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Abstract

When a virus spreads, it may mutate into, e.g., vaccine resistant or fast spreading sub-
types, as was the case for the Danish Cluster-5 mink, the British B.1.1.7, and the South
African 501Y.V2 variants of the SARS-CoV-2 virus. A way to handle such spreads is through
a containment strategy, where the population in the affected area is isolated until the spread
has been stopped. Under such circumstances, it is important to monitor whether the mutated
virus is extinct via massive testing for the virus sub-type. If successful, the strategy will lead
to lower and lower numbers of the sub-type, and it will eventually die out. An important
question is, for how long time one should wait to be sure the sub-type is extinct? We use
a hidden Markov model for infection spread and an approximation of a two stage sampling
scheme to infer the probability of extinction. The potential of the method is illustrated via a
simulation study. Finally, the model is used to assess the Danish containment strategy when
SARS-CoV-2 spread from mink to man during the summer of 2020, including the Cluster-5
sub-type. In order to avoid further spread and mink being a large animal virus reservoir,
this situation led to the isolation of seven municipalities in the Northern part of the country,
the culling of the entire Danish 17 million large mink population, and a bill to interim ban
Danish mink production until the end of 2021.

1 Introduction

Pandemic outbreaks have reentered as a global reality and threat to humanity with the transmis-
sion of an animal-adapted Corona virus to humans, first detected in Wuhan, China in late 2019,
leading to the COVID-19 pandemic exhibiting frequent severe respiratory problems in humans.
Early warnings of a global event were seen with SARS and avian flu [3, 7]. In both cases early
containment measures proved successful, whereas for SARS-CoV-2 early containment failed and
the strategy transferred to mitigation. This pattern has later been re-observed in almost all coun-
tries at the early stages of COVID-19 introduction across national borders. Lately, human-animal
transmission has given rise to grave concerns regarding a re-ignition of the pandemic through
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resistant mutations cultivated in animal reservoirs [9]. One such example is the discovery of the
Cluster-5 mutation in humans transferred from farmed mink in the Danish fur industry during
the summer of 2020 [2]. National and global health concerns triggered severe disease containment
measures, such as the rapid culling of the entire Danish 17 million large stock of mink as well
as relatively severe social- and travel-restrictions for seven municipalities in the North Denmark
Region (approx. 281,000 people). Containment measures were, for various reasons, delayed for
around four weeks, in which there were no observations of Cluster-5 mutations in a subset of
polymerase chain reaction (PCR) tested samples subjected to whole genome sequencing (WGS).
This has lead to the obvious question, for how long should Cluster-5 be absent from test samples
before its extinction is sufficiently certain? The answer depends on the epidemiological behaviour
of the disease during restrictions as well as the testing regime imposed in that period. We aim in
this paper to provide a Bayesian model-based answer to this question which links epidemiological
parameters as well as testing patterns and test results to the probability of disease extinction and
early detection.
Various modeling levels exist in epidemiology such as compartment models, aggregate Markov
models, and individual Markov models [1]. Whereas the former two, including the well known
SIR and SEIR models [5], are well suited to model the epidemic spread for large populations during
mitigation, the latter provides higher precision for small amounts of infected during containment.
Other recent investigations have been made to model the early epidemic evolution of SARS-CoV-2,
employing auto-regressive modeling with a Bayesian approach to parameter estimation [8]. Such
models provide mean value predictions but do not give the probabilistic output as requested above.
The scale of genomic surveillance needed for early detection of newly emerging variants of con-
cern (VoC) has been considered through a model of the sampling process including the PCR test
quality parameters [10]. However, in this model, only the output model is considered, in contrast
to our model, where also the epidemic dynamics are included. Furthermore, results are given as
expected counts in contrast to the probabilistic results of our approach. A generalized Hidden
Markovian model framework for epidemic evolution and test has also been employed [11]. One
may consider the model class used in this paper as a subset of that model, tailored specifically to
early epidemic development, which brings about a much required computational tractability even
for large populations.

We shall shortly introduce the development from individual models to compartment models to
facilitate the transfer of model parameters between them. The model is generic and can therefore
be used in other situations when pathogen mutations are entered from, e.g., animal reservoirs.

