
	 1	

Incorporating family disease history and controlling case-control imbalance for population based 

genetic association studies 

Yongwen Zhuang 1,2, Brooke N Wolford 3, Kisung Nam 4, Wenjian Bi 5, Wei Zhou 6, Cristen J Willer 3,7,8, 

Bhramar Mukherjee 2,9,10, Seunggeun Lee 1,2,4 

1.	Center	for	Statistical	Genetics,	University	of	Michigan	School	of	Public	Health,	Ann	Arbor,	Michigan,	USA;	

2.	Department	of	Biostatistics,	University	of	Michigan	School	of	Public	Health,	Ann	Arbor,	Michigan,	USA;	

3.	Department	of	Computational	Medicine	and	Bioinformatics,	University	of	Michigan,	Ann	Arbor,	Michigan,	

USA;	

4.	Graduate	School	of	Data	Science,	Seoul	National	University,	Seoul,	Korea;	

5.	Department	of	Medical	Genetics,	School	of	Basic	Medical	Sciences,	Peking	University,	Beijing,	China;	

6.	Massachusetts	General	Hospital,	Broad	Institute,	Boston,	Massachusetts,	USA;	

7.	Department	of	Internal	Medicine,	Division	of	Cardiology,	University	of	Michigan	Medical	School,	Ann	Arbor,	

Michigan,	USA;		

8.	Department	of	Human	Genetics,	University	of	Michigan	Medical	School,	Ann	Arbor,	Michigan,	USA;	

9.	Department	of	Epidemiology,	University	of	Michigan	School	of	Public	Health,	Ann	Arbor,	Michigan,	USA;	

10.	Michigan	Institute	of	Data	Science,	University	of	Michigan,	Ann	Arbor,	Michigan,	USA	

	

	

 

Correspondence:  

Email: lee7801@snu.ac.kr 

Address: Bldg 942, Graduate School of Data Science, Seoul, 08826, Republic of Korea 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.04.21259997doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.07.04.21259997


	 2	

Abstract 

In the genome-wide association analysis of population-based biobanks, most diseases have low 

prevalence, which results in low detection power. One approach to tackle the problem is using family 

disease history, yet existing methods are unable to address type I error inflation induced by increased 

correlation of phenotypes among closely related samples, as well as unbalanced phenotypic distribution. 

We propose a new method for genetic association test with family disease history, TAPE (mixed-model-

based Test with Adjusted Phenotype and Empirical saddlepoint approximation), which controls for 

increased phenotype correlation by adopting a two-variance-component mixed model and accounts for 

case-control imbalance by using empirical saddlepoint approximation. We show through simulation 

studies and analysis of UK-Biobank data of white British samples and KoGES data of Korean samples that 

the proposed method is computationally efficient and gains greater power for detection of variant-

phenotype associations than common GWAS with binary traits while yielding better calibration compared 

to existing methods. 

	

Introduction 

Genome-wide and phenome-wide studies are facilitated by the recent development of large-scale 

biobanks such as the UK Biobank (UKB)1, BioBank Japan (BBJ)2	and the Korean Genome and Epidemiology 

Study (KoGES)3. Individuals in the biobanks are samples from a target population and large numbers of 

phenotypes are collected for each individual, which allows phenome-wide scan. However, challenges 

remain to gain enough power to identify associated variants, especially for binary traits with a low 

prevalence.	
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One promising approach to improve detection power is using family disease history to infer risk of diseases 

of unaffected individuals. For family-based cohorts with partially-missing genotypes, association test 

power can be improved by using pedigree information4-7. The GWAX method first demonstrated that  with 

completely-missing family genotypes, unaffected individuals with family disease history can be used as 

proxy-cases to find genetic associations8. The LT-FH method9 further increases association power by 

estimating a liability of disease conditional on the observed phenotypes and family disease history, which 

differentiate the disease risks among the proxy cases.  

Despite the progress, several important limitations remain. First, when samples are related, the increased 

correlation among the inferred risks (Supplementary Figure 1) can lead to type I error inflation.  Hujoel 

et. al showed that since samples with close relatedness such as sibling pairs tend to have highly correlated 

GWAX or LT-FH phenotypes due to nearly identical family disease history, GWAX and LT-FH suffered poor 

calibration compared to GWAS 9. Thus, the usage of the existing methods should be restricted to testing 

unrelated individuals only, which can reduce power.  Second, with unbalanced case-control ratios, the 

distributions of inferred risks are still unbalanced, hence testing for association using linear mixed model 

(LMM) can yield inflated type I error rates. For example, diseases such as Parkinson’s disease have low 

prevalence in UK-Biobank, which leads to a small number of cases and proxy cases (i.e. controls with non-

zero inferred disease risk) in GWAX and a relatively low posterior liability conditioning on family history in 

LT-FH (Supplementary Figures 2 and 3). Since the gaussian approximation does not perform well in this 

setting, LMMs can yield inflated type I error rates. Currently no method exists to handle situations of this 

kind.  

We propose a new method for genetic association test with family disease history, TAPE (mixed-model-

based Test with Adjusted Phenotype and Empirical saddlepoint approximation), which controls for 

increased phenotype correlation and case-control imbalance. In standard mixed model methods, only a 
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dense genetic relatedness matrix is used as the variance component. TAPE uses a sparse kinship matrix as 

an additional variance component to further account for the increased correlation among phenotypes in 

closely related individuals. In addition, to adjust for case-control imbalance, TAPE uses empirical 

saddlepoint approximation under a linear mixed model10-12. 

