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Abstract

By 4 July, 2021there were over 182 million people on infected with COVID-19. It caused more 3.9 mil-
lion deaths. This paper introduces a symptomatic-asymptomatic-recoverer-dead differential equation model
(SARDDE). It gives the conditions of the asymptotical stability on the disease-free equilibrium of SARDDE.
It proposes the necessary conditions of disease spreading for the SARDDE. Based on the reported data of the
first and the second COVID-19 epidemics in Beijing and simulations, it determines the parameters of SARDDE,
respectively. Numerical simulations of SARDDE describe well the outcomes of current symptomatic and asymp-
tomatic individuals, recovered symptomatic and asymptomatic individuals, and died individuals, respectively.
The numerical simulations suggest that both symptomatic and asymptomatic individuals cause lesser asymp-
tomatic spread than symptomatic spread; the blocking rates of about 90% and 97% to the symptomatic indi-
viduals cannot prevent the spread of the first and second COVID19 epidemics in Beijing, respectively. Virtual
simulations suggest that the strict prevention and control strategies implemented by Beijing government are not
only very effective but also completely necessary. The numerical simulations suggest also that using the data
from the beginning to the days after about two weeks from the turning points can estimate approximately the
following outcomes of the two COVID-19 academics, respectively. It is expected that the research can provide
better understanding, explaining, and dominating for epidemic spreads, prevention and control measures.

Keywords: New coronavirus, SIR model, Disease-free equilibrium, Globally attractive, Simulations, Long-
term’s estimation.

1 Introduction

In December 2019, a novel coronavirus-induced pneumonia (COVID-19) broke out in Wuhan, Hubei. By 4
July, 2021 there were 182 million people on infected with COVID-19 worldwide. It caused more 3.9 million deaths.
COVID-19 affects more than 220 countries and regions including Antarctica.

One of the reasons of such a tragedy is that people in some countries do not pay attentions to theoretical
analysis and estimations for COVID-19 epidemics. In fact mathematical models for epidemic infectious diseases
have played important roles in the formulation, evaluation, and prevention of control strategies. Modelling the
dynamics of spread of disease can help people to understand the mechanism of epidemic diseases, formulate and
evaluate prevention and control strategies, and predict tools for the spread or disappearance of an epidemic [1].

Since the outbreak of COVID-19 in Wuhan, many scholars have published a large numbers of articles on
the modeling and prediction of COVID-19 epidemic (for examples see [2–9] ). It is difficult to describe well the
dynamics of COVID-19 epidemics. In a Lloyd-Smith et al’s paper, it described nine challenges in modelling the
emergence of novel pathogens, emphasizing the interface between models and data [10].

On Jan. 19, two Beijingers returning from Wuhan were diagnosed with COVID-19. That triggered the first
wave of COVID-19 in Beijing. During the first wave of COVID-19, a total of 420 locally diagnosed cases were
reported. After 140 days , on June 8, 411 COVID-19 individuals were cured and 9 died. However three days later
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there was one confirmed case of the COVID-19 in a new outbreak in Tongzhou district, Beijing. This triggered a
second wave of the COVID-19. After 56 days, totals of 335 and 50 locally symptomatic and asymptomatic COVID-
19 individuals were reported, and all individuals were cured. Medical staff have achieved zero infection [11].

This paper introduces a symptomatic-asymptomatic-recoverer-dead differential equation model (SARDDE). It
gives the conditions of the asymptotical stability on the disease-free equilibrium of SARDDE. Using simulations
determines the parameters of SARDDE based on the reported data of the two COVID-19 epidemics in Beijing
[11]. Numerical simulations of SARDDE describe well the practical outcomes of current infected symptomatic
and asymptomatic individuals, recovered infected symptomatic and asymptomatic individuals, and died infected
individuals. Virtual simulations are given to estimate the effectiveness of the prevention and control strategies.

The rest of this paper is organized as follows. Section 2.1 establishes SARDDE. Section 2.2 provides the
criterions of the asymptotical stability of the disease-free equilibrium. Section 2.3 determines the necessary
conditions of disease spreading. Section 3.1 implements the dynamic simulations of SARDDE to describe the
data of the first COVID-19 epidemic in Beijing; states analysis and discussions. In the same section two virtual
simulation examples are implemented to emphasize the importance of strict control measures and long terms’
estimation to epidemic spreading. Section 3.2.1 establishes a model without died case. Section 3.2.2 provides
the criterions of the asymptotical stability of the disease-free equilibrium. Section 3.2.3 determines the necessary
conditions of disease spreading. Section 3.2.4 implements the dynamic simulations of the model to describe the
data of the second COVID-19 epidemic in Beijing; states analysis and discussions. In the same subsection, two
virtual simulation examples are implemented. Conclusions are given in Section 4.

2 SARDDE Model and Dynamic Properties

2.1 SARDDE Model

For SARDDE model, there are four states. I(t), Ia(t), Ir(t), Ira(t) and D(t) represent the fraction of cur-
rent symptomatic infected individuals, and current asymptomatic but infected individuals, cumulative recovered
symptomatic infected individuals, cumulative recovered asymptomatic but infected individuals and cumulative
died individuals, respectively. The transition among these states is governed by the following rules (Flowchart of
the rules is shown in Fig.1, where S represents susceptible population.).
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Figure 1: Flowchart of disease transmission among susceptible population S, current symptomatic infected individ-
uals I, current asymptomatic but infected individuals Ia recovered symptomatic infected individuals Ir, recovered
asymptomatic but infected individuals Ira, and died individuals D.