2 Results

The derivation of the epidemic spread and measurement model was motivated by the spread of
mink mutations in the North Denmark Region. Before returning to this, we will formulate the
model and study its usability and robustness by running a number of intervention scenarios. In the
following we will consider interventions as a combination of restrictions, bringing the reproduction
number down, and intensified PCR and WGS sequencing.
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2.1 Probability of extinction

Assume a situation where we have observed y infected people carrying a variant we want to keep
under control and an effective contamination strategy of infected people and their immediate
contacts has been invoked. The question is now:, for how long shall we retain the restrictions
to be reasonably sure that the virus has not spread? I.e., we want to calculate the following
probability

p(xk = 0 | y0 = y, y1 = 0, . . . , yk = 0), k = 1, 2, 3, . . . ,

where xk and yk are, respectively, the hidden (true) and observed number of infected people
carrying the variant at time k.

In the Methods section, we have formulated a discrete time hidden Markov model to model
this situation where the development of the number of infected people, with the specific variant of
interest, follows a birth-death process with death rate (herein recovery rate) γ and net reproduction
rate R0. The net reproduction rate is defined as the ratio of the birth rate (herein infection rate)
versus the death rate, i.e., R0 = β/γ. We assume a two-step testing strategy where nk of the
population of size N , are PCR tested and mk of the PCR positive tests are WGS tested at time
point k.

In the following, we compute a number of scenarios which illustrate how various intervention
strategies will influence the time until a certain probability of extinction has been reached, given
the specific variant has not been observed for a given period of time. In all simulations, we assume
a constant recovery time of two weeks, i.e. γ = 0.5, a population size of N = 600, 000, n = 10, 000
tests per week, and an initial number of infected people with the specific variant of 11 as well as
a flat prior distribution on the number of specific cases. These numbers were picked to mimic the
Cluster-5 outbreak in the North Denmark Region, where 11 cases were observed in a population of
size approximately 600,000. Thereafter, we simulated increased restrictions by lowering stepwise
the reproduction rate, R0, from 1.5 to 0.5. Finally, we studied increased WGS testing rate of
positives between 25% and 100%.

In Figure 1, Panel A shows the probability of extinction as a function of the number of weeks
for increasing WGS ratio and a constant reproduction rate of R0 = 1.0, and Panel B shows the
probability of extinction as function of the number of weeks for increasing reproduction rates and
constant WGS rate of 0.25. Time to the probability of extinction for all scenarios can be seen in
Table 1.

From numerical results, we see that an increase in the ratio of WGS tests dramatically lowers
the number of weeks from 42 to 25 before we can conclude a probability of extinction of 90%. We
also noticed a counter intuitive non-monotone relationship between reproduction rate and number
of weeks until a certain probability of extinction has been achieved. To investigate this further,
we computed the number of weeks to a 85%, 90%, and 95% probability of extinction and depicted
the number of weeks to extinction against increasing reproduction rates, ranging from 0.5 to 2.5,
see Figure 2. From this we notice the maximum of weeks to probability of extinction emerging for
reproduction rates R0 slightly less than one, and decreasing for higher values.

We are aware that it is impossible to set all parameters for a given situation. We have therefore
made an online Shiny App which can be used to compute the interested reader’s own scenarios,
please refer to the Data availability section.
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Figure 1: Probability of extinction as a function of the number of weeks with no observations of
the specific variant. Dashed lines indicate probability levels 0.85, 0.90, and 0.95, respectively. (A)
Variation of testing regime for a constant reproduction rate of R0 = 1. (B) Variation of restrictions
(R0) for a constant WGS testing ratio of 0.25. The yellow curves are identical in the two plots.
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Figure 2: Weeks to extinction as function of the reproduction rate, R0.
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Table 1: Weeks to thresholds for various testing and restriction strategies.