Given family disease history, TAPE infers the phenotype for controls based on the proportion of affected 

relatives weighted by kinship coefficient and is robust to including the disease status of relatives other 

than parents and siblings in existing methods. TAPE is also flexible to use inferred phenotypes generated 

from other approaches such as the one proposed in LT-FH into the analysis.  

We show through simulation studies and analysis of UK Biobank that the proposed method is 

computationally efficient, achieves greater power for detection of variant-phenotype associations than 

common GWAS with binary traits, and yields better calibration among related individuals compared to LT-

FH. We applied TAPE to 10 binary traits in UK Biobank among 408,898 white British samples with imputed 

genotypes and parental disease information and identified 659 genome-wide significant clumped variants, 

among which 127 were with MAF<1%. We also analyzed two binary phenotypes in the KoGES data with 

72,298 samples and identified 29 genome-wide significant clumped variants in total using TAPE. 

 

RESULTS 

Overview of methods 

The TAPE method takes a three-step framework (Figure 1): (0) infer the disease risk for all individuals in 

the analysis based on the original case-control status and family disease history to be used as phenotype; 

(1) fit two variance components null linear mixed model to obtain parameter estimates; (2) test for genetic 

association using score test with empirical saddlepoint approximation. 
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In Step 0, the phenotypes are adjusted using inferred risk of individuals. The basic TAPE uses a weighted 

proportion of the affected close relatives to the control, which can be viewed as an extension of the GWAX 

method8 to further differentiate disease risk of controls based on family disease history configurations. 

Another approach is TAPE-LTFH, which uses the liability of diseases generated from LT-FH as the adjusted 

phenotypes. 

In Step 1, we fit the null linear mixed model to estimate model parameters. Fixed effects of the null model 

include covariates such as demographic information and principal components. Sample relatedness is 

accounted for by random effects in the model. We include two random effects, the first uses the sparse 

kinship matrix as covariance structure similar to that in fastGWA13, and the second uses the dense genetic 

relatedness matrix (GRM). These two variance components can capture both increased correlation in 

phenotypes due to phenotype adjustment procedure and distance genetic relatedness among individuals.  

To make the method scalable, average information restricted maximum likelihood (AI-REML)14, with 

preconditioned conjugate gradient (PCG) method15 similar to that used in BOLT-LMM16 and SAIGE, is used. 

The computation complexity is  !(#($!"# + &$%&'$()().+) where # is the number of iterations until 

convergence, &$%&'$(  is the number of non-zero elements in the sparse kinship matrix, $!"#  is the 

number of variants included in the GRM construction, ( is the sample size, and the number of iterations 

for PCG method is assumed to be !((,.+). We use raw genotypes as input and calculate GRM in runtime, 

yielding a reduced memory usage of $!"#(/4 bytes compared to methods that facilitate a precomputed 

GRM, which has memory usage of +(- bytes where + denotes memory size for a floating number.  

In Step 2, score test statistic is calculated for each genetic variant against the adjusted phenotype. Since 

the Gaussian approximation does not perform well at the tails of the test statistic distribution especially 

when the case-control ratio is unbalanced and MAF of the variant is low, we approximate the distribution 

by empirical saddlepoint approximation11, which uses empirically estimated cumulant generating function 
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(CGF) to calculate p-value. The empirical saddlepoint approximation is utilized when the test statistic 

exceeds two standard deviations of the mean. Time complexity for this step is !($(). 

 

Simulation study results 

Type I error and Power  

Simulation results for TAPE were compared with three other methods: (1) GWAS with original binary 

phenotypes by SAIGE17; (2) BOLT-LMM with LT-FH phenotypes9 (hereafter denoted as LT-FH), which is 

shown to increase association power over GWAX	8; and (3) a hybrid method using TAPE testing procedures 

with LT-FH phenotypes (hereafter denoted as TAPE-LTFH). Type I error rates were evaluated at genome-

wide , = 5 × 10./ with sample size of 10,000 and case-control ratio ranging from 1:99 to 10:90. For each 

case-control ratio setting, two sets of genotype data with 100 independent variants were generated with 

MAF of 0.1 and 0.01 respectively. We first simulated a population consisting of 2,500 pairs of siblings and 

5,000 independent individuals (Table 1a). The empirical type I error rates of LT-FH were largely inflated 

under more unbalanced case-control ratio and lower MAF, while results from TAPE and SAIGE were well 

calibrated. For the hybrid method TAPE-LTFH, inflation was also observed but not as large as that of LT-

FH, since the additional variance component in the mixed model further accounts for the phenotypic 

concordance among sibling pairs with same family disease history, and the empirical saddlepoint 

approximation better approximates the distribution of test statistics. Further, we evaluated type I error 

rates with a more complex relatedness structure, i.e., a population consisting of 625 8-member families 

and 5,000 independent individuals (Table 1b). Inflated type I error rates were observed in results from LT-

FH but with lower magnitude compared to the previous setting. TAPE-LTFH had slightly inflated type I 

error rates. One explanation is that LT-FH phenotypes are less concordant in the latter setting since there 

is a smaller number of individuals sharing identical family history under a more complicated pedigree. On 
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the other hand, type I error rates from TAPE and SAIGE were relatively well controlled with a slight 

deflation. 