First, the symptomatic infected individuals (I) and the asymptomatic but infected individuals (Ia) infect the
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susceptible population (S) with the probabilities of β11 and β21, respectively, making S become symptomatic
infected individuals, and with the probabilities of β12 and β22, respectively, making S become asymptomatic
individuals. Then, a symptomatic individual is cured at a rate κ, an asymptomatic individual returns to normal
at a rate κa. An infected individual dies at a rate α. Here all parameters are positive numbers. Assume that the
dynamics of an epidemic can be described by m time intervals. At ith interval, the model has the form:

dI

dt
= θ1(i)(β11I + β21Ia)S − κ(i)I − α(i)I (1a)

dIa

dt
= θ2(i)(β12I + β22Ia)S − κa(i)Ia (1b)

dIr

dt
= κ(i)I (1c)

dIra

dt
= κa(i)Ia (1d)

dD

dt
= α(i)I (1e)

where θ1(i)
′s and θ1(i)

′s (i = 1, . . . ,m) represent blocking rates to symptomatic and asymptomatic infections,
respectively. Then system (1) has a disease-free equilibrium:

Then equation (1) has a disease-free equilibrium:

E = (0, 0, 0, 0, 0). (2)

2.2 Stability of disease-free equilibrium

The stability of system (1) is determined by the first two equations (1a) and (1b). Denote in (1a) and (1b)

a11 = θ1(i)β11S − κ(i) − α(i) (3)

, a12 = θ1(i)β21S, (4)

a21 = θ2(i)β12S, (5)

a22 = θ2(i)β22S − κa(i). (6)

Then at the disease-free equilibrium of system(18), the Jacobian matrix of (18a) and (18b) is

J =

[

a11 a12

a21 a22

]

Solving the corresponding eigenequation obtains 2 eigenvalues:

x1,2 =
1

2

(

a11 + a22 ±
√

(a11 + a22)2 − 4(a11a22 − a12a21)
)

Therefore it obtains the following:

Theorem 1 Suppose that a11, a12, a21 and a22 are defined by (3)-(6). Then the disease-free equilibrium E of
system (1) is globally asymptotically stable if, and only if, the following inequalities hold:

(a) R1
local , a11 + a22 < 0, (7)

(b) R2
local , a12a21 − a11a22 < 0. (8)
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2.3 The necessary condition of disease spreading

If an epidemic can occur, then

İ(t)|t=0>0, İa(t)|t=0>0.

This implies that

θ1(i)(β11 + β21Ia(t)/I(t))S − α(i) − κ(i) > 0

θ2(i)(β12I(t)/Ia(t) + β22))S − κa(i) > 0.

Solving the above inequalities gives the following

Theorem 2 If system (1) satisfies the following inequalities

(a) S1
p , θ1(i)(β11 + β21Ia(t)/I(t))S/(α(i) + κ(i)) > 1 (9)

(b) S2
p , θ2(i)(β12I(t)/Ia(t) + β22))S/κa(i) > 1, (10)

then a disease transmission will occur.

3 Applications

Based on the reported clinical COVID-19 epidemic data from January 19 to June 8, 2020 in Beijing [11], this
Section will discuss the applications of the above theoretical results. Numerical simulations and drawings are
performed by using MATLAB software programs. The first 50 days’ reported clinical data on current confirmed
infection cases, and the reported clinical data on recovered cases of the COVID-19 epidemic in Beijing [11] are
shown in Figs. 2(a) and 2(b)1. The number of current symptomatic infected individuals is showed in Fig3(a)
by circles. The numbers of cumulative recovered symptomatic infected individuals, and cumulative died infected
individuals are showed in Fig3(b) by circles and stars respectively.

The number of current infected individuals was risen rapidly in the first 4 days (see Fig. 2(a)). The number
of current infected individuals reached the highest 295 on the day 24th, February 12 and then after the day 31th,
February 19, declined rapidly (see Fig. 2(a) and 3(a)).

Observe from the Figs. 3(a) and 3(b) that the overall changes in the number of current confirmed infections
are not subject to the law of exponential changes, but the data can be approximated in good agreement with
8 straight lines in log scale (see Fig. 3). This phenomenon can be explained as: different medical measures
prevention and control strategies have been adopted at the different 8 time intervals. On the day 86th, April 15,
there are 3 Chaoyang district infected people coming back Beijing form foreign country which makes calculated
blacking rates to rise. Therefore the i in SARDDE model (1) should be chosen as i = 1, 2, . . . , 8.

1In the cases that some reported data crossed one day, we assign approximately numbers according to the ratios of time intervals.
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Figure 2: (a) Outcome of the number of current infected individuals. (b) Outcome of the number of cumulative
recovered individuals.
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(a)

 Number of CI individuals: I(0)=2,I(3)=22,I(12)=150, I(24)=295,I(36)=181,I(52)=73,I(73)=10,I(97)=3,I(140)=0.
 Simulated ones: I(0)=2,,I(3)  22, I(12)  149, I(24)  292,I(36)  182,I(52)  68,I(73)  8,I(97)  1, I(140) <1.
 Simulated number of asymptotic individuals: I a(0)=0, Ia(3)  11,Ia(12)  14,Ia(24)  9,Ia(36)  8,Ia(52)  4,Ia(73)<1.
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(b)

 Number of RS individuals:I r(0)=0,Ir(3)=0,Ir(12)=5,Ir(24)=68,Ir(36)=215,Ir(52)=334,Ir(73)=398,Ir(97)=407,Ir(140)=411.

 Simulated ones:I r(0)=0,,Ir(3)=0,Ir(12)  5,Ir(24)  61,Ir(36)  210,Ir(52)  336,Ir(73)  404,Ir(97)  410,Ir(140)  411.

 Number of culmative death individuls:D(0)=0,D(3)=0,D(12)=1,D(24)=3,D(36)=4,D(52)=8,D(73)=8,D(97)=9,D(140)=9.
 Simulated ones:D(0)=0,D(3)=0,D(12)  1,D(24)  3,D(36)  4,D(52)  8,D(73)  8,D(97)  9,D(140)  9.

