarivo, capital city; 2018 population ~3.6 million [24]). These 151 
two regions comprised the geographic epicenter of the first COVID-19 wave in Madagascar; 152 
data from other regions were too sparse for epidemiological inference. We evaluate the 153 
robustness of this Ct-based method in comparison with epidemic growth rates derived from more 154 
traditional case-count methods applied to the same regions. 155 
Materials and Methods. 156 
 157 
IPM SARS-CoV-2 Ct Data. 158 
 Methods for collection, transport, and processing of SARS-CoV-2 testing samples at IPM 159 
have been previously described [1]. Briefly, nasopharyngeal and oropharyngeal swabs were 160 
collected at local administrative hospitals in viral transport medium and transported at 4oC to our 161 
laboratory for testing. Between 18 March and 30 September 2020, we conducted 34,563 RT-162 
qPCR tests targeting the E, N, Orf1a/b, or S gene of SARS-CoV-2. These tests were carried out 163 
across 20,326 discrete samples (many of which were tested across multiple platforms targeting 164 
multiple genes), and 17,499 discrete patients, a subset of whom were tested at multiple 165 
timepoints. The majority of tests were conducted on individuals who independently sought 166 
testing, due to concerns about exposure or symptom presentation, though a subset of samples 167 
were derived from efforts to trace and test contacts of positive travelers in the early stages of the 168 
pandemic [1]. The reason each patient sought testing was not recorded in the original data. 169 

Due to a dearth of available reagents in the early stages of the epidemic, our lab used 170 
seven different WHO-recommended kits and corresponding protocols [25] to assay infection in 171 
these samples [1]: Charity Berlin [26], Hong Kong University [27], Da An gene (Da An Gene 172 
Co., Ltd. Sun Yatsen University, Guangzhou, China), LightMix® SarbeCoV E-gene plus EAV 173 
control (TIB Biolmol, Berlin, Germany), SarbeCoV TibMolBiol (TIB Biolmol, Berlin, 174 
Germany), TaqPath™ COVID- 19 Combo kit (Life Technologies Ltd, Paisley, UK), and 175 
GeneXpert (Cepheid, Sunnyvale, CA, USA).  176 
 Some 9,493 of those tests, corresponding to 5,310 individuals, were RT-qPCR positive 177 
for SARS-CoV-2 infection based on the cut-off positive value for the test in question (Charity 178 
Berlin: <= 38; Hong Kong: <=40; Da An: <= 40; LightMix SarbeCoV/SarbeCoV TibMolBiol <= 179 
38; TaqPath <= 37 for 2 of 3 targets; GeneXpert = <= 40) . All analyses presented in this paper 180 
are derived from these positive test results, as Ct-values were not reliably recorded following 181 
negative results. We further subset our data as appropriate for each analysis of interest. 182 
 183 
 184 
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 185 
Estimating growth rates from IPM case data. 186 

We first sought to obtain an estimate of new daily cases reported from our laboratory to 187 
the Malagasy government between 18 March and 30 September 2020. To this end, we reduced 188 
our dataset to include only sampling from the first reported positive test date for each unique 189 
patient; we assumed that reinfection was unlikely within the short duration of our study and that 190 
any subsequent positive tests were reflective of longer-duration infections in repeatedly sampled 191 
individuals. A patient was considered “positive” for SARS-CoV-2 infection if any test for any 192 
SARS-CoV-2 target was positive, and the results of the other samples were not inconsistent with 193 
this finding. We then summed cases by date at the national level and for two administrative 194 
regions (Atsinanana and Analamanga) that reported the majority of total cases across the study 195 
period overall. In total, 5,276 cases were reported from our laboratory across the study period at 196 
the national level, 3,505 in Analamanga region and 758 in Atsinanana. Daily cases for the two 197 
target regions and for the nation at large are summarized in Fig. 1. 198 
 199 

 200 
Fig. 1. Epidemic growth rate estimates from case count data across the first wave of COVID-19 in 201 
Madagascar. (A.) Map of Madagascar, colored by regions of case count tabulation, showing the Atsinanana region 202 
(orange), the Analamanga region (green), and the National region (blue); note that data analyzed at the National 203 
level includes data from both Atsinanana and Analamanga regions, as well as the rest of Madagascar. (B.) Time 204 
series of new case incidence (lefthand y-axis) across the first wave of COVID-19 in Madagascar (18 March – 30 205 
September 2020), across three focal regions. Darker shading shows data derived from the IPM RT-qPCR platform, 206 
while lighter shading depicts data nationally reported and consolidated on [11]. Righthand y-axis shows 207 
corresponding epidemic growth rate computed from case count data in EpiNow2 [28], with darker line 208 
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corresponding to computation from IPM data and lighter line to computation from publicly reported data; 209 
background shading around each line depicts the corresponding 50% quantile by EpiNow2 [28].  210 
  211 
 We applied the opensource R-package EpiNow2 [28] to the daily incidence data to 212 
estimate the epidemic growth rate for COVID-19 across the study period. EpiNow2 builds on 213 
previous Rt estimation packages [29], using a non-stationary Gaussian process model to estimate 214 
the instantaneous time-varying reproduction number, Rt, and the corresponding time-varying 215 
epidemic growth rate, r, while incorporating uncertainty in the generation interval. Following 216 
best recommended practices [8], we modeled the SARS-CoV-2 incubation period as a log-217 
normal distribution with a mean of 1.621 days (sd=0.064) and a standard deviation of 0.418 days 218 
(sd=0.061) [30] and the generation time interval as a gamma distribution with a mean of 3.635 219 
(sd=0.71) and a standard deviation of 3.075 (0.77) [31]. Since the IPM testing data reported the 220 
actual date of sample collection, no reporting delay was incorporated in our growth rate 221 
estimation.  222 
 223 
Epidemic trajectories from publicly reported data. 224 