One of the important features of TAPE is the use of a kinship matrix in addition to (dense) GRM to account 

for increased correlation among phenotypes. Two additional analyses were performed to investigate the 

influence of no kinship variance component (TAPE-nok) and mis-specified kinship matrix (TAPE-misk) on 

calibration of TAPE. For TAPE-nok, the sparse kinship matrix was not included as an LMM variance 

component and inflated empirical type I error was observed (Supplementary Figure 4). For TAPE-misk, 

the true kinship matrix of an 8-member family pedigree (Supplementary Figure 5a) was replaced with a 

slightly mis-specified one (Supplementary Figure 5b) in step 0 and step 1. The empirical type I error of 

TAPE-misk was similar to that of TAPE. The results indicated that the impact of a slightly mis-specified 

kinship matrix was negligible, while the inclusion of the kinship matrix as a variance component is crucial 

in controlling type I error rate when family information is incorporated into the analysis. 

To assess empirical power, we compared the average 2- statistics (Figure 2) and the proportion of causal 

SNPs significant at , = 5 × 10./	level (Supplementary Figure 6) for simulated data sets with sample size 

10,000 under different genetic effects and case-control ratio. For each data set, 100,000 independent 

variants with MAF 0.1 were simulated in which 1% were causal, and we generated 100 data sets for each 

setting. TAPE achieves greater detection power over SAIGE results, with a 21.0% average increase in 

average 2- statistics and a 12.1% average increase in proportion of causal SNPs detected. Although LT-FH 

also had increased 2- over SAIGE by 27.5% and had a 14.3% average increase in detection rate, it suffered 

from type I error inflation especially when analyzing related samples.  

To investigate how more complex relatedness structures will influence simulation results, we further 

simulated a population in which related individuals form families with 8 members (Supplementary Figure 

5a). With this setting, the phenotype adjustment of TAPE method takes into account all relatedness in the 
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pedigree including second-degree relationships such as grandparent-grandchild, while LT-FH only 

integrates first-degree relationship information from parents and sibling of an individual. TAPE has higher 

overall power than both LT-FH and SAIGE under such relatedness structure (Supplementary Figure 6), 

with a 18.5% average increase in proportion of significant SNPs detected over SAIGE, slightly higher than 

LT-FH’s 17.9% increase over SAIGE. 

In general, the proposed TAPE method yielded well-controlled type I error rate even when case-control 

ratio is unbalanced, which makes the incorporation of family disease information in genetic association 

test feasible in the presence of sample relatedness and can achieve greater detection power than 

traditional GWAS analysis using unadjusted binary phenotypes. 

Computation Time 

Computation time was evaluated using randomly selected samples from 408,898 white British individuals 

in UK Biobank data for Type II diabetes (case:control=1:20) with $ = 100,000  variants. Projected 

computation time for 21 million variants with MAF ≥ 0.01% was estimated and plotted on log10 scale 

against sample size varying from 10,000 to 408,898 (Supplementary Figure 7). P-values for LT-FH method 

were calculated using BOLT-LMM. Computation time for TAPE-LTFH is similar to that for TAPE and is 

therefore omitted in the plot. A break-down of run time for null model estimation and p-value calculation 

is presented in Supplementary Table 3. Since TAPE fits the model with two variance components and uses 

ESPA in p-value calculation, which requires additional computation, TAPE was slower than SAIGE and LT-

FH. Overall, TAPE is scalable to analyze biobank size data. For genome-wide analysis of testing 21 million 

variants, TAPE required 16 CPU hours with 40,000 samples and 284 CPU hours with 408,898 samples. 
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Analysis of binary traits in biobank data 

We analyzed 10 binary disease outcomes with available parental disease status in the UK Biobank1. The 

binary traits were defined by the PheWAS codes17 aggregated from ICD codes in the UK Biobank dataset, 

with case-control ratio ranging from 1:4 to 1:406 among 408,898 white British individuals (Table 2). We 

tested over 21 million variants imputed from the Haplotype Reference Consortium (HRC)18 with minor 

allele frequency (MAF) ≥ 0.01%.  Sex, age and first 10 principal components were included in the analysis 

model. GRM was constructed using 93,511 genotyped variants with high quality. Kinship coefficients were 

estimated using the KING software19, and the sparse kinship matrix was constructed using those with 

estimated kinship no larger than third-degree relatedness. 

Figures 3 and 4 presents Manhattan plots and Q-Q plots stratified by MAF categories for two phenotypes 

with different case-control ratio: Type II diabetes (case-control ratio 1:20), and Parkinson’s disease (case-

control ratio 1:350). Plots for all 10 diseases in the analysis are shown in Supplementary Figures 8 and 9. 

TAPE results were compared to results from SAIGE v0.44.317 using binary phenotype and results from 

BOLT-LMM using LT-FH phenotypes9. It is shown that TAPE yields higher power than SAIGE for variants 

with higher MAF, and has better calibration than LT-FH especially among lower MAF variants. 