Figure 3: (a) Outcome of the number of current symptomatic individuals, representing by circles. Solid line
and dash line are outcomes of stimulated current symptomatic individuals and stimulated current asymptomatic
individuals of system (1). (b) Outcomes of the numbers of cumulative recovered symptomatic and died individuals,
representing by circles and stars, respectively. Solid line and dash line are corresponding simulations of system
(1).
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Table 1 The data of the first COVID-19 epidemic in Beijing on different days and corresponding
calculated parameters of SARDDE. Where NCSII and NCDI represent the numbers [11] of
current symptomatic infected individuals and current died individuals, respectively; NRSII the
number [11] of recovered symptomatic infected individuals.

i Day Date NCSII NRSII NCDII κ(i) α(i) θ1(i) θ2(i)

0 1.19 2 0
1

3 1.22 22
0

0
0 0 1 1

4 1.23 26 0
2

12 1.31 150
5

1
0.0081301 0.001626 0.2855 0.052

13 2.01 162 1
3

24 2.12 293
63

3
0.02186 0.00069396 0.1035 0.01

25 2.13 295 3
4

36 2.24 181
147

4
0.053455 0.00036364 0.0191 0.01

37 2.25 161 4
5

52 3.11 73
119

8
0.067922 0.0022831 0.0118 0.01

53 3.12 65 8
6

73 4.01 10
64

8
0.11636 0 0.017 0.01

74 4.02 9 8
7

97 4.26 3
9

9
0.067164 0.0074627 0 0

98 4.27 3 9
8

140 6.08 0
3

9
0.036145 0 0 0

3.1 Simulation and prediction of the first COVID-19 epidemic in Beijing

First it needs to determine the parameters κ(i), κa(i) and α(i). There are different methods for calculating
the recovery rate κ(i) in a specific time interval. It seems to be reasonable that we stands for κ(i) via using the
number of the recovered patients to divide the days of patients stayed in the hospital during the ith time.

Denote s1(i) and s2(i) to be the days that the old patients and the new patients stayed in the hospital during
ith time interval. Denote R(i) and d(i) to be the numbers of the recovered patients and died patients during ith
time interval, respectively. Similar to the formulas given in Ref. [12], R(i) and d(i) can be defined by

κ(i) =
R(i)

s1(i) + s2(i)
(11)

α(i) =
d(i)

s1(i) + s2(i)
. (12)

Since there is no information on recovered asymptomatic infected individuals, we take

κa(i) =
1

7
. (13)

That is, an asymptomatic infected individual will recover in average 7 days. The calculated κ(i)′s and α(i)′s are
shown in the 7 ∼ 8 columns in Table 1.

Second it needs to determine the parameters β′

ijs in SARDDE. One can assume that S = 1 because the effects
of S can be deleted by calculated β′

ijs. This makes the calculated β′

ijs have general sense. Using the practical
data of the first COVID-19 epidemic in Beijing [11] (also see the second row in Table 1) selects following initial
condition:
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(I(0), Ia(0), Ir(0), Ira(0),D(0)) = (2, 0, 0, 0, 0). (14)

Substitute parameters κ(1), α(1), θ1(1) and θ2(1) listed in Table 1 into system (1). Using a minimization error
square criterion:

δ = min
kij∈[0,1]∈[0,1]

√

(I(3) − 22)2 + (Ir(3) − 0)2 + (D(3) − 0)2 (15)

determines k′

ijs.
A group (β11, β12, β21, β22) that makes δ be “smallest” (considering continued simulations) are

(β11, β12, β21, β22) = (0.75454, 0.48757, 0.11989, 0.07993). (16)

The first 4 days’ simulations of system (1) with the above equation parameters are shown in Figs. 3(a) and
3(b). The simulation results are in good agreement with the reported clinical data (see the solid and dash lines
and legends in Figs. 2(a) and (b)).

Third it needs to determine: θ1(i), θ2(i), i = 2, 3, . . . , 8. Denote

t2 = 3, t3 = 12, t4 = 24, t5 = 36, t6 = 52, t7 = 73, t8 = 97.

Let Ic(ti) to be the number of the reported current symptomatic infected individuals at ti in the first Beijing
CONVID-19. Let Icr(ti) and Dc(ti) to be the numbers of the reported cumulative recovered infected and died
individuals at ti, respectively.

Using the minimization error square criterion:

δ = min
θ1(i),θ2(i)∈[0,1]

√

(I(ti) − Ic(ti))2 + (Ir(ti) − Icr(ti))2 + (D(ti) − Dc(ti))2 (17)

determines the θ1(i)
′s and θ2(i)

′s. The calculated results are shown in Table 1. The corresponding simulation
results of system (1) are shown in Figs. 3(a) and 3(b). Observe that the simulation results of SARDDE model
(1) describe well the dynamics of the first COVID-19 epidemic in Beijing.
Discussions.

(1) On day 0, day 3, and day 140, the numbers of the reported and simulated current symptomatic individuals
are are approximate the same. On day 12, day 36, day 75 and day 97, there are only one or two differences. On
day 24 and day 52, there are 3 and 5 differences.

(2) On day 0, day 3, day 12 and day 140, the numbers of the reported and simulated current symptomatic
individuals are approximate the same. On day 52 and day 97, there are 2 and 3 differences, respectively. On day
24, day 36 and day 73, there are 5 ∼ 7 differences, respectively.

(3) On day 0, day 3, day 12, day 24, day 36, day 52, day 73, day 97 and day 140, the numbers of the reported
and simulated cumulative died individuals are approximate the same.

(4) There is no information on the current symptomatic infected and recovered symptomatic infected individ-
uals. But it has reported that after the 73 day, April 1, there is no symptomatic infected individuals until day 143,
June 11 [11]. Our simulation results shows that on the day 73, the number of the simulated current symptomatic
infected individuals was less than one (≈ 0.7), which seems to explain the actual report data. [11].