To compare our laboratory-derived epidemic growth estimates with those undertaken in 225 
real time in Madagascar, we collaborated with colleagues who recorded data on the number of 226 
new PCR-confirmed cases reported daily on national television by the Ministry of Health of the 227 
Government of Madagascar across the duration of the first epidemic wave. From these daily case 228 
estimates, we used the EpiNow2 package [28] to again estimate the epidemic growth rate across 229 
the same study period, assuming the same incubation period and general time interval referenced 230 
above [30,31]. For these estimates, we followed methods outlined in [32], to additionally model 231 
a reporting delay from a log-normal distribution fit to 100 subsamples with 1000 bootstraps from 232 
a publicly available linelist that collates data globally for COVID-19 cases for which both 233 
infection onset and notification dates are available [33]. 234 
 235 
Standardizing Ct values across tests and targets. 236 

In our next series of analyses, we leveraged information captured in the individual Ct 237 
value returned from each positive test. To control for extensive variation in qPCR test and target 238 
(each of which reported varying thresholds for positivity), we carried out in vitro experiments 239 
using SARS-CoV-2 isolates from infected patients reporting similar Ct values on the TaqPath 240 
platform at the time of sampling. Briefly, three SARS-CoV-2 isolates (designated hCoV-241 
19/Madagascar/IPM-00754/2021, hCoV-19/Madagascar/IPM-01263/2021 and hCoV-242 
19/Madagascar/IPM-01315/2021) were obtained and cultured in Vero cells as previously 243 
described [34]. Upon infection with SARS-CoV-2, the culture medium was replaced by infection 244 
medium containing DMEM, 5 % FBS, antibiotics, 2.5 μg/ml Amphotericin B (Gibco) and 16 245 
μg/ml TPCK-trypsin (Gibco). Virus-containing supernatants, as determined by the presence of 246 
cytopathic effect (CPE), were harvested 7 days after infection by centrifugation at 1500 r.p.m. 247 
for 10 min. RNA was subsequently extracted from supernatant and subjected to serial dilutions 248 
and subsequent testing on six of the seven RT-qPCR platforms used in our population-level 249 
dataset (LightMix SarbeCoV and SarbeCoV TibMolBiol were considered equivalent and tested 250 
only using the current version of the kit: SarbeCoV TibMolBiol).  We fit linear mixed effect 251 
regression models in the lme4 [35] package in R to the resulting Ct curves returned from each 252 
testing platform across the dilution series and used the fitted slope and y-intercept of each 253 
regression equation to reproject all Ct values in our dataset to correspond to results returned from 254 
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the TaqPath N gene test. We report, analyze, and visualize these TaqPath N corrected Ct values 255 
in all analyses. 256 
 257 
Generalized additive modeling of the longitudinal Ct distribution by region. 258 

After observing a population-level dip in the average Ct value recovered from our testing 259 
platform, roughly coincident with the epidemic peak in the three regions of interest, we asked the 260 
broad question, what is the population level time-trend of SARS-CoV-2 Ct values across these 261 
three regions? To address this question, we compiled all positive tests from the first date of 262 
positive testing for each patient, recording the date, region, test, and target that corresponded to 263 
each corrected Ct value, in addition to the numerical ID and the symptom status (asymptomatic, 264 
symptomatic, or unknown) of the patient from which it was derived. Symptom statuses were 265 
recorded by medical staff at the timepoint of sampling and merely indicated whether or not the 266 
patient presented with symptoms; thus, ‘asymptomatic’ classification did exclude the possibility 267 
that the same patient reported symptoms at later or earlier timepoints across the course of 268 
infection. The resulting data consisted of 8,055 discrete Ct values, corresponding to 5,280 269 
patients, most of whom were tested using multiple tests and/or gene targets of interest. Ct values 270 
for these positive test results ranged from 6.36 to 39.91. When reprojected to TaqPath N levels, 271 
the range shifted from 7.82 to 39.99, such that 507 Ct values classed as “positive” by the cutoff 272 
thresholds on other platforms exceeded the Ct <=37 threshold for positivity on the TaqPath 273 
platform. These samples were nonetheless retained for generalized additive modeling (GAM) of 274 
longitudinal Ct trends but GAM-projected Ct values still exceeding the TaqPath cutoff were later 275 
excluded in mechanistic modeling of transmission trends fitted to positive data.  276 