Supplementary Table 1 lists the number of significant variants and significant clumped variants at  , =

5 × 10./  detected by TAPE, TAPE-LTFH, LT-FH and SAIGE. Significant clumped variants were further 

identified by clumping genome-wide significant variants with 5Mb window size and linkage disequilibrium 

threshold 6- = 0.1 using PLINK software20. TAPE identified 84 more genome-wide significant clumped 

variants than SAIGE for Type II diabetes, and 5 more for Parkinson’s disease. For all 10 diseases analyzed, 

a total of 659 genome-wide significant clumped variants were identified by TAPE, including 127 clumped 

variants with MAF < 1%; whilst a total of 344 clumped variants were identified by SAIGE, of which 71 were 

with MAF < 1%. 
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To assess the calibration of testing methods, we performed stratified LD score regression with the 

baselineLD model to obtain the attenuation ratios21 (Supplementary Table 2). For traits with more 

unbalanced case-control, TAPE consistently yields relatively lower attenuation ratios than TAPE-LTFH, 

while LTFH generates the highest attenuation ratio, indicating poor calibration. For example, the average 

attenuation ratio for type II diabetes (case:control=1:20) is 0.110, 0.120 and 0.142 for TAPE, TAPE-LTFH 

and LT-FH respectively; for Parkinson’s disease (case:control=1:360), the average attenuation ratio is 

0.125, 0.222 and 0.462 for TAPE, TAPE-LTFH and LT-FH respectively. Since we used all the individuals 

regardless of relatedness, the observation supports the previously reported result that LT-FH suffers poor 

calibration in related samples due to concordance between phenotypes from closely related samples such 

as sibling pairs9. On the contrary, TAPE is able to generate better calibrated results under such situations, 

followed by TAPE-LTFH. 

For additional analysis, we applied TAPE, TAPE-LTFH and SAIGE to two binary phenotypes for 72,298 

individuals with family disease history in the KoGES data and analyzed 8 million variants. Disease 

prevalence among sample individuals and their relatives is shown in Supplementary Table 4. For diabetes 

(case:control=1:12), TAPE identified 14 more genome-wide significant clumped variants than SAIGE, while 

TAPE-LTFH identified 15 more than SAIGE. For gastric cancer (case:control=1:191),  both TAPE and TAPE-

LTFH identified 3 genome-wide significant clumped variants (rs760077, rs35972942, rs2978977) while no 

variants were genome-wide significant by SAIGE. The three clumped variants have been previously 

reported to be associated with gastric cancer among Chinese or Japanese population 22-24, but not among 

Korean samples. Manhattan plots and Q-Q plots are presented in Supplementary Figures 10 and 11.  
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DISCUSSION 

We propose a robust method that incorporates family disease information for genetic association test 

while accounting for case-control unbalance and close relatedness in the population. Over the past 

decade, the construction of large biobanks linked with electronic medical record data has facilitated large-

scale genome-wide studies to test association with thousands of disease-related phenotypes. Samples in 

biobanks usually follow cohort study design, which can have small number of cases compared to 

traditional case-control study design, especially for rare phenotypes. Previous studies have shown that 

additional information from family disease history can help improve test power in such cases, yet 

challenges remain (1) to control for type I error inflation induced by increased correlation of phenotypes 

among related individuals after incorporating family disease history; and (2) to account for unbalanced 

distribution of phenotypes after being adjusted by family disease information. TAPE includes both a dense 

genetic relatedness matrix and a sparse matrix for close relatedness as variance components in the linear 

mixed model framework to account for sample relatedness and family-history-induced correlation. 

Empirical saddlepoint approximation of the score test statistic distribution is adopted to control for type 

I error inflation under unbalanced phenotypic distribution. Optimization strategies such as PCG for 

computing components with matrix inversion, and runtime GRM calculation from raw genotypes were 

implemented to improve computation efficiency and reduce memory usage. 

TAPE incorporates family disease history by adjusting phenotype of control samples with a product of 7 

and 6 , where 7  indicates the increase in latent disease risk among controls given all relatives of the 

individual are cases, and 6 represents a weighted proportion of diseased relatives of the individual. We 

assumed a constant 7 = 0.5 for the analysis in this paper, and we expect more accurate estimates of this 

value to yield better performance in capturing potential disease risk among controls with family disease 

history, which might be a direction for future exploration. For example, 7 can be estimated in a similar 
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way as genetic nurturing effects for different phenotypes respectively under a family analysis framework 

where genotypes for relatives are avaiable16, thus enabling different level of contribution from relatives 

to the individual’s latent risk for different diseases. 

For null model, both sparse estimated kinship matrix and GRM are included in TAPE as variance 

components to account for the potential phenotypic concordance. The use of two or more variance 

components in mixed model has been shown to better control for test statistics inflation and improves 

association power as well as prediction accuracy in standard GWAS and family studies 25, 26, yet we are not 

aware of existing methods that apply more than one variance components to mixed model while 

incorporating family disease history.  From simulation studies we show that the absence of kinship matrix 

in variance components leads to inflated type I error rates of association test results. This result echoes 

previous findings from LT-FH that the inclusion of family disease history can lead to calibration issue under 

a single-variance-component mixed model due to similar family history for closely related individuals such 

as sibling pairs9, and indicates a possible solution to control for phenotypic correlation introduced by 

incorporating family disease information. When estimating variance parameters, TAPE improves 

computation efficiency by applying PCG algorithm on top of the sparse estimated kinship matrix and the 

dense GRM, where sparsity of the estimated kinship matrix is ascertained by proper thresholding. 