(5) Computed results (see (16)) of the transmission rates β′

ijs show that the ratio of the transmission rates
of asymptomatic and symptomatic individuals infecting susceptible population to become symptomatic individ-
uals is about 0.159 (β21 :β11). It suggests that asymptomatic individuals cause lesser symptomatic spread than
symptomatic individuals do.
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Table 2 The criterions of the asymptotical stability and disease spreading of the disease-free
equilibrium of SARDDE at eight time intervals.

i Day θ1(i) θ2(i) a11 + a22 a12a21 − a11a22 S1
p S2

p

1 0 1 1 0.69161 0.10594 ∞ 7.1535
2 4 0.2855 0.052 0.066964 0.029394 0.4695 1.9691
3 13 0.1035 0.01 -0.086517 0.0079505 0.028822 1.1134
4 25 0.0191 0.01 -0.18146 -0.0055869 0.0032844 0.80667
5 37 0.0118 0.01 -0.20336 -0.0087015 0.0029741 0.62098
6 53 0.017 0.01 -0.24559 -0.014698 0.015805 0.36595
7 74 0 0 -0.21748 -0.010661 0 0
8 98 0 0 -0.179 -0.0051636 0 0

(6) The computed results (see (16)) also show that the ratios of the transmission rates of asymptomatic and
symptomatic individuals infecting susceptible population to become asymptomatic and symptomatic individuals
are about 0.646 (β12:β11) and 0.667 (β22:β21), respectively. It suggests that both symptomatic and asymptomatic
individuals cause lesser asymptomatic spreads than symptomatic spreads.

(7) The criteria (7) and (8) of the asymptotical stability of the disease-free equilibrium of SARDDE model
(1) over 8-time intervals are shown in the 5th ∼ 8th columns of Table 2. It is shown that until the blocking rates
(1 − θ1, 1 − θ2) reach to (98.09%, 99%), the disease-free equilibrium becomes globally asymptotical stability. The
conditions (9) and (10) of disease spreading are listed in the last two columns in Table 2. It shows also that until
the blocking rates (θ1, θ2) reach to (98.09%, 99%), the spreading of COVID-19 epidemic can be blocked .

Now assume that after day 24th, February 12, it still keeps the blocking rates (1 − θ1(3), 1 − θ2(3)) ≈
(89.65%, 99%) , the cure rates (κ(3), κa(3)), and the died rate α(3) until the day 140, June 8. The simula-
tion results of SARDDE are shown in Figs 4(a) and 4(b). Observe that the numbers of the current symptomatic
and asymptomatic infected individuals reach to about 1.899e5 and 4679, respectively. The numbers of cumulative
recovered symptomatic and died individuals reach to about 74278 and 2359, respectively.

Furthermore assume that after the day 52, March 11, it still keeps the blocking rates (1 − θ1(5), 1 − θ2(5))
≈ (98.3%, 99%), the cure rates (κ(5), κa(5)), and the died rate α(5) until the day 140th, June 8. The simulation
results of SARDDE are shown in Figs 5(a) and 5(b). Observe that the numbers of the current symptomatic
and asymptomatic infected individuals are both less than one, respectively; The numbers of cumulative recovered
symptomatic and died individuals are about 411 and 11, respectively. The results suggest that using the data
before the day 52h (about 17 days after the turning point) can approximately estimate the following outcome of
the the first COVID-19 epidemic in Beijing.

In summary, SARDDE model (1) can simulate the outcomes of the first COVID-19 epidemic in Beijing. The
calculated equation parameters can help us to understand and explain the mechanism of epidemic diseases and
control strategies for the event of the practical epidemic.

3.2 Simulation and prediction of the second COVID-19 epidemic in Beijing

A total of 335 locally symptomatic cases and 50 locally asymptomatic cases were reported during the 2th
wave COVID-19 epidemics. After 56 days, all symptomatic and asymptomatic patients were cured. The medical
personnel has realized the zero infection. This event of Xinfadi COVID-19 epidemic provides a valuable example
of accurate preventing and controlling strategies and excellent clinical treatments.
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 Simulated ones: I(0)=2,,I(3)  22, I(12)  149, I(24)  292,I(36)  570,I(52)  1394,I(73)   4503,I(97)  17203, I(140)  1.899e5.
 Simulated number of asymptotic individuals: I a(0)=0, Ia(3)  11,Ia(12)  14,Ia(24)  9,Ia(36)  14,Ia(52)  34,Ia(73)  111,Ia(97)  424,Ia(140)  4679.
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 Number of RS individuals:I r(0)=0,Ir(3)=0,Ir(12)=5,Ir(24)=68,Ir(36)=215,Ir(52)=334,Ir(73)=398,Ir(97)=407,Ir(140)=411.

 Simulated ones:I r(0)=0,,Ir(3)=0,Ir(12)  5,Ir(24)  61,Ir(36)  170,Ir(52)  492,Ir(73)  1709,Ir(97)  6680,Ir(140)  74278 .

 Number of culmative death individuls:D(0)=0,D(3)=0,D(12)=1,D(24)=3,D(36)=4,D(52)16,D(73)=8,D(97)=9,D(140)=9.
 Simulated ones:D(0)=0,D(3)=0,D(12)  1,D(24)  3,D(36)  6,D(52)  16,D(73)  55,D(97)  213,D(140)  2359.

Figure 4: Virtual simulations: (a) Outcome of the number of current symptomatic individuals, representing by
circles. Solid line and dash line are outcomes of stimulated current symptomatic and asymptomatic individuals of
system (1). (b) Outcomes of the numbers of cumulative recovered symptomatic and died individuals, representing
by circles and stars, respectively. Solid line and dash line are corresponding simulations of system (1).
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 Number of CI individuals: I(0)=2,I(3)=22,I(12)=150, I(24)=295,I(36)=181,I(52)=73,I(73)=10,I(97)=3,I(140)=0.
 Simulated ones: I(0)=2,,I(3)  22, I(12)  149, I(24)  292,I(36)  182,I(52)  68,I(73)  19,I(97)  4, I(140) <1.
 Simulated number of asymptotic individuals: I a(0)=0, Ia(3)  11,Ia(12)  14,Ia(24)  9,Ia(36)  8,Ia(52)  4,Ia(73)  1,Ia(97)< 1 .
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(b)

 Number of RS individuals:I r(0)=0,Ir(3)=0,Ir(12)=5,Ir(24)=68,Ir(36)=215,Ir(52)=334,Ir(73)=398,Ir(97)=407,Ir(140)=411.