Using the mgcv package [36] in the R statistical program, we next fit a GAM in the 277 
gaussian family to the response variable of corrected Ct value, incorporating a numerical 278 
thinplate smoothing predictor of date, and random effects on the categorical variables of test 279 
(Charity Berlin, Hong Kong, Da An, LightMix SarbeCoV, SarbeCoV TibMolBio, TaqPath, or 280 
GeneXpert), target (E,N,Orf1a/b, or S), and individual patient ID. We refit the model to three 281 
different subsets of the data, encompassing the Atsinanana and Analamanga regions, as well as 282 
the entire National data as a whole. We then used the resulting fitted GAMs to simulate 283 
population-level Ct distributions for each date in our dataset, excluding the effects of test and 284 
target in the predict.gam function from mgcv. This produced a test- and target-controlled average 285 
Ct estimate for each positive patient at the timepoint of sampling. We used these GAM-simulated 286 
Ct distributions to carry out mechanistic model fitting in subsequent analyses, as described 287 
below, excluding 15 patients with Ct projections >37, which exceeded the positive threshold for 288 
the TaqPath N gene assay (our standard). 289 
 290 
Generalized additive modeling of Ct value since time of infection onset. 291 
 To validate observations from the literature which indicate that the viral load and 292 
corresponding Ct value follow a predictable trajectory after the onset of SARS-CoV-2 infection 293 
[14,15] within our own study system, we next concentrated analyses on a subset of 4,822 Ct 294 
values (corresponding to 2,842 unique samples derived from 2,404 unique patients), for which 295 
the timing of symptom onset was also recorded. For each of these samples, we randomly drew a 296 
corresponding incubation time from the literature-derived log-normal distribution above [30] to 297 
approximate the timing of infection onset. To answer the question, how does Ct vary with time 298 
since symptom onset?, we fit a GAM in the gaussian family to the resulting data with a response 299 
variable of Ct and a numerical thinplate smoothing predictor of days since infection onset, as 300 
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well as random effects of test, target, and patient ID. After fitting, we used the predict.gam 301 
function from the mgcv package, excluding the effects of target and test, to produce a 302 
distribution of Ct values corresponding to times since symptom onset (one per each unique 303 
patient ID). We used these Ct trajectories to estimate parameters for the within-host viral kinetics 304 
model described in final methods section below. 305 
 306 
Generalized additive modeling of the relationship between Ct value and symptom status. 307 
 We next asked the question, does Ct value vary in symptomatic vs. asymptomatic cases?  308 
Our first investigation of this question required only reconsideration of the individual trajectory 309 
GAM described above to include additional predictor variables of age and symptom status, in 310 
addition to days since infection onset, target, and test. Since symptom status was recorded only at 311 
the first timepoint of sampling for each individual, we limited our individual trajectory dataset to 312 
a 4,072 datapoint subset of Ct values from 2,404 discrete patients reporting both date of 313 
symptom/infection onset and symptom status at the timepoint of sampling; as mentioned 314 
previously, ‘asymptomatic’ classification in our dataset included patients reporting symptoms 315 
from earlier or later timepoints prior to or following the sampling date. Thus, this GAM tested 316 
whether symptom status and Ct value interacted merely as a function of the timing since 317 
symptom onset (e.g. high Ct values were recovered from patients either very early or late in their 318 
infection trajectory), or whether independent interactions between symptomatic vs. 319 
asymptomatic infections and Ct were also present, while also controlling for age.  320 
 After observing results, we extended this analysis by applying another GAM in the 321 
gaussian family to a 7,937 datapoint subset of the data used to model longitudinal Ct trajectories 322 
at the National level, which additionally reported symptom status (symptomatic vs. 323 
asymptomatic) at the timepoint of first sampling for 5,202 unique patients. Corrected Ct values in 324 
this data subset ranged between 7.82 and 39.99. This GAM incorporated a response variable of 325 
Ct and random effects predictor smoothing terms of symptom status, test, target, and patient ID, 326 
as well as a numerical smoothing predictor for age of the infected patient. 327 
 328 
Estimating epidemic growth rates from cross-sectional Ct values. 329 

Finally, following newly-developed methods [12], we sought to estimate the epidemic 330 
growth rate across our three regions of interest using cross-sectional Ct distributions and compare 331 
these results against estimates derived from case count methods described above. To this end, we 332 
first fit the within-host viral kinetics model described in Hay et al. 2020 to the test- and target-333 
controlled Ct values produced from the above GAM describing Ct as a function of time since 334 
infection. We used the resulting parameter estimates as informed priors (Table S1) which we 335 
next incorporated into two population-level SARS-CoV-2 transmission models applied to our 336 
time series data across the three Madagascar regions: a compartmental SEIR model and a more 337 
flexible Gaussian process model [12]. Beyond the viral kinetics parameters, we adopted less-338 
constrained priors from the original paper [12] for other epidemiological parameters included in 339 
both population-level models (Table S1), then re-fit both transmission models in turn to cross-340 
sectional weekly Ct distributions derived from the Atsinanana, Analamanga, and National-level 341 
datasets. We fit both models to each dataset using an MCMC algorithm derived from lazymcmc 342 
R-package [37], as described in the original paper [12], applying the default algorithm to the 343 
Gaussian process fit and a parallel tempering algorithm able to accurately parse multimodal 344 
posterior distributions to the SEIR fit. Four MCMC chains were run for 500,000 iterations in the 345 
case of the Gaussian process model and three MCMC chains for 80,000 iterations each in the 346 
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case of the SEIR model, then evaluated for convergence via manual inspection of the resulting 347 
trace plots and verification that , the potential scale reduction factor, had a value <1.1 and the 348 
effective population size had a value >200 for all parameters estimated. 349 