Ratio R0 Prob < 0.85 Prob < 0.90 Prob < 0.95
0.25 0.50 39 40 42

0.75 41 44 49
1.00 41 46 54
1.25 23 26 30
1.50 15 17 20

0.5 0.50 28 30 32
0.75 34 36 40
1.00 32 35 41
1.25 21 23 27
1.50 15 16 19

0.75 0.50 26 27 30
0.75 30 32 36
1.00 27 30 35
1.25 20 22 25
1.50 14 16 18

1 0.50 24 26 28
0.75 27 29 32
1.00 25 27 31
1.25 18 20 23
1.50 14 15 17

2.2 Analysis of the Cluster-5 extinction in Denmark

Denmark has a total population of 5.8 million and is divided into 98 municipalities which are
organized in five administrative regions. The North Denmark Region has 590,000 inhabitants and
contains the 11 most northern municipalities, see the coloured municipalities in Figure 3. All
population statistics are from December 31, 2020 and have been fetched from the Statbank of
Statistics Denmark. For further details see the Data availability section.

The Cluster-5 variant was only observed in the two most northern municipalities Hjørring and
Frederikshavn, shown in red in Figure 3. The Figure also shows the seven municipalities covered
by the Danish Government’s lock-down (in red and blue), amounting to 281,000 inhabitants.

During a period of 4 weeks from mid August 2020 to mid September 2020 (week no. 35-38),
respectively 3, 3, 1, and 4, Cluster-5 observations were made. The public was warned by the
authorities against the potential vaccine resistant Cluster-5 variant on November 6, 2020, and it
was decided by the authorities to cull the entire 17 million large Danish mink population and lock-
down seven municipalities in the North Denmark Region to hinder further spread of the variant.
The lock-down was planned to run from November 9, 2020, till December 7, 2020, i.e. week 46 to
49. However, due to low infection rates and heavy political pressure the strict restrictions were
removed after only two weeks, i.e. at the beginning of week 47. One of the persisting questions
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Status week 46, 2020

Cluster 5 observed

Locked down

Not locked down

Figure 3: Status for the municipalities in the North Denmark Region following the lock-down order
on November 6, 2020. The order was imposed in municipalities with observations of Cluster-5
(red), as well as surrounding municipalities with a high concentration of mink farms (blue). The
remaining coloured municipalities belong to the North Denmark Region, but was not locked down.
The remaining municipalities in Denmark are coloured white.

from the Danish press and political opposition has been whether Cluster-5 was extinct with a
reasonably high probability. In the following, we will try to shed light on this question.

We compare the two situations: planned and actually realized, which apart from the shortened
period of intervention mainly differs in the number of WGS tests actually conducted. From publicly
available data, we could only get access to week-by-week summary statistics for the entire North
Denmark Region. Data from the Cluster-5 outbreak until the end of 2020 can be seen in Table 2.
The Data have been obtained from the official Danish Epidemiological Report, for further details
see the Data availability section.

We used a population size of 281,000 and divided the number of PCR tests, WGS tests and
positives by two, as the locked-downed municipalities correspond to approx. half of the population.
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Table 2: Weekly test data.

Week PCR Infected WGS Cluster5
35 22539 49 25 3
36 23758 67 27 3
37 29823 233 43 1
38 40681 331 74 4
39 39789 292 80 0
40 28621 260 40 0
41 29177 295 47 0
42 23125 329 138 0
43 36456 679 39 0
44 52099 819 177 0
45 64493 588 216 0
46 93577 485 308 0
47 95742 357 246 0
48 46120 267 170 0
49 33153 387 64 0
50 51438 964 104 0
51 81265 1422 344 0
52 61935 1303 362 0
53 57121 1222 270 0

Further we set the recovery rate to 0.5 (i.e., two weeks) and the reproduction number before
intervention to 1.2.

During intervention, the plan was to test the entire population of the municipalities over a 4-
week period as well as WGS testing all positive samples.The number of PCR tests were therefore
set to 281,000/4 = 70250 PCR tests per week. If we assume a positive pct. of 1.5%, we get 1100
positive tests. The test capacity was up to 5000 a week, so we assume all 1100 would be WGS
tested during intervention according to the plan. We assume the reproduction rate was decreased
to 1.0 during lock-down.

The week-to-week assessment of the probability of extinction from the Cluster-5 outbreak in
week 35 till the planned lock-down is depicted in Figure 4. One sees how the probability of
extinction develops under the planned intervention strategy and what was realized. We see the
probability was 0.22 before the intervention and 0.37 when the restrictions were lifted and 0.7 if
the restrictions had been lifted December 3, 2020.