The analytical framework of TAPE allows for flexible choice of outcome variables. For example, we also 

investigated a hybrid method, TAPE-LTFH, which uses LT-FH phenotypes in the proposed two-variance-

component mixed model. We show by simulation studies that TAPE-LTFH can partially control for type I 

error inflation as compared to LT-FH, but not as well-calibrated as TAPE. It remains a future work to better 

capture latent risk while accounting for phenotypic concordance to further improve association power 

using external information such as family disease history. TAPE currently supports analysis of binary 
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phenotypes, and has the potential to be extended to ordinal phenotypes, such as categorical diagnoses 

of mental disorders, for more powerful association test in a broader context. 

We also note several limitations of our proposed method. First, the potential difference in the phenotype 

classification for genotyped individuals and their relatives is not accounted for in TAPE. For example, 

phenotypes of genotyped individuals in UKB dataset were defined using the PheWAS codes aggregated 

from ICD9 and ICD10 codes, whereas parental phenotypes were extracted from self-reported surveys. The 

different phenotype classification standard may induce bias in the adjusted phenotype after incorporating 

family disease history. The second limitation lies in the modeling assumption of infinitesimal genetic 

effects, i.e., the effect size of each variant follows a standard Normal distribution, which may yield less 

detection power when the assumption does not match the true underlying genetic architecture.  

Despite the above-mentioned limitations, TAPE is the only existing approach that incorporates family 

disease history while handling related samples and phenotype unbalance. With the increasing accessibility 

to large-scale biobank data with population relatedness and family disease history information, our 

proposed method is expected to contribute to improving detection power for genetic association studies, 

especially for late-onset diseases that are underrepresented in the sample cohorts.   

URLs 

TAPE (version 0.3.0): https://github.com/styvon/TAPE. Link to TAPE summary association statistics for 10 

phenotypes in UKB data and 2 phenotypes in KoGES data: https://github.com/ 

styvon/TAPE/blob/main/vignettes/biobank_results.md BOLT-LMM (version 2.3.4): https://data. 

broadinstitute.org/alkesgroup/BOLT-LMM. LT-FH (version 2): https://alkesgroup.broadinstitute.org/ 

UKBB/LTFH. SAIGE (version 0.44.3): https://github.com/weizhouUMICH/SAIGE. KING (version 2.2.4): 

https://www.kingrelatedness.com/. PLINK (version 2.00): https://www.cog-genomics.org/plink2.   
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METHODS 

Phenotype adjustment 

We first introduce the proposed phenotype adjustment procedure in TAPE. In a sample of  ( individuals 

where each individual has ("  relatives with phenotypic information, 8 is an ( × ("  kinship matrix with 

each element 812  denoting the kinship coefficient between individual 9  and :  ( 9 ∈ {1, . . . , (}; : ∈

{1, . . . , ("} ), ?  is an ( × ("  matrix with each element ?12  denoting the phenotype of relative :  of 

individual 9, @ is an (-vector of observed binary phenotypes. The adjusted quantitative phenotype for 

individual 9, A1, is expressed as: 

A1 = B(@1 = 1) + B(@1 = 0)7 ⋅ 61  

where B(⋅)  denotes indicator function, 7  is a pre-specified constant indicating the increase in latent 

disease risk, and 61  = 
∑ 4!"
#$
"%& 5(7!"8))

∑ 4!"
#$
"%&

.  If @1 = 0 and all  ("  relatives of the ith individual are cases, the latent 

disease risk is A1  =	7. For the analysis in this paper, we assume that latent risk of such individual is 0.5 (i.e., 

7 = 0.5). In addition, the phenotype adjustment procedure can be adapted to include information other 

than family disease status that is potentially indicative of latent disease risk. See Supplementary Note 1 

and 2 for details. 

Both LT-FH and TAPE-LTFH use the posterior mean genetic liability proposed by Hujoel et al. 9 as outcome 

in the analysis, which is computed conditioning on test samples’ binary phenotypes and available disease 

status of parents and siblings through Monte Carlo integration.  

Linear mixed model (LMM) for adjusted phenotype 

We denote E1  as a (p+1)-vector of covariates with the intercept, and F1  as the allele counts for the variant 

to be tested. We consider the following linear model: 
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G(A1) = E1, + F1H + I1 , 

 

where , is a (J + 1)-vector of fixed effect coefficients, H is a genetic effect coefficient, and I1  the random 

effect term for the ith individual with I = (I), … , I:); .  We assume the random effect to follow a 

multivariate Gaussian distribution I ∼ ((0, M,N + ∑ M<=
<8) P<) , where M,  is the variance component 

parameter for a noise term. Parameters for other variance components are denoted as M<, and P< are 

pre-specified ( × ( correlation matrices. 