After confirming chain convergence, we computed epidemic growth rates from the 350 
resulting estimated infection time series and compared results with those derived using more 351 
traditional case count methods outlined above. Code and supporting datasets needed to reproduce 352 
all analyses are available for download on our opensource GitHub repository at: 353 
github.com/carabrook/Mada-Ct-Distribute. 354 
 355 
Results. 356 
Epidemic trajectories from case count data. 357 

The first wave of COVID-19 infections in Madagascar, between March and September 358 
2020, was characterized by two subsequent outbreaks: one early, May 2020 peak centered in the 359 
eastern port city of Toamasina (region Atsinanana), followed by a second peak in July centered 360 
in the capital city of Antananarivo (region Analamanga) (Fig. 1) [1]. Estimation of the epidemic 361 
growth rate showed broad agreement in trends at both the national and regional levels, whether 362 
computed from IPM testing data assuming perfect reporting of testing date, or from publicly 363 
reported national data, including a reporting delay parameterized from a global opensource 364 
database (Fig. 1) [33]. Since IPM data comprised just over 30% of nationally reported data 365 
throughout the first six months of the Madagascar epidemic, this concurrence in growth rates 366 
was unsurprising but nonetheless validates the applicability of the globally parameterized 367 
reporting delay for use in Madagascar. In both datasets, we estimated the national level epidemic 368 
growth rate to be increasing in the months preceding the two epidemic sub-peaks (in April and in 369 
June) and declining beginning in mid-July after the last peak in national case counts (Fig. 1). 370 
When IPM data were considered at the regional level, we discovered the April peak to be 371 
concentrated in Atsinanana, preceding the Toamasina outbreak and the June peak to be 372 
concentrated in Analamanga preceding the Antananarivo outbreak. Growth rate estimation from 373 
publicly reported data confirmed this pattern for Analamanga but was not possible for the 374 
Atsinanana region due to a lack of clarity in regional reporting.  375 

 376 
Standardizing Ct values across tests and targets. 377 
 All RT-qPCR platforms used in our laboratory demonstrated increases in Ct value 378 
corresponding to 10-fold dilutions of RNA extracted from the original virus isolate (Table S2), 379 
though the estimated slope and y-intercept of each regression varied across the tests and targets 380 
considered, with the steepest slope recovered from GeneXpert N-gene tests and the shallowest 381 
from the Hong Kong ORF1a/b kits (Fig. S1, Table S3). We used the corresponding slope and y-382 
intercept for each test and platform to transform Ct values in all subsequent analyses into values 383 
predicted for a TaqPath N-gene platform. 384 
 385 
Longitudinal population-level trends in SARS-CoV-2 Ct values across the epidemic wave. 386 
 We observed a population-level dip in Ct values obtained from our SARS-CoV-2 RT-387 
qPCR platform concurrent with the regional peak in cases in May for Atsinanana and June for 388 
Analamanga, with both peaks observable in the National data (Fig. 2A). GAMs fit to Atsinanana, 389 
Analamanga, and National data subsets explained, respectively, 98.8, 98.9, and 98.9% of the 390 
deviation in the data (Table S4). All three GAMs demonstrated statistically significant effects of 391 
date, test, and individual patient ID, which contributed to the total deviance capture by each 392 
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model. GAMs fit to the Analamanga and National data subsets showed an additional significant 393 
effect of target on the Ct value. Partial effects plots were computed from the resulting GAMs 394 
(Fig. S2) following methods described in [38] and demonstrated no significant effects of any 395 
particular test or target gene.  In general, most variation in Ct value beyond that of the individual 396 
patient was driven by the significant effect of date across all regions (Table S4). 397 
 398 