 Simulated ones:I r(0)=0,,Ir(3)=0,Ir(12)  5,Ir(24)  61,Ir(36)  210,Ir(52)  336, Ir(73)  391,Ir(97)  407,Ir(140)  411.

 Number of culmative death individuls:D(0)=0,D(3)=0,D(12)=1,D(24)=3,D(36)=4,D(52)=8,D(73)=8,D(97)=9,D(140)=9.
 Simulated ones:D(0)=0,D(3)=0,D(12)  1,D(24)  3,D(36)  4, D(52)  8,D(73)  10,D(97)  10,D(140)  11.

Figure 5: Virtual simulations: (a) Outcome of the number of current symptomatic individuals, representing by
circles. Solid line and dash line are outcomes of stimulated current symptomatic asymptomatic individuals of
system (1). (b) Outcomes of the numbers of cumulative recovered symptomatic and died individuals, representing
by circles and stars, respectively. Solid line and dash line are corresponding simulations of system (1).
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3.2.1 Model

Similar to Section 2.1 the transition among these states is governed by the following rules (Flowchart of the
rules is shown in Fig.6, where S represents susceptible population.)

(β12I + β22Ia)S

(β11I + β21Ia)S

Ira

Ir

Ia

I

S -

-

-

κ

κa

�

�

6

?

Figure 6: Flowchart of disease transmission among susceptible population S, current symptomatic infected individ-
uals I, current asymptomatic but infected individuals Ia recovered symptomatic infected individuals Ir, recovered
asymptomatic but infected individuals Ira.

Similar to Section 2.1, assume that the dynamics of an epidemic can be described by m time intervals. At ith
interval, the model has the form:

dI

dt
= θ1(i)(β11I + β21Ia)S − κ(i)I (18a)

dIa

dt
= θ2(i)(β12I + β22Ia)S − κa(i)Ia (18b)

dIr

dt
= κ(i)I (18c)

dIra

dt
= κa(i)Ia (18d)

Then system (18) has a disease-free equilibrium:

E = (0, 0, 0, 0, 0). (19)

3.2.2 Stability of disease-free equilibrium

The stability of system (18) is determined by the first two equations (18a) and (18b). Denote in (18a) and
(18b):

a11 = θ1(i)β11S − κ(i), (20)

, a12 = θ1(i)β21S, (21)

a21 = θ2(i)β12S, (22)

a22 = θ2(i)β22S − κa(i). (23)

Then at the disease-free equilibrium of system(18), the Jacobian matrix of (18a) and (18b) has the form

J =

[

a11 a12

a21 a22

]

.
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Solving the corresponding eigenequation obtains 2 eigenvalues:

x1,2 =
1

2

(

a11 + a22 ±
√

(a11 + a22)2 + 4(a12a21 − a11a22)
)

.

Therefore it obtains the following:

Theorem 3 Suppose that a11, a12, a21 and a22 are defined by (20)-(23). Then the disease-free equilibrium E of
system (18) is globally asymptotically stable if, and only if, the following inequalities hold:

(a) R1
local , a11 + a12 < 0, (24)

(b) R2
local , a12a21 − a11a22 < 0. (25)

3.2.3 The necessary condition of disease spreading

If an epidemic can occur, then

İ(t)|t=0>0, İa(t)|t=0>0.

This implies that

θ1(i)(β11 + β21Ia(t)/I(t))S − κ(i) > 0

θ2(i)(β12I(t)/Ia(t) + β22))S − κa(i) > 0.

Solving the above inequalities gives the following

Theorem 4 If system (18) satisfies the following inequalities

(a) S1
p , θ1(i)(β11 + β21Ia(t)/I(t))S/κ(i) > 1 (26)

(b) S2
p , θ2(i)(β12I(t)/Ia(t) + β22))S/κa(i) > 1. (27)

Then a disease transmission will occur.

3.2.4 Simulations

Until June 10, 2020, the Beijing whole city continual 56 days has no new reports of the locally confirmed
COVID-19 cases. There have been 11 districts in all 15 districts which continually have no reported locally
COVID-19 case over 100 days. However in June 11, Xinfadi in Tongzou district appeared a COVID-19 confirmed
case. Thus has caused the second wave COVID-19 epidemic in Beijing.

Based on the reported clinical COVID-19 epidemic data from June 11 to August 6, 2020 in Beijing [11], this
Section will discuss the applications of above theoretical results.

Figure 7(a) show that the reported data on current confirmed symptomatic infection cases [11]. Figure 7(b)
show that the reported data on cumulative recovered symptomatic infection cases [11]. Figure 8(a) show that the
reported data on current confirmed asymptomatic infection cases [11]. Figure 8(b) show that the reported data
on cumulative recovered asymptomatic infection cases [11].

The evolution of the current symptomatic infected individuals, and the current asymptomatic infected in-
dividuals are shown in Fig. 9(a) by circles and diamonds, respectively. The evolution of cumulative recovered
symptomatic infected individuals, and cumulative recovered asymptomatic infected individuals are shown in Fig.
9(b) by circles and diamonds, respectively.
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Figure 7: (a) Outcome of the number of current symptomatic infected individuals. (b) Outcome of the number
of cumulative recovered symptomatic infected individuals.
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Figure 8: (a) Outcome of the number of current asymptotic infected individuals. (b) Outcome of the number of
cumulative recovered asymptotic infected individuals.
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 Reported  CSI: I(0)=1,I(3)=79,I(10)=236,I(19)=326,I(27)=275,I(34)=168,I(44)=42,I(56)=0.
 Simulated ones: I(0)=1,I(3)  79, I(10)  236,I(19)  326,I(27)  274,I(34)  159,I(44)  42,I(56)  1.
 Reported CAI: Ia(0)=0,Ia(3)=7, Ia(10)=22,Ia(19)=26,Ia(27)=26,Ia(34)=17,Ia(44)=4, Ia(56) = 0.