To better capture phenotype correlation, we use a variance component of sparse kinship in addition to 

the commonly used genetic relationship matrix (GRM), i.e., Q = 2 and S = M,N + M)P) + M-P-, where P) 

is a sparse matrix of the estimated kinship coefficients after thresholding, and P- is GRM computed from 

genetic variants. The inclusion of the sparse kinship matrix as an additional variance component can be 

justified by the observation that the phenotype adjustment using family disease information increases 

the concordance among related individuals. For example, the adjusted phenotype for a control sibling pair 

would be identical as they share the same parental disease status (Supplementary Figure 1). Such 

phenotypic concordance is not sufficiently captured by GRM alone and can lead to mis-calibration as  

pointed out by Hujoel, Margaux LA, et al.9. It is also shown that incorporating pedigree structure as a 

variance component in linear mixed models improves association outcomes27, 28.  

 

Parameter estimation for the null model 

Under the assumption of no genetic effects, the null model can be represented as 

A1 = E1, + I1  
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Treating the adjusted phenotype A as quantitative trait, the log likelihood of (,, M) with random effect I 

integrated out in REML is 

ℓ(,, H = 0, M) = U −
1
2 (log|S| + log|E

;S.)E| + A;[A) 

where U is a constant, S = M,N + ∑ M<-
<8) P<, [ = S.) − S.)E(E;S.)E).). Model	parameters	

(,, H, M)	are	estimated	iteratively	with	a	working	model	A\ = E,](>) + Î(>)	for	iteration	_.	Let	Ŝ =

M̂,N + ∑ M̂<-
<8) P< 	be	the	working	variance	matrix.	The	first	derivatives	of	ℓ(,, H = 0, M)	with	respect	

to	M	are:	

aℓ(,, H = 0, M)
aM<

=
1
2 [A
\;[P<[A\ − c6([P<)] 

For each iteration, variance components M̂ are updated using AI-REML algorithm14, in which the Hessian 

is approximated by an average information matrix eN with its entries expressed as: 

 

eN?'?( =
1
2A
\;[̂P<[̂P>[̂A\, 

 

where [̂ = Ŝ.) − Ŝ.)E(E;Ŝ.)E).). Then the variance component parameters are updated by M<@(A =

M<B>C + {eN}.)
Dℓ(F,H8,,?)(*)

D?'
. 

Both the first derivative and the approximated second derivative involves matrix inverse of Ŝ, which can 

be computationally heavy when ( is large. To reduce the computational burden, the PCG method15 with 

Jacobi preconditioner is adopted, which avoids directly calculating matrix inverse by finding solutions of 

linear systems and involves only matrix multiplication. Since Ŝ  is a linear combination involving two 

components P) and P- in our setting, matrix multiplication with regard to the two parts can be calculated 
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separately. For P)  which is a sparse matrix representing close relatedness up to the third degree, the 

computation cost is further lowered by scanning through the non-zero elements of P) only. For P- which 

represents genetic relatedness, we improve the memory usage by calculating its elements in runtime 

instead of using a pre-computed ( × ( GRM matrix. Thus, the overall time complexity for null model 

estimation is reduced from !((I) to !(#($!"# + &$%&'$()().+), where # is the number of iterations 

until the algorithm reaches convergence, &$%&'$( is the number of non-zero elements of sparse kinship 

matrix, $!"#  is the number of variants included in the GRM construction. Here we assume that PCG 

algorithm has complexity !((,.+).16 

To avoid double-fitting the candidate variant in the model and GRM, leave-one-chromosome-out (LOCO) 

scheme was implemented in both the null model parameter estimation step and the score statistic 

calculation step of the proposed method. 

Single variant association test with empirical SPA 

The score statistic for testing the null hypothesis f,: H2 = 0 for variant : is h = F\2;(A − î), where F\2  is 

an N-vector of covariate-adjusted genotypes. Under the null hypothesis, the variance of the statistic is 

Pj6(h) = F2;[̂F2 . For computational efficiency, Pj6(h)  can be approximated using Pj6(h)∗ = F\2;F\2  

combined with a calibration factor 6 = K&'(;)
K&'(;)∗ estimated using a subset of SNP data16, 17, 29. The variance-

adjusted statistic after calibration is h′ =
!L"
,(M.NO)

P'̂!L"
,!L"

. For the proposed method, 30 SNPs were used to obtain 

the estimated calibration factor 6̂. 

When Z is unbalanced and a variant has low minor allele count, the distribution of h′ deviates from the 

Gaussian distribution especially at the tails, thus the usual test of the score statistic against a Gaussian 

distribution can result in type I error inflation. Saddlepoint approximation is shown to improve over 
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normal approximation in such conditions by utilizing the entire cumulant-generating function (CGF)30, 31. 

Fixing F\2, h′ can be viewed as a weighted sum of residuals A − î, yet the adjusted phenotype A has an 

intractable distribution which makes it impossible to derive the explicit cumulant-generating function 

(CGF). 

Alternatively, we use the empirical version of saddlepoint approximation10, 11 as a nonparametric 

estimator for the distribution of the test statistic. The empirical CGF approach has been utilized in 

methods such as SPACox12 for an altered version of the test statistic and was shown to provide calibrated 

p-values. The empirical estimator for CGF of h′ is Ql(m) = log():∑ nRS!:
18) ) where c1  is the residual of the 

ith individual from Step1. The empirical approximation of the first and second derivative are Ql′(m) =

∑ (-.!#
!%& S!
∑ (-.!#
!%&

	 and Ql″(m) = ∑ (-.!#
!%& S!