 399 
Fig. 2. RT-qPCR SARS-CoV-2 Ct value as a biomarker of population-level epidemic pace and individual 400 
infection trajectory. (A.) Population-level SARS-CoV-2 corrected Ct values from IPM RT-qPCR platform across 401 
three Madagascar regions from March-September 2020. Ct values are colored by the test and shaped by the target 402 
from which they were derived (legend), though note that all Ct values were first corrected to TaqPath N gene range. 403 
Black trend line gives the output from a gaussian GAM fit to these data (Table S4), excluding the effects of target 404 
and test, which were also included as predictors in the model; 95% confidence intervals by standard error are shown 405 
in translucent shading. Partial effects of each predictor are visualized in Fig. S2. Righthand plots visualize partial 406 
effects of (B.) days since infection, (C.) patient age, and (D.) patient symptom status on Ct value from our individual 407 
trajectory GAM (Table S5). Significant predictors are depicted in light blue and non-significant in gray (Table S5). 408 
 409 
Individual trends in SARS-CoV-2 Ct values across the trajectory of infection. 410 
 The SARS-CoV-2 Ct value also demonstrated a predictable trajectory from the timing of 411 
onset of infection. Our GAM fit to data reporting a date of symptom onset (which we converted 412 
to a date of infection onset) and incorporating a predictor smoothing term of days since infection 413 
onset, and random effects of test, target, and patient ID explained 92.7% of the deviance in the 414 
data and demonstrated statistically significant effects of all predictor variables, including days 415 
since infection onset (Table S5). These findings confirmed that Ct value can be used as a 416 
biomarker of time since infection, validating the applicability of methods outlined in [12] for our 417 
Madagascar data. 418 
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 419 
Relationship between symptom status and SARS-CoV-2 Ct value. 420 
 As an extension of the individual trajectory analysis, we hypothesized that Ct value 421 
would likely be linked to symptom status, since many infection trajectories begin with a brief 422 
presymptomatic phase, progress to symptom presentation, then become asymptomatic during 423 
recovery [14,15]. The first GAM we employed to address this question considered age and 424 
symptom status as additional predictor variables in our individual trajectory analysis. This final 425 
GAM explained 98.5% of the deviation in the data and included significant effects of days since 426 
infection onset, symptom status, test, target, and patient ID (Table S5). Despite the significance 427 
of symptom status as a predictor variable in the GAM overall, partial effects plots demonstrated 428 
no significant association between asymptomatic status and high Ct values or symptomatic status 429 
and low Ct values, while controlling for age (Fig. 2B, 2C, 2D). These results suggest that, in our 430 
dataset, Ct value varies predictably with an individual’s infection trajectory regardless of 431 
symptom classification or age of the patient, further validating its adoption as a robust biomarker 432 
of time since infection (Table S5). 433 
 We additionally extended this analysis to our National-level Ct dataset, including a 434 
predictor variable of symptom status, in addition to test, target, patient age, and patient ID in 435 
longitudinal GAMs. This model explained 98.9% of the deviation witnessed in the data, 436 
including significant effects of test, target, patient ID, and symptom status (Table S6). Test and 437 
target were here included as control variates only and cannot be considered for prediction, as 438 
both co-varied with date, which was not used as a predictor in this model. In this model, partial 439 
effects plots indicated a significant association of asymptomatic status with high Ct values and 440 
symptomatic status with low Ct values (Fig. S3), even when controlling for effects of age; as this 441 
larger dataset did not report date of symptom/infection onset, it is likely that this association co-442 
varied with the timing of infection onset, suggesting that previous reports of a high proportion of 443 
asymptomatic infections in Madagascar [1] could reflect a high proportion of pre- or post-444 
symptomatic infections. 445 
 446 
Epidemiological dynamics inferred from cross-sectional Ct distributions. 447 
 After confirming the predictable pattern of Ct value across an individual’s infection 448 
trajectory, and the predictable decline in population-level Ct in conjunction with the epidemic 449 
peak, we used our individual trajectory GAM to simulate a distribution of Ct values across a 50-450 
day duration of infection and fit the within-host viral kinetics model described in [12] to the 451 
resulting data (Fig. S4). The model demonstrated a good fit to the data, and estimated posterior 452 
distributions for viral kinetics parameters were largely on par with those used previously in 453 
models of SARS-CoV-2 dynamics in Massachusetts, though the modal Ct value at peak viral 454 
load was slightly lower in our Madagascar dataset (Fig S4; Table S1).  455 
 After fitting the within-host model, we next used longitudinal population-level GAMs 456 
(Fig. S2) to generate weekly cross-sectional Ct distributions, controlled for test and target, across 457 
our three regions of interest. As expected, weekly cross-sectional Ct distributions demonstrated a 458 
shift across the duration of the epidemic wave; with lower Ct values temporally correlated with 459 
high growth rates estimated from case count data (Fig. 3).   460 
 461 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 8, 2021. ; https://doi.org/10.1101/2021.07.06.21259473doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.06.21259473


 12 

 462 
Fig. 3. Population-level Ct distribution reflects epidemic dynamics of the first wave of COVID-19 across three 463 
Madagascar regions. (A.) Simulated weekly Ct distributions by Madagascar region, derived from population-level 464 
longitudinal GAMs (Fig. 2A), excluding random effects of test and target. (B.) Higher skew and lower median Ct 465 
from each cross-sectional Ct distribution in (A.) were loosely associated with higher epidemic growth rates from the 466 
corresponding week, here derived from EpiNow2 estimation from IPM case count data (Fig. 1B.) (C.) Cross-467 
sectional Ct distributions from Analamanga time series in (A.) were fit via Gaussian process (GP) and SEIR 468 
mechanistic models incorporating a within-host viral kinetics model. Modeled Ct distributions are shown as solid 469 
lines (GP=red; SEIR=purple), with 95% quantiles in surrounding sheer shading. Both models effectively recapture 470 
the shape of the Ct histogram as it changes (skews left) across the duration of the first epidemic wave. Model fits to 471 
the full time series of Ct histograms across all three regions are visualized in Fig. S7, S8, S9. 472 
 473 

Finally, we used the viral kinetics posterior distributions resulting from the within-host 474 
viral kinetics model fit as prior inputs into SEIR and Gaussian process population-level 475 
epidemiological models, which we fit to the weekly cross-sectional Ct data. MCMC chains 476 
generated in the fitting process demonstrated good convergence (Fig. S5, Table S7, Table S8) 477 
and produced posterior distributions for all parameters on par with those estimated in previous 478 
work (Table S1, Fig. S6), which effectively recaptured cross-sectional Ct value histograms across 479 
the target timeseries in all three regions (Fig. 3, Fig. S7-S9) [12]. From the resulting fitted 480 
models, we simulated epidemic incidence curves, which we used to compute growth rate 481 
estimates across the duration of the first epidemic wave in each of the three regions (Fig. 4). We 482 
compared these estimates to growth rates inferred from case count data; patterns from both SEIR 483 
and Gaussian process models were largely complementary, though the more flexible Gaussian 484 
process model demonstrated less extreme variation in epidemic growth rate. Both Ct-model fits 485 
demonstrated similar patterns to epidemic trajectories estimated from incidence data, with 486 
increasing growth rates in the months preceding both epidemic sub-peaks (April and June) and 487 
decreasing growth rates beginning in July. Nonetheless, growth rate estimates derived from the 488 
Ct model slightly preceded those estimated from case count data. The Ct model fits further 489 
predicted uncertainty in growth rate directionality towards the end of the study period for the 490 
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Analamanga and National-level data, while incidence estimation projected decreasing cases at 491 
this time. This finding suggests that cross-sectional Ct distributions indicated a possible epidemic  492 
resurgence which was overlooked by growth rates estimated from declining incidence. If 493 
incidence declined in part due to declining surveillance, as was the reality at the end of 494 
Madagascar’s first epidemic wave [1], only the Ct method remained robust to the possibility of 495 
epidemic renewal. 496 