3 Discussion

Using Bayes filtering of a hidden Markov model with realistic parameters based on the Cluster-5
variant case from Denmark, we were able to quantify the impact of interventions on the certainty
of extinction of deleterious SARS-CoV-2 variants. We found counter-intuitively that imposing

7

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.05.21260005doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.05.21260005


0.22 0.22

0.38 0.37

0.56

0.52

0.0

0.2

0.4

0.6

35 40 45 50
Week

P
ro

ba
bi

lit
y 

of
 e

xt
in

ct
io

n

Strategy

Planned

Realized

Figure 4: Probability of extinction for planned and realized interventions.

restrictions in general increases the time to certainty of variant extinction, wherefore restrictions
should be supplemented by a massive testing strategy. For the Danish case, we concluded a low
probability of extinction when the restrictions were lifted at the beginning of week 46. However, at
the time of writing (March 1, 2021), the variant has not emerged, so the probability of extinction
is now well above 0.95%. However, one should be aware that the calculations are based on rough
estimates. The calculations could be made much more exact, if we have had access to the detailed
recordings from the Danish authorities.

Although, the use of birth-death processes to model the extinction of species is not new, we
have not been able to find previous research with an attempt to calculate the probability of
extinction based on hidden information about the birth-death process [6].

The work provides a simple and fast computational framework. This implies a number of
scenarios, including sensitivity analyses that can quickly be computed. The simplified model used
here is ideal for the initial outbreak of a new variant of concern, whereas other model frameworks
such as compartment model (SIR, SEIR) are more well suited later in the epidemic evolution, i.e.
when some variant is wider spread.

In conclusion, we hope this tools will be useful for decision makers when deciding upon inter-
vention strategies, that effectively balance restrictions and test strategies.

4 Methods

In order to formulate the hidden Markov model, we use the notation in Box 1:
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Box 1: Mathematical notation

• Population characteristics

– N population size

– xk number of infected with the specific variant

– x′k number of infected with a non-specific variant

– x′′k = xk + x′k total number of infected

• PCR test statistics

– nk sample size of the PCR test

– zk number of samples with the specific variant

– z′k number of samples with a non-specific variant

• WGS test statistics

– mk sample size of the WGS test (≤ nk)

– pk = mk/(zk + z′k) ratio of WGS tested out of positive PCR tests

– yk number of samples with the specific variant

• Epidemic parameters

– β infection rate

– γ recovery rate

– R0 = β/γ net reproduction rate

4.1 The epidemic model

We first consider the elementary infection dynamics between two persons P1 and P2 of which P1
is infected and P2 is susceptible. Consider an infinitesimal time interval [t, t + dt] where P1 and
P2 are within infection range. Modelling the infection state of P2 as a two-state Continuous Time
Markov Chain (CTMC), yields the probability of P1 infecting P2 within [t, t + dt], to be b dt,
where b is a disease characteristic constant.

Consider then a susceptible individual P interacting with a population, comprising x infected
of a population size N . If it is assumed that P on the average finds L others within his/her range
of infection then the average probability of P being infected within [t, t+ dt] is bL x

N
dt.

Consider next S susceptible individuals each interacting with a population, comprising x in-
fected of a population size N . Then the probability of 1 out of the susceptible individuals being
infected in [t, t+ dt] is approximately

bL
Sx

N
dt = β

Sx

N
dt. (1)
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This leads to the following differential equation governing the evolution of expectations

d

dt
E(x) = E

(
β
Sx

N

)
≈ β

E(S)E(x)

N
(2)

comprising the infection rate equation of the SIR model. When an exposed state is inserted
between susceptible and infected states, (2) would yield the rate of transfers between susceptible
and exposed states.