 Simulated ones:  Ia(0)=0,Ia(3)  7, Ia(10)  22,Ia(19)  26,Ia(27)  27,Ia(34)  16,Ia(44)  4,Ia(56) <1.
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 Reported CRSI: I r(0)=0,Ir(3)=0, Ir(10)=0,Ir(19)=2,Ir(27)=60,Ir(34)=167,Ir(44)=293,,Ir(56)=335.

 Simulated ones:  I r(0)=0,Ir(3)= 0, Ir(10) = 0,I(19)  2,Ir(27)  64,Ir(34)  179,Ir(44)  296, Ir(56)  336.

 Reported CRAI: I ra(0)=0,Ira(3)=0,Ira(10)=9,Ira(19)=16,Ira(27)=21,Ira(34)=32,Ira(44)=46,Ira(56) = 50.

 Simulated ones:  I ra(0)=0,Ira(3) = 0,Ira(10)  8,Ira(19)  16,Ira(27)  20,Ira(34)  34,Ira(44)  45,Ira(56)  49.

Figure 9: Outcomes of the numbers of: (a) current symptomatic individuals (CSI) and current asymptomatic
individuals (CAI), representing by circles and diamonds. Solid line and dash line are the corresponding stimulated
ones of system (18). Outcomes of the numbers of: (b) cumulative recovered symptomatic individuals (CRSI) and
cumulative recovered asymptomatic individuals (CRAI), representing by circles and diamonds, respectively. Solid
line and dash line are corresponding simulations of system (18).

Observe from Fig.9 that the overall changes in the number of current confirmed infections are not subject to
the law of exponential changes, but the data can be approximated in good agreement with 7 straight lines in log
scale (see Fig.9 ). This phenomenon can be explained as different medical measures and prevention and control
strategies have been adopted over different 8-time intervals. Therefore the i in SARDDE model (18) satisfies

i = 1, 2, . . . , 7.

Based on the reported clinical COVID-19 epidemic data from June 11 to August 6, 2020 in Beijing [11],
this Section will discuss the applications of above theoretical results. The numbers of current symptomatic
infected individuals, and current asymptomatic but infected individuals are showed in Fig. 9(a) by circles and
diamonds, respectively. The numbers of current recovered symptomatic infected individuals, and current recovered
asymptomatic but infected individuals are showed in Fig. 9(b) by circles and diamonds, respectively.

The number of current infected individuals was risen rapidly in the first 4 days (see Fig. 9(a)). The number
of current infected individuals reached the highest 326 on the day 19th, June 30 (see Fig. 9(a)), and then after
the day 27th, July 7, declined rapidly. The corresponding cumulative number of recovered symptomatic and
asymptomatic individuals has risen rapidly after the day 27th, July 7 (see Fig. 9(b)). Observe from the Figs.
9(a) and 9(b) that the overall changes in the number of current firmed infections are not subject to the law of
exponential changes, but the data can be approximated in good agreement with 7 straight lines in log scale (see
Fig. 9 ). This phenomenon can be explained as: different medical measures and prevention and control strategies
have been adopted at the different 7 time intervals. Therefore the i in model (18) satisfies

i = 1, 2, . . . , 7.
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Table 3 The data of the second wave COVID-19 epidemics on 7 different days and corresponding
calculated parameters of SARDDE model (18). Where NCSII and NCAII represent the numbers
of the current symptomatic infected individuals and the current asymptomatic infected
individuals, respectively; NRSII and NRAII represent the numbers of the cumulative recovered
symptomatic infected individuals and the asymptomatic infected individuals over the ith interval.

i Day Date NCSII NCAII NRSII NRAII κ(i) κa(i) θ1(i) θ2(i)

0 6.11 1 0
1

3 6.14 79 7
0 0 0 0 1 1

4 6.15 106 10
2

10 6.21 236 22
0 9 0 0.085714 0.1069 0.164

3
11 6.22 249 22
19 6.30 326 26

2 7 8.3056e-4 0.035 0.0249 0.04

4
20 7.01 325 28
27 7.08 275 26

58 6 0.025732 0.027149 0.003 0.016

5
28 7.09 263 24
34 7.15 168 17

107 10 0.077762 0.082645 0 0.002

6
35 7.16 158 17
44 7.25 42 4

126 14 0.13419 0.13084 0 0

7
45 7.26 39 4

56 8.06 0 0
42 4 0.28966 0.14815 0 0

First it needs to determine the parameters κ(i), κa(i). Denote s1(i) and s2(i) to be the days that the old
patients and the new patients stayed in the hospital during ith time interval. Denote R(i) and Ra(i) to be the
numbers of the recovered symptomatic patients and asymptomatic patients during ith time interval, respectively.
Then κ(i) and κa(i) can be defined by

κ(i) =
R(i)

s1(i) + s2(i)
(28)

κa(i) =
Ra(i)

s1(i) + s2(i)
(29)

The calculated κ(i)′s and κa(i)
′s are shown in Table 3.

Second it needs to determine the parameters β′

ijs in system (18). One can assume that S = 1 because the
effects of S can be deleted by calculated β′

ijs. This makes the calculated β′

ijs have general sense. Using the
practical data of Xinfadi COVID-19 epidemic (see the second line in Table 3) selects following initial condition

(I(0), Ia(0), Ir(0), Ira(0)) = (1, 0, 0, 0). (30)
Substitute parameters κ(1), κa(1), θ1(1) and θ2(1) listed in Table 3 into system (18). Using a minimization

error square criterion:

δ = min
βij∈[0,1.5]

√

(I(3) − 79)2 + (Ia(3) − 7)2 (31)

determines β′

ijs. A group β′

ijs that makes δ be ”smallest” (considering continued simulations) are

(β11, β12, β21, β22) = (1.4492, 0.072824, 0.13108, 0.72824). (32)
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The simulations of system (18) with above equation parameters are shown in Figs. 9(a) and 9(b). Observe
that the simulation results are in good agreement with the reported first 4 days’ clinical data (see the solid and
dash lines in Figs. 9(a) and 9(b)).