 497 
Fig. 4. Epidemic growth rate estimates from mechanistic model fits to population-level Ct distributions across 498 
the first wave of COVID-19 in three Madagascar regions. (A.) Comparison of COVID-19 epidemic growth rates 499 
from March-September 2020, estimated from IPM (blue) and publicly reported (gray) case count data using 500 
EpiNow2 [28] with estimates derived from Gaussian process (GP; red) mechanistic model fit to the time series of Ct 501 
distributions (Fig. 3A). Median growth rates are shown as solid lines, with 50% quantile on case-based estimates 502 
and 95% quantile of the posterior distributions from Ct-based estimates in corresponding sheer shading. (B.) Growth 503 
rate estimates from individual SEIR Ct-model fits to each Ct-distribution shown in Fig. 3A; median growth rates are 504 
given as horizontal dashes, with the 95, 70, 50, and 20% of the posterior distribution indicated by progressively 505 
darker coloring. Estimates >0 (indicating growing epidemics) are depicted in gold and <0 (indicating declining 506 
epidemics) in purples. (C.) Raw case count data from the time series (dark=IPM data; light=publicly reported data) 507 
is shown for reference. 508 
 509 
Conclusions.  510 

Real-time estimation of epidemiological parameters, including the time-varying effective 511 
reproduction number, Rt, and the related instantaneous epidemic growth rate, r, has played an 512 
important role in guiding public health interventions and policies across many epidemic 513 
outbreaks, including COVID-19 [39–41]. In Madagascar, an opensource platform [11] was 514 
developed shortly after the introduction of COVID-19 in March 2020, to collate and visualize 515 
publicly reported data and estimate Rt using traditional methods applied to daily reported 516 
incidence [28,29]. We here compare the results from this platform applied to the first epidemic 517 
wave in Madagascar, with new estimates of the time-varying epidemic growth rate applied to our 518 
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own laboratory data across the first epidemic wave—including those derived using a novel 519 
method based on the cross-sectional Ct value distribution at the time of sampling [12].  520 

We find our new estimates to be largely congruent with those predicted from publicly 521 
reported data, demonstrating a pattern of increasing epidemic growth rates prior to a peak in 522 
cases, which occurred first in May 2020 in the Atsinanana region, followed by a second outbreak 523 
in July 2020 in the Analamanga region. Critically, our growth rate estimates derived using novel 524 
methods applied to the Ct distribution over time slightly precede those estimated from incidence 525 
data. As previous work has demonstrated Ct estimation to offer a more robust approximation of 526 
true dynamics under limited surveillance scenarios [12], these findings suggest that incidence-527 
based methods to estimate epidemic trajectories in Madagascar may be underestimating the true 528 
pace of the epidemic, likely as a result of underreporting. Additionally, Ct-based methods 529 
adopted by a single laboratory allow for estimation of epidemic growth rates even in the absence 530 
of publicly reported case counts: in October 2020, the Malagasy Ministry of Health shifted its 531 
daily COVID-19 case notifications to weekly, interfering with incidence-based approaches to 532 
estimate epidemic trajectories [11]. Ct-based approaches, instead, should be robust to this 533 
variation in reporting, offering a powerful tool for public health efforts in low surveillance 534 
settings. Indeed, our analysis demonstrates that Ct-based epidemic growth rates show uncertain 535 
directionality towards the end of the first wave of COVID-19 in Madagascar, presaging eventual 536 
epidemic resurgence, while incidence-based rates categorically declined due to both truly 537 
declining cases and declining surveillance. Incidence-based growth rate estimation ceased during 538 
the continued limited surveillance period from October 2020 through March 2021 [11]; had Ct-539 
based methods been available at the time, it is possible that the current second wave could have 540 
been predicted and mitigated by earlier rollout of public health interventions.  541 

Statistical analysis of our Ct data indicates that Ct values vary predictably with days since 542 
onset of infection, allowing viral kinetics data to be leveraged for population-level estimation of 543 
epidemiological patterns. In our system, this pattern held even after controlling for the effects of 544 
age and symptom status on the Ct trajectory, further validating the applicability of Ct value as an 545 
indicator of time since infection. Nonetheless, in future work, it mat be possible to fit unique 546 
viral kinetics trajectories for different classes of people; for example, older age cohorts or 547 
cohorts of people infected with more transmissible variants may be better represented by lower 548 
average Ct trajectories than the population as a whole [15,42]. Our application of generalized 549 
additive models to both individual infection trajectory and population-level Ct distributions 550 
offers an effective means by which to control for variation in test and target across diverse RT-551 
qPCR platforms to generate Ct values for epidemiological inference which represent a reliable 552 
average of population-level patterns overall.   553 