/

∑ (-.!#
!%&

− Ql′(m)Ql-(m) respectively. Suppose  mp is a value satisfying the equation 

Ql′(mp) = q, the p-value can be calculated by the following formula32 

J6(h′ > q) ≈ 1 − t{u +
1
u log

v
u} 

where u = sign(mp)z2[mpq − Ql(mp)], v = mpzQl″(mp), t is the cumulative distribution function of the 

standard normal distribution. 

	

Simulation studies 

We performed simulation studies to evaluate type I error rate and power of the proposed method. To 

simulate a population of size ( with J'% relatedness, we set J'(/100 to be related individuals with a 

specified relatedness structure, and the rest 1 − J'(/100 to be independent individuals. Given that the 

relatedness structure is sibling pairs, the simulation process proceeds as follows: First, sequences of $ 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 6, 2021. ; https://doi.org/10.1101/2021.07.04.21259997doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.04.21259997


	 21	

variants for both parents of each sample individual were simulated independently with pre-specified 

MAFs. Genotypes for (  sample individuals (offsprings) were then generated using (" = 2(  parental 

genotypes. Binary phenotypes for sample individuals and parents were simulated from #n6{|}__9(i1) 

with i1  from a logistic mixed model 

_|~9c(i1) = ,, + E1 + F1H + I1  

where for individual 9	(9 = 1, . . . ,3(), E1  is a covariate randomly sampled from (|6Äj_(0,1), F1  is the 

genotypes of the M variants, ,, is the intercept determined by prevalence Å, H is a vector of log odds 

ratio of genetic effects, and I1  is a random effect with underlying distribution (|6Äj_(0, MQ) depending 

on the true underlying kinship coefficient matrix Q. Given the kinship coefficient Ç12 	between individual i 

and individual j, the value for an element in K is Q12 = 2Ç12. 

Type I error rates were evaluated at significant level , = 5 × 10./	 for simulated data sets with 100 

independent null SNPs, and sample size 10,000 at case-control ratio of 1:99, 5:95 and 10:90. All SNPs were 

generated with minor allele frequency 0.1 while phenotypes were generated given M = 1, corresponding 

to liability-scale heritability 0.2317. We considered two types of relatedness structure for the simulated 

population. The first one consists of 5,000 independent individuals and 2,500 sibling pairs (J' = 50%). 

The second one is a mixture of independent individuals and families with 8 members in each family. The 

pedigree for the 8-member family was shown in Supplementary Figure 5. To obtain a sample size of 

10,000 with 50% related individuals, 625 families were simulated with the 8-member pedigree, while the 

rest 5,000 are independent individuals. Four methods were compared: SAIGE, LT-FH, TAPE-LTFH and TAPE. 

Note that for the setting with 8-member families, TAPE’s phenotype adjustment takes into account all 

relatedness in the pedigree, while LT-FH only integrates information from parents and sibling of an 

individual. 
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Power of the tests was assessed using simulated data sets with 10,000 individuals and 100,000 variants 

for each setting with 1% variants selected as causal variants. We calculated the 2- statistics from SAIGE, 

LT-FH, TAPE-LTFH and TAPE and compared between causal and non-causal variants. Genetic effect sizes 

ranged from 0.4 to 2.3 and three case-control ratio settings were considered, i.e., 1:99, 5:95, and 10:90. 

We generated 100 replications for each setting and compared the empirical power at significance level 

, = 5 × 10./ over SAIGE, LT-FH, TAPE-LTFH and TAPE. 

 

Computation time 

Computation time was evaluated with $ = 100,000 variants and sample size ( ranging from 10,000 to 

408,898 sampled from white British individuals in UK Biobank data for Type II diabetes 

(case:control=1:20). Projected time for the analysis of 21 million variants with MAF ≥ 0.01% was 

calculated based on the evaluation results. Two other methods were evaluated in addition to TAPE: 

analysis of binary phenotypes by SAIGE and analysis of LT-FH phenotypes by BOLT-LMM. All evaluations 

were computed on an Intel(R) Xeon(R) Gold 6152 CPU. 

	

UK Biobank data 

Over 21 million genetic variants imputed from the Haplotype Reference Consortium (HRC)18 and with 

minor allele frequency (MAF) ≥ 0.01% were used for the association analysis among a sample population 

of 408,898 white British individuals. NCBI Build 37/UCSC hg19 was adopted for genomic coordinates. A 

total of 10 binary traits with available parental disease status were analyzed, where the binary traits for 

genotyped individuals were defined by the PheWAS codes17 aggregated from ICD9 and ICD10 codes in the 

UK Biobank. Parental phenotypes were extracted from data fields for self-reported paternal and maternal 
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illness. We included sex, age and first 10 principal components as covariates to adjust for. GRM was 

constructed using 93,511 genotyped variants suggested by UK Biobank17, 33. Kinship coefficients were 

estimated using the KING software19, and the sparse kinship matrix was constructed using those with 

estimated kinship no larger than third-degree relatedness. 