Considering instead of expectations, a probability distribution over the actual number of in-
fected I, (1) leads to

P (x(t+ dt) = k|x(t) = k − 1) = β
S(k − 1)

N
dt

and with the Bayes law of total probability

P (x(t+ dt) = k)

= P (x(t+ dt) = k|x(t) = k − 1)P (x(t) = k − 1) + P (x(t+ dt) = k|x(t) = k)P (x(t) = k)

= β
S(k − 1)

N
dtP (x(t) = k − 1) + (1− βSk

N
dt)P (x(t) = k)

yielding

P (x(t+ dt) = k)− P (x(t) = k)

dt
= β

S(k − 1)

N
P (x(t) = (k − 1))− βSk

N
P (x(t) = k).

Leading to the differential equation

d

dt
P (x(t) = k) = β

S(k − 1)

N
P (x(t) = k − 1)− βSk

N
P (x(t) = k)

For the early development of an outbreak S ≈ N . This yields the infection dynamics

d

dt
P (x(t) = k) = β(k − 1)P (x(t) = k − 1)− βkP (x(t) = k)

Adding the effect of recovery, we obtain

d

dt
P (x(t) = k)

= β(k − 1)P (x(t) = k − 1)− (γ + β)kP (x(t) = k) + γ(k + 1)P (x(t) = k + 1)

where γ is the individual recovery rate. This can altogether be summarized by the CTMC depicted
in Figure 5.

Thus, the number of infected people under the epidemic can be modelled as a continuous
time Markov chain (CTMC) {xt, t ≥ 0}, with state space X = {0, 1, 2, . . . , N} and infinitesimal
generator Q, where Q is a matrix with elements, for i, j ∈ {1, 2, 3, . . . , N},

qij =


iβ j = i+ 1
iγ j = i− 1
−i(γ + β) j = i
0 Otherwise.
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Figure 5: Continuous Time Markov Chain for Cluster-5 infected.

We can now model the daily number of infected in the population as a discretely sampled
CTMC {x(n), n = 0, 1, 2, . . . }, with state space X = {0, 1, 2, . . . , N} and transition probabilities

x0 ∼ P0

p(xk|x1:(k−1)) = Hxk−1,xk
, k = 1, 2, 3, 4, . . . ,

where P0 = (p(x0 = 0), p(x0 = 1), . . . , p(x0 = N)) is the initial distribution of x0 and Hxk−1,xk
is

the xk−1, xk’th element of the matrix H = exp(Q dT ), with dT being the sampling period.
The presence of the transmitted virus among humans is first detected through an initial sample

of test results y0. Therefore the initial conditions for the Bayes filter may be found from

p(x0|y0) =
p(y0|x0)p(x0)

p(y0)
. (3)

In most cases, if there is no initial evidence for x0, then we may (using the principle of maximum
entropy) a priory assume x0 is uniformly distributed over some interval, e.g, {0, .., N} (coined
uniform in the accompanying R-script). Another possibility is to choose x0 to have any truncated
discrete distribution with support on the set {0, 1, 2, . . . , N}, e.g. the Poisson distribution (coined
Poisson distribution in the accompanying R-script). Finally, if we know exactly the initial number
of infected, we can choose this number to have probability one. The conditional distribution
p(y0|x0) in Equation (3) can be calculated by the approximations outlined in The observational
model section.

In summary, we can illustrate the dependency structure of the Hidden Markov model in Figure
6.

4.2 The observation model

Normally, the epidemic model is unobserved, but each day a number of people are tested for
infection, and yet a number of the positive samples are sequenced to classify samples into variants.
From the sequenced samples, the number of a given variant is recorded. Assuming the number of
the PCR and WGS sample sizes, nk and mk, are known, the sequential sampling scheme can be
formulated as a hierarchical model, in the following way:

zk, z
′
k|xk, x′k ∼ Hypergeometric(N, xk, x

′
k, nk), (4)

yk|zk, z′k ∼ Hypergeometric(zk + z′k, zk,mk). (5)
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Figure 6: Dependency structure of Bayesian filter

Notice that (4) and (5) are two and one dimensional hypergeometric distributions, respectively.
In order to let this be well-defined, we implicitly assume that yk = 0 if zk = 0.