Third it needs to determine: θ1(i), θ2(i), i = 2, 3, . . . , 7. Denote

t1 = 10, t2 = 19, t3 = 27, t4 = 34, t5 = 44, t6 = 56.

Let Ic(ti) and Ica(ti) to be the numbers of the current symptomatic and asymptomatic infected individuals at time
ti, respectively; Icr(ti) and Icra(ti) to be the numbers of the cumulative recovered symptomatic and asymptomatic
infected individuals at time ti, respectively.

Using the minimization error square criterion:

δ = min
θ1(i),θ2(i)∈[0,1]

√

(I(ti) − Ic(ti))2 + (Ia(ti) − Ica(ti))2 + (Ir(ti) − Icr(ti))2 + (Ira(ti) − Icra(ti))2

(33)

determines the θ1(i) and θ2(i). The calculated results are shown in Table 3.The corresponding simulation results
of system (18) are shown in Fig. 9(a) and 9(b). Observe that the simulation results of model (18) describe well
the dynamics of the second COVID-19 epidemic in Beijing.
Discussions

(1) On day 0, day 3, day 19, day 27, and day 56, the numbers of the reported and simulated current symptomatic
individuals are approximate the same. On day 27 and day 56, they have only one difference. On day 34, they
have 9 differences.

(2) On the day 0, day 3, day 10, day 19, day 44 and day 56, the numbers of the practical and simulated current
asymptotic individuals are approximate the same. On the day 27 and day 34, they have only one difference.

(3) On 0 day, 3, 10 and 19, the numbers of practical and simulated cumulative recovered symptomatic indi-
viduals are approximate the same, respectively. On the day 27, it has 4 differences. On the day 34, it has 12
differences. On the day 44, it has 3 differences. On the day 56, it has only one difference.

(4) On the day 0, day 3, and day 19, the numbers of practical and simulated cumulative recovered asymptomatic
individuals are approximate the same. On day 10, day 27, day 44 and day 56, they have only one difference. On
day 34, it has one two differences.

(5) Computed results (see (32)) show that the ratio of the transmission rates of asymptomatic and symptomatic
individuals infecting susceptible population to become symptomatic individuals is about 9% (β21 : β11). It suggests
that asymptomatic individuals cause lesser symptomatic spread than symptomatic individuals do.

(6) Computed results (see (32)) also show that the ratios of the transmission rates of asymptomatic and symp-
tomatic individuals infecting susceptible population to become asymptomatic and symptomatic individuals are
about 5% (β12 : β11) It suggests that symptomatic individuals cause lesser asymptomatic spread than symptomatic
spread.

(7) The criteria of the stability of the disease-free equilibrium of system (18) at 7-time intervals are listed
in Table 4. It shows that until the blocking rates (1 − θ1, 1 − θ2) reach to ( 99.869%, 98.69%), the disease-free
equilibrium becomes globally asymptotical stable. The blocking rates (97.46%, 96.94%) cannot prevent the spread
of the second COVID-19 epidemic in Beijing.
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Table 4 The criterions of the asymptotical stability and disease spreading of the disease-free
equilibrium of system (18) at 7 time intervals.

i Day θ1(i) θ2(i) a11 + a22 a12a21 − a11a22 S1
p S2

p

1 3 1 1 1.5803 -1.0458 +∞ +∞
2 10 0.107 0.151 0.16909 -0.0036061 +∞ 2.6523
3 19 0.0254 0.0306 0.039309 0.00046492 0.46118 1.4215
4 27 0.00131 0.0131 -0.023662 -0.00041952 0.00093717 0.70243
5 34 0 0.003 -0.077762 -0.0062568 0 0.053208
6 44 0 0 -0.13419 -0.017557 0 0
7 56 0 0 -0.28966 -0.042913 0 0
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 Reported  CSI: I(0)=1,I(3)=79,I(10)=236,I(19)=326,I(27)=275,I(34)=168,I(44)=42,I(56)=0.
 Simulated ones: I(0)=1,I(3)  79, I(10)  236,I(19)  326,I(27)  432,I(34)  554,I(44)  790,I(56)  1210.
 Reported CAI: Ia(0)=0,Ia(3)=7, Ia(10)=22,Ia(19)=26,Ia(27)=26,Ia(34)=17,Ia(44)=4, Ia(56) = 0.

 Simulated ones:  Ia(0)=0,Ia(3)  7, Ia(10)  22,Ia(19)  26,Ia(27)  35,Ia(34)  44,Ia(44)  60,Ia(56)  89.
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 Reported CRSI: I r(0)=0,Ir(3)=0, Ir(10)=0,Ir(19)=2,Ir(27)=60,Ir(34)=167,Ir(44)=293,,Ir(56)=335.

 Simulated ones:  I r(0)=0,Ir(3)= 0, Ir(10) = 0,I(19)  2,Ir(27)  5,Ir(34)  7,Ir(44)  13, Ir(56)  23.

 Reported CRAI: I ra(0)=0,Ira(3)=0,Ira(10)=9,Ira(19)=16,Ira(27)=21,Ira(34)=32,Ira(44)=46,Ira(56) = 50.

 Simulated ones:  I ra(0)=0,Ira(3) = 0,Ira(10)  8,Ira(19)  16,Ira(27)  25,Ira(34)  34,Ira(44)  52,Ira(56)  82.

Figure 10: Virtual simulations. Outcomes of the numbers of: (a) current symptomatic individuals (CSI) and
current asymptomatic individuals (CAI), representing by circles and diamonds. Solid line and dash line are the
corresponding stimulated ones of system (18). Outcomes of the numbers of: (b) cumulative recovered symp-
tomatic individuals (CRSI) and cumulative recovered asymptomatic individuals (CRAI), representing by circles
and diamonds, respectively. Solid line and dash line are corresponding simulations of system (18).