 

The KoGES data 

For the association analysis among a sample population of 72,298 Korean individuals, over 8 million 

genetic variants were imputed from 1,000 Genome project phase 3 + Korean reference genome (397 

samples) and with minor allele frequency (MAF) > 1%3. Two binary traits (diabetes and gastric cancer) 

with different case-control ratios were analyzed. Phenotypes for both genotyped individuals and their 

relatives are self-reported survey data. We adjusted for sex, age, first 10 principal components, and 34 

indicator variables of batch information (cohort × collection year). GRM was constructed using 327,540 

genotyped variants. The sparse GRM was constructed using SAIGE with pairwise relatedness coefficients 

larger than 0.1.  
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FIGURES & TABLES 

Figure 1. Analytical framework of TAPE. In Step 0, latent disease risk of individuals is estimated from 

observed phenotypes and family disease history using a weighted proportion of the affected close 

relatives to the individual. In Step 1, a null linear mixed model is fit with  covariates and two random 

effects with the sparse kinship matrix and the dense genetic relatedness matrix (GRM) as covariance 

structures. In Step 2, p-values score test is performed for each genetic variant using empirical saddlepoint 

approximation. GWAS results from TAPE yields higher detection power while maintaining good calibration 

among related individuals.  
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Figure 2. Average 2- values of causal variants with sample size N=10,000 (5,000 independent individuals 

and 2,500 pairs of siblings), comparing TAPE, TAPE-LTFH, LTFH and SAIGE. For each dataset, 100,000 

independent variants were simulated and 1% variants were selected as causal variants with 4 different 

effect sizes. A total of 100 datasets were generated to calculate average 2- values. MAFs of variants were 

0.1. 
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Figure 3. Manhattan plot for the UK Biobank association test results from SAIGE (first row), LT-FH (second 

row), TAPE-LTFH (third row) and TAPE (fourth row) among white British (N=408,898). a: Type II diabetes 

(Phecode 250.2); b: Parkinson’s disease (Phecode 332). For plots from TAPE, red marks clumped significant 

variants from TAPE that were not detected by SAIGE; blue marks clumped significant variants detected by 

both TAPE and SAIGE. Significant clumped variants are identified using a window width of 5Mb and a 

linkage disequilibrium threshold of 0.1.      
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Figure 4. Q-Q plot for the UK Biobank association test results from SAIGE, LT-FH, TAPE-LTFH and TAPE among white British (N=408,898), 

categorized by MAF. Up: Type II diabetes (Phecode 250.2); Bottom: Parkinson’s disease (Phecode 332) 
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Table 1. Empirical type I error rates for TAPE, TAPE-LTFH, LT-FH and SAIGE, estimated using 

10!	independent SNPs and a sample size of 10,000 ($ = 5 × 10"#). a: Sample consists of 2,500 pairs of 

siblings and 5,000 independent individuals; b: Sample consists of 625 8-member families and 5,000 

independent individuals. 

 

a. 

Case:Control MAF TAPE TAPE-LTFH LTFH SAIGE 

1:99 0.001 4.977e-08 1.019e-07 5.928e-06 4.418e-08 

5:95 0.001 5.115e-08 8.275e-08 1.252e-06 4.368e-08 

10:90 0.001 5.476e-08 7.452e-08 5.489e-07 4.641e-08 

1:99 0.01 5.455e-08 1.069e-07 1.409e-07 3.963e-08 

5:95 0.01 5.143e-08 1.158e-07 1.940e-07 4.341e-08 

10:90 0.01 5.459e-08 9.086e-08 1.141e-07 4.980e-08 

1:99 0.10 5.007e-08 1.275e-07 1.500e-07 3.964e-08 

5:95 0.10 5.213e-08 1.639e-07 1.238e-07 4.355e-08 

10:90 0.10 6.416e-08 7.782e-08 7.232e-08 4.650e-08 

 

b. 

Case:Control MAF TAPE TAPE-LTFH LTFH SAIGE 

1:99 0.001 3.329e-08 9.028e-08 4.446e-06 3.832e-08 

5:95 0.001 3.051e-08 6.563e-08 8.171e-07 4.245e-08 

10:90 0.001 2.967e-08 5.145e-08 3.751e-07 4.721e-08 

1:99 0.01 3.742e-08 9.792e-08 4.818e-07 4.547e-08 

5:95 0.01 3.156e-08 7.906e-08 1.463e-07 4.311e-08 

10:90 0.01 2.978e-08 6.215e-08 8.811e-08 4.324e-08 

1:99 0.10 3.113e-08 7.730e-08 1.000e-07 3.895e-08 

5:95 0.10 3.050e-08 7.983e-08 6.025e-08 4.232e-08 

10:90 0.10 3.163e-08 6.372e-08 5.857e-08 4.546e-08 
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Table 2. Summary of 10 traits in UK Biobank 

Trait Phecode Case:Control Parental Prevalence 

Parkinson’s Disease X332 1:360 0.0186 

Dementias X290.1 1:406 0.0609 

Lung Cancer X165.1 1:181 0.0604 

Depression X296.2 1:33 0.0462 

Type II Diabetes X250.2 1:20 0.0845 

Hypertension X401 1:4 0.2388 

Chronic Bronchitis X496.2 1:136 0.0785 

Colorectal Cancer X153 1:87 0.0499 

Ischemic Heart Disease X411 1:11 0.2373 

Cerebral Ischemia X433.3 1:138 0.1348 
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