Now, it is possible to formulate an expression for the observational model p(yk|xk, x′k), by the
following mixture of hypergeometric distributions:

p(yk|xk, x′k) =

min(xk,nk)∑
i=0

min(x′k,nk−i)∑
j=0

p(yk|zk = i, z′k = j)p(zk = i, z′k = j|xk, x′k). (6)

However, due to computational complexity of the involved binomial coefficients, we seek approx-
imations of (6). For the given population sizes and infection rates, we would expect a Poisson
approximation to yk|xk, x′k, with a mean value matching the ratio of the specific variant in the
population, xk/(xk + x′k), times the sample size, mk, will provide a good approximation of the
distribution of yk|xk, x′k, i.e.

E[yk|xk, x′k] = mk
xk

xk + x′k
,

which leads to the following Poisson distribution approximation (Poisson)

yk|xk, x′k ∼ Pois

(
mk

xk
xk + x′k

)
.

and the following Binomial distribution approximation (Binom1)

yk|xk, x′k ∼ Binom

(
mk,

xk
xk + x′k

)
.

and the following Binomial distribution approximation (Binom2) based on ratios

yk|xk, x′k ∼ Binom
(
pk ∗ nk,

xk
N

)
.
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Figure 7: Comparison of approximations and simulated sampling distributions including Kulback-
Leibler divergence. Parameters used were N = 600, 000, x′k = 3, 312, xk = 288, nk = 17, 000, and
mk = 29.

We simulated 10,000 realizations of yk from the two-stage sampling distrution, with N = 600, 000,
xk = 3, 312, x′k = 288, nk = 17, 000, and mk = 29, and constructed an approximation to the
sampling distribution by the relative frequencies. Next, we compared the Poisson, Binom1, and
Binom2 approximations to the approximated sampling distribution by the Kullback-Leibler dis-
tance, see Figure 7.

To put the use of KL distance for comparison into perspective, consider two Poisson distribu-
tions f1 and f2 with intensities λ1 and λ2 = (1+ε)λ1, where f2 can viewed as a slight perturbation
of f1. For the two Poisson distributions we have:

KL(f1, f2) = λ1 log

(
λ1
λ2

)
+ λ2 − λ1 = λ1 log

(
1

1 + ε

)
+ λ1ε

A second order Taylor approximation of KL as function ε yields

KL(f1, f2) ≈ KL(0) +KL
′
(0)ε+KL

′′
(0)

ε2

2
= λ1

ε2

2
(7)

In the simulations above, we have λ1 = 2.32. If we plug this into (7) together with the simulated
KLD, we get ε = 0.042 and λ2 = 2.42, illustrating the proximity of the Poisson approximation.

4.3 Estimation of the current number of a specific variant

The main question of the paper is to estimate the distribution of the current number of the
specific variant given past and current observations of the variant, i.e., the problem is to find
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p(xk|y0, . . . , yk).
This can be achieved by a traditional recursive Bayes filter with initial value

p(x0|y0) ∝ p(y0|x0)p(x0) (8)

and
p(xk|y0, . . . , yk) ∝ p(yk|xk)

∑
xk−1

p(xk|xk−1)p(xk−1|y0, . . . , yk−1). (9)

for k = 1, 2, 3, . . . . We notice that, all values for the recursion in (8) and (9) have been specified
above in the epidemic model and observation models.

5 Data availability

Data on the weekly number of PCR tests and infected people from Danish Covid-19 test centers are
publicly available from Statens Serum Institut at: https://covid19.ssi.dk/overvagningsdata/
download-fil-med-overvaagningdata

Data on the number of WGS samples per week in the North Denmark region were obtained from
the Danish Covid-19 Genome Consortium at: https://www.covid19genomics.dk/statistics

Data on Danish cluster5 samples were obtained from a dedicated S:Y453F (mink mutation)
build at Nextstrain[4]: https://nextstrain.org/groups/neherlab/ncov/S.Y453F?c=gt-S_453&
f_clade_membership=Mink.Cluster5&f_region=Europe

Population sizes in the municipalities in the North Denmark region were obtained from Stat-
bank, Statistics Denmark: https://www.dst.dk/en/Statistik/emner/befolkning-og-valg/

befolkning-og-befolkningsfremskrivning

6 Code availability

The R code and data are available at https://github.com/HaemAalborg/cluster5. A Shiny
app that can be used to run the algorithms is available at https://covid19vocmonitor.aau.dk.
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