Now assume that it keeps still the blocking rates (1 − θ1(3), 1 − θ2(3)) ≈ (97.46%, 96.94%) and the cure rates
(κ(3), κa(3)) until the day 56, August 6. The simulation results of system (18) are shown in Fig.10. Observe that
on the day 56, the numbers of the current symptomatic and asymptomatic infected individuals reach to 1210 and
89, respectively; The numbers of cumulative recovered symptomatic and asymptomatic infected individuals reach
to 23 and 82, respectively.

Furthermore assume that after the day 34th, July 14, it still keeps the blocking rates (1 − θ1(5), 1 − θ2(5)),
the cure rates (κ(5), κa(5)) until the day 56th, August 6. The simulation results of system (18) are shown in
Figs. 11(a) and 11(b). Observe that on the day 56, the numbers of the current symptomatic and asymptomatic
infected individuals are about 29 and 2, respectively. The numbers of cumulative recovered symptomatic and
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 Reported  CSI: I(0)=1,I(3)=79,I(10)=236,I(19)=326,I(27)=275,I(34)=168,I(44)=42,I(56)=0.
 Simulated ones: I(0)=1,I(3)  79, I(10)  236,I(19)  326,I(27)  274,I(34)  159,I(44)  73,I(56)  29.
 Reported CAI: Ia(0)=0,Ia(3)=7, Ia(10)=22,Ia(19)=26,Ia(27)=26,Ia(34)=17,Ia(44)=4, Ia(56) = 0.

 Simulated ones:  Ia(0)=0,Ia(3)  7, Ia(10)  22,Ia(19)  26,Ia(27)  27,Ia(34)  16,Ia(44)  7,Ia(56)  2.
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 Reported CRSI: I r(0)=0,Ir(3)=0, Ir(10)=0,Ir(19)=2,Ir(27)=60,Ir(34)=167,Ir(44)=293,,Ir(56)=335.

 Simulated ones:  I r(0)=0,Ir(3)= 0, Ir(10) = 0,I(19)  2,Ir(27)  64,Ir(34)  179,Ir(44)  265, Ir(56)  309.

 Reported CRAI: I ra(0)=0,Ira(3)=0,Ira(10)=9,Ira(19)=16,Ira(27)=21,Ira(34)=32,Ira(44)=46,Ira(56) = 50.

 Simulated ones:  I ra(0)=0,Ira(3) = 0,Ira(10)  8,Ira(19)  16,Ira(27)  20,Ira(34)  34,Ira(44)  42,Ira(56)  47.

Figure 11: Virtual simulations. Outcomes of the numbers of: (a) current symptomatic individuals (CSI) and
current asymptomatic individuals (CAI), representing by circles and diamonds. Solid line and dash line are the
corresponding stimulated ones of system (18). Outcomes of the numbers of: (b) cumulative recovered symp-
tomatic individuals (CRSI) and cumulative recovered asymptomatic individuals (CRAI), representing by circles
and diamonds, respectively. Solid line and dash line are corresponding simulations of system (18).

asymptomatic individuals are about 309 and 47, respectively. The results suggest that using the data before the
day 34 (about two weeks after the turning point) can approximately to estimate the following outcome of the the
second COVID-19 academic in Beijing.

4 Conclusions

The main contributions of this paper are summarized as follows:
(1) Proposed the SARDDE models ((1) and (18)) with 4 or 5 states: current symptomatic and asymptomatic

infected individuals, cumulative recovered symptomatic and asymptomatic infected individuals, died individuals.
(2) Provided the criterion inequalities for the asymptotical stability of the disease free equilibrium point of

SARDDE (see Theorem 1 and Theorem 3).
(3) Given the criterion inequalities for epidemic transmission (see Theorem 2 and Theorem 4) of the symp-

tomatic and asymptomatic infections.
(4) Using the reported clinic data and the model simulations results are depicted for biologically significant

model parameters.
(5) In systems (1) and (18), assume, respectively, that after the day 24th and the day 19th if still keeps

the blocking rates (θ1(3), θ2(3)), the cure rates (κ(3), κa(3)) and the died rate α(3) until the day 140th, June 8
and the day 56, August 6. Virtual simulations of systems (1) and (18) suggest that even the a blocking rate to
symptomatic individuals reaches to about 90%/97%, the two COVID-19 epidemics can still spread and reach very
height levels (see Figs. 4 and 10). Therefore the strict prevention and control strategies implemented by Beijing
government is not only very effective but also completely necessary.

(6) Simulations showed that using the data form the beginning to the day after about two weeks from the
turning points, we can estimate well or approximately the following outcomes of the first or second COVID-19
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academics in Beijing.
(7) The selections of the transmission rates β′

ijs are difficult because different combinations of β′

ijs can produce
very closed simulation errors. Agreements of followed simulations are used to judge the reasonableness of the
selected β′

ijs.
(8) In the case of the first COVID-19 academic in Beijing, The proposed SARDDE is simpler that our previous

one [7,8]. The determinations of the SARDDE parameters only used one assumption (13). However it can better
describe and explain the practical reported data [11] although the lack of the data of the asymptomatic infected
individuals. In the case of the second COVID-19 epidemic in Beijing, the numerical simulations show that the four
variables of model (18) describe and explain well the real world data [11]. In both cases, the numerical simulations
of the SARDDEs accurately predict the long-terms real world data [11].

Because not all infected people can go to the hospital for treatment and be confirmed at the first time. In some
cases: adequate resources, no shortage of beds and medical treatment advantages, patients may be left behind
when they are discharged from the hospital. Therefore, it does not have very important practicality, that the
simulation results of the model are required accurately describe every datum reported on the epidemic. Long-
term accumulated data, such as the total number of patients and the number of deaths may eliminate short-term
deviations. Therefore, the accuracy of predicting long-term epidemics should be the standard for evaluating the
rationality of the selected model and unknown model parameters. It is expected that the research can provide
better understanding, explanation, and dominating the spread and control measures of epidemics.
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