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Abstract (172 words) 28 

The prompt rollout of the coronavirus disease (COVID-19) messenger RNA (mRNA) vaccine is 29 

facilitating population immunity, which shall become more dominant than natural infection-induced 30 

immunity. At the beginning of the vaccine era, understanding the epitope profiles of vaccine-elicited 31 

antibodies will be the first step in assessing functionality of vaccine-induced immunity. In this study, 32 

the high-resolution linear epitope profiles of Pfizer-BioNTech COVID-19 mRNA vaccine recipients 33 

and COVID-19 patients were delineated by using microarrays mapped with overlapping peptides of 34 

the receptor binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-35 

2) spike protein. The vaccine-induced antibodies targeting RBD had broader distribution across the 36 

RBD than that induced by the natural infection. Thus, relatively lower neutralizability was observed 37 

when a half-maximal neutralization titer measured in vitro by live virus neutralization assays was 38 

normalized to a total anti-RBD IgG titer. However, mutation panel assays targeting the SARS-CoV-2 39 

variants of concern have shown that the vaccine-induced epitope variety, rich in breadth, may grant 40 

resistance against future viral evolutionary escapes, serving as an advantage of vaccine-induced 41 

immunity. 42 

Importance (144 words) 43 

Establishing vaccine-based population immunity has been the key factor in attaining herd protection. 44 
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Thanks to expedited worldwide research efforts, the potency of messenger RNA vaccines against the 45 

coronavirus disease 2019 (COVID-19) is now incontestable. The next debate is regarding the coverage 46 

of SARS-CoV-2 variants. At the beginning of this vaccine era, it is of importance to describe the 47 

similarities and differences between the immune responses of COVID-19 vaccine recipients and 48 

naturally infected individuals. In this study, we demonstrated that the antibody profiles of vaccine 49 

recipients are richer in variety, targeting a key protein of the invading virus, than those of naturally 50 

infected individuals. Yet vaccine-elicited antibodies included more non-neutralizing antibodies than 51 

infection-elicited, their breadth in antibody variations suggested possible resilience against future 52 

SARS-CoV-2 variants. The antibody profile achieved by vaccinations in naive individuals pose 53 

important insight into the first step towards vaccine-based population immunity.  54 

Introduction 55 

Messenger RNA (mRNA) vaccines have prevailed globally to mitigate the coronavirus disease 56 

2019 (COVID-19) pandemic. Given the prompt progress in the development of vaccines and their fast 57 

rollout at global scale, population immunity against the severe acute respiratory syndrome coronavirus 58 

2 (SARS-CoV-2) will largely depend on vaccine-induced rather than the infection-induced immunity. 59 

In this start of the COVID-19 vaccine era, the de novo repertoire of vaccine-elicited antibodies in 60 

SARS-CoV-2 infection-naive individuals will be the first step to build an optimal host defense system 61 

towards vaccine-based population immunity.  62 

Currently, the efficacy of vaccine-induced immunity against SARS-CoV-2 in an individual is 63 

evaluated by potential surrogate markers such as half-maximal neutralization titers (NT50) using 64 

live/pseudo viruses and total antibodies titers against the receptor binding domain (RBD) of the spike 65 

protein of the virus (1–4). Understanding the epitope profile of both vaccine recipients and naturally 66 

infected individuals can readily help elucidating further molecular basis of these markers as surrogate. 67 

Moreover, the coevolution of vaccine-induced host immunity and the virus escape will be one of the 68 
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most important elements to consider in the way of achieving herd immunity against COVID-19.  69 

The RBD of the spike protein of SARS-CoV-2 is widely considered the key protein target for 70 

designing vaccines and developing neutralizing antibodies as therapeutic agents (5,6). Epitope profiles 71 

of sera from individuals naturally infected with COVID-19 have enabled to identify several 72 

immunodominant regions in the spike protein (7–9). While most immunodominant epitopes locate 73 

outside the RBD, the minor proportion targeting specifically the neutralizing RBD epitopes explain 74 

the majority of viral neutralizability and protection against re-exposures (10,11). In fact, neutralizing 75 

monoclonal antibodies (NAbs) developed as potential therapeutics also mainly target the epitopes 76 

located in the RBD (6,12–16). While a growing number of individuals acquire vaccine immunity, the 77 

detailed epitope profile of the humoral immune response to the mRNA vaccine is not fully understood 78 

(1,17,18).  79 

In this study, high resolution linear epitope profiling targeting the RBD was performed using 80 

sera of both mRNA vaccine recipients and COVID-19 patients. By comparing the epitope profiles, we 81 

sought to describe the similarities and differences between the humoral immune responses induced by 82 

BNT162b2 mRNA (Pfizer/BioNTech) vaccination and natural infection. Information provided by this 83 

study will be crucial in this post-vaccine era of the COVID-19 pandemic. 84 

Materials and Methods 85 

Serum collection sufficient  86 

Two groups were analyzed in this study: (i) vaccine recipients, all received two doses of 87 

BNT162b2 mRNA vaccine (Pfizer/BioNTech) with a three-week interval (N=21, age 20s–80s years 88 

old). Blood was obtained 17–28 days after the second dose. (ii) COVID-19 patients confirmed by 89 

nucleic amplification testing (N=20, age 20s–80s years old). The blood collection of the patients was 90 

performed between 10 and 63 days (median 39 days) after the onset. Detailed information of the 91 
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subjects and severity of the disease of the patients can be found in Supplemental Table 1 (19).   92 

Blood samples were obtained by venipuncture in serum separator tubes and the serum fraction 93 

was stored at – 80℃. All subjects provided written consent before participating in this study. This 94 

study was approved by the institutional review board. 95 

Anti-RBD IgG quantification by chemiluminescent immunoassay 96 

Anti-RBD IgG titers of both groups were quantitated by measuring the chemiluminescence 97 

generated in the reaction mix containing serum IgG-bound, RBD-coated microparticles and 98 

acridinium-labeled anti-human IgG (Abbott SARS-CoV-2 IgG II Quant assay, USA)(20). Antibodies 99 

targeting the viral nucleocapsid protein (Anti-N IgG) were also measured for the sera of vaccine 100 

recipients to screen unrecognized exposure to SARS-CoV-2 (Abbott SARS-CoV-2 IgG assay, USA) 101 

(21). 102 

Neutralization assay using live SARS-CoV-2 103 

The neutralization assay was carried out as described previously (22), but with modifications. 104 

Heat-inactivated (at 56˚C for 45 minutes) vaccine-recipients and patients’ sera and a SARS-CoV-2 105 

negative control serum were serially four-fold diluted with Dulbecco’s Modified Eagle Medium with 106 

2% fecal bovine serum (2% FBS DMEM) and incubated with a pre-titrated 150 focus-forming units 107 

of SARS-CoV-2 JPN/TY/WK521 strain live virus particles (National Institute of Infectious Diseases, 108 

Japan) at 37˚C for 1 hour. The monolayer of