We acknowledge the limitations of our current method, especially as it relates to testing 554 
biases. During the earliest phases of the epidemic in Madagascar, testing resources were limited 555 
in our laboratory, which may have biased sample intake towards high-viral-load, low-Ct-value 556 
cases that could bias epidemiological inference towards increasing growth rates even after the 557 
epidemic has, in reality, already begun to decline. As the epidemic ensued, however, the 558 
Madagascar Ministry of Health focused sampling on symptomatic patients and their suspected 559 
contacts, leading to a high proportion (56.6%) of reported asymptomatic infections in our dataset 560 
[1], which may have instead prematurely biased inference towards a declining epidemic. 561 
Nonetheless, our Ct-based projections of epidemic trajectories do not appear to underestimate 562 
realized trends, suggesting that our method was robust to these inconsistencies. 563 
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 We apply a novel method leveraging within-host viral load data that is currently largely 564 
overlooked in the epidemiological literature to describe the dynamics of the first wave of 565 
COVID-19 in Madagascar. Our approach validates an important new tool for epidemiological 566 
inference of ongoing epidemics, particularly applicable to limited surveillance settings 567 
characteristic of many lower- and middle- income countries. We advocate for public release of 568 
real time data describing the Ct value distribution, in addition to daily case counts, to improve 569 
epidemiological inference to guide public health response and intervention. 570 
 571 
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Supplementary Figures. 794 
 795 
 796 

 797 
Fig. S1. Ct-dilution curves of RT-qPCR tests in tissue culture. RNA isolates from three 798 
patients positive with comparable Ct values for SARS-CoV-2 infection underwent serial 799 
dilutions (x-axis) RT-qPCR assay (y-axis) across six RT-qPCR platforms used in our laboratory 800 
during the first wave of the COVID-19 epidemic (Table S2). We fit linear mixed effect 801 
regression models in the lme4 R package [35] to the resulting dilution series across multiple runs 802 
and replicates (shapes, colors) for each isolation to establish a trend line (lines and equations). 803 
We used the resulting slope and y-intercept (Table S3) to standardize all Ct values in our dataset 804 
in terms of TaqPath N-gene assays for downstream analysis. 805 
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817 
Fig. S2. Partial effects of test, target, and date on SARS-CoV-2 Ct values across three 818 
Madagascar regions. Partial effects of GAMs fitted to longitudinal Ct data from (A.,B.,C.) 819 
Atsinanana region, (D.,E.,F.) Analamanga region and (G.,H.,I.) National data. Model outputs 820 
are summarized in Table S4 and visualized in Fig. 2A. (main text). Significant partial effects 821 
determined by holding all other variables constant (see [38] for methods) are depicted in blue 822 
and insignificant partial effects in gray. Columns demonstrated relative effects of RT-qPCR test 823 
(A.,D.,G.), target gene (B.,E.,H), and date (C.,F.,I.). Note that patient ID was also included in 824 
each model as a (significant) random effect. 825 
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 837 
Fig. S3. Partial effects of age and symptom status from population-level GAM. Partial 838 
effects of GAM fitted to national Ct data with response variable of correct Ct and predictor 839 
smoothing terms of test, target, and patient ID (as random effect controls) as well as (A.) age and 840 
(B.) symptom status. Model outputs are summarized in Table S6. Significance is indicated by 841 
blue shading: the significant effect of symptom status on Ct is likely the result of time since 842 
onset of infection (i.e. ‘asymptomatic’ patients were either very early or very late in their 843 
infection trajectory), which was not specified in these data. 844 
 845 
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 848 
Fig. S4. Fitting the within-host viral kinetics model to Madagascar data. Figure recapitulates 849 
Fig. S2 from [12] for our Madagascar data. The thick blue line in (A.) gives the fitted viral load 850 
trajectory for the Madagascar data output from the individual trajectory GAM summarized in 851 
Table S5 but excluding the effect of test and PCR-target. Madagascar data are shown as 852 
translucent colors in the background. Thin blue lines surrounding the thick line are trajectories 853 
from prior draws within the 95% quantile, and violin plots show the distribution of detectable Ct 854 
values post infection inferred from the fitted trajectory (blue line). As in [12], violins are colored 855 
by the proportion of Ct values above the limit of PCR detection (103 RNA cp/µl). Panel (B.) 856 
shows the least-squares based fit (colored line) to the proportion of patients with detectable 857 
SARS-CoV-2 in upper respiratory tract samples on each day post symptom onset from 858 
Borremans et al. [16]. As in [12], black dots and lines show proportion positive and 95% 859 
confidence intervals. Faint grey lines show proportion detectable over time from prior draws, and 860 
faint grey ribbon shows 95% quantiles. Panel (C.) gives the assumed prior densities for viral 861 
kinetics model parameters fit to Madagascar data (Table S1). 862 
 863 
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 865 
Fig. S5. Example trace plots for MCMC-fit of Gaussian process and SEIR Ct-models. Trace 866 
plots returned from MCMC fitting of (A.) Gaussian process (4-chains, standard MCMC) and (B.) 867 
mechanistic SEIR models (3 chains, parallel tempering MCMC) to Madagascar National-level 868 
time series of Ct distributions. Traces in (B.) show results from fitting to timepoint 77, the Ct 869 
distribution from the week of April 27, 2020. Parameter details are given in Table S1. All traces 870 
show good convergence, but as in [12], we observed that SEIR models demonstrated clear multi-871 
modality in some parameter distributions, chiefly R0 and t0. Data can be explained by either high 872 
R0 and low t0 or low R0 and high t0.  873 
 874 
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 879 
Fig. S6. Posterior distributions for fitted SEIR and Gaussian process models to 880 
Madagascar Ct timeseries. Posterior distributions for all parameters inferred from MCMC 881 
fitting for (A.) Gaussian process (4-chains, standard MCMC) and (B.) mechanistic SEIR models 882 
(3 chains, parallel tempering MCMC) to Madagascar National-level time series of Ct 883 
distributions. Parameter details are given in Table S1. As in Fig. S5, distributions in (B.) show 884 
results from fitting to timepoint 77, the Ct distribution from the week of April 27, 2020. 885 
Multimodality in R0 and t0 is also evident here: data can be explained by either high R0 and low t0 886 
or low R0 and high t0. 887 
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 893 
Fig. S7. Gaussian process and SEIR Ct-model fits to cross-sectional histograms of Ct values 894 
across the Atsinanana time series. Extension of Fig. 3C (main text) depicts the weekly 895 
histogram of Ct values from the National timeseries in blue, and the resulting Ct distributions at 896 
each timepoint from fitted Gaussian process (red) and SEIR (purple) models. Thick line gives the 897 
median of distribution for each fit and translucent shading corresponds to the 95% quantiles. 898 
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 911 
Fig. S8. Gaussian process and SEIR Ct-model fits to cross-sectional histograms of Ct values 912 
across the Analamanga time series. Extension of Fig. 3C (main text) depicts the weekly 913 
histogram of Ct values from the Analamang timeseries in green, and the resulting Ct 914 
distributions at each timepoint from fitted Gaussian process (red) and SEIR (purple) models. 915 
Thick line gives the median of distribution for each fit and translucent shading corresponds to the 916 
95% quantiles. 917 
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 918 
Fig. S9. Gaussian process and SEIR Ct-model fits to cross-sectional histograms of Ct values 919 
across the Atsinanana time series. Extension of Fig. 3C (main text) depicts the weekly 920 
histogram of Ct values from the Atsinanana timeseries in red, and the resulting Ct distributions at 921 
each timepoint from fitted Gaussian process (red) and SEIR (purple) models. Thick line gives the 922 
median of distribution for each fit and translucent shading corresponds to the 95% quantiles. 923 
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Supplementary Table Captions. 936 
 937 
Table S1. Model parameters (for viral kinetics + SEIR + Gaussian process models). Fixed 938 
and estimated parameters and corresponding descriptions for all parameters used in viral 939 
kinetics, SEIR, and Gaussian process models fit to cross-sectional Ct distributions across all three 940 
regions. 941 
 942 
Table S2. Dilution series of Ct value returned from disparate RT-qPCR platforms 943 
inoculated with three virus isolates. Raw data from tissue culture inoculations, showing Ct 944 
value resulting from RNA extracted after virus isolate inoculations in cell culture. Data are 945 
organized by the test and target used to assay each replicate of each isolate across the dilution 946 
series. 947 
 948 
Table S3. Fitted linear mixed effect regression models to tissue culture inoculations in 949 
Table S2. Slopes and y-intercepts of linear mixed effects regression models fit to tissue culture 950 
dilutions series in Table S2. Regression lines are visualized in Fig. S1; note that the predictor 951 
variable of “dilution”, a proxy for viral load, is modeled on a log10 scale. 952 
 953 
Table S4. Summary output from longitudinal Ct GAMs (Fig. 2D) by region. Summary from 954 
longitudinal GAMs fit to variation in population-level Ct across all three regions (Atsinanana, 955 
A., Analamanga, B., National, C.) by date.  956 
 957 
Table S5. Summary output from individual trajectory GAMs. Summary from individual 958 
trajectory GAM used to parameterize within-host viral kinetics model (A.) and individual 959 
trajectory GAM used to query the effect of symptom status on Ct variation independent of date 960 
of infection onset (B.). 961 
 962 
Table S6. Summary output from population-level symptom status GAM. Summary from 963 
population-level GAM used to query the effect of symptom status on Ct variation across all 964 
regions, independent of date. 965 
 966 
Table S7. Convergence diagnostics and posterior quantiles for Gaussian process-Ct models. 967 
Convergence diagnostics, including , the potential scale reduction factor (values <1.1) and 968 
effective population size (values > 200) for all parameters estimated across all three regions via 969 
Gaussian process model fit to Ct time series. Table also includes mean and 95% posterior 970 
quantile for each parameter estimate from the fitted model. 971 
 972 
Table S8. Convergence diagnostics and posterior quantiles for SEIR-Ct models. 973 
Convergence diagnostics, including , the potential scale reduction factor (values <1.1) and 974 
effective population size (values > 200) for all parameters estimated across all three regions at all 975 
timepoints via mechanistic SEIR model fit to Ct time series. Table also includes mean and 95% 976 
posterior quantile for each parameter estimate from the fitted model. 977 
 978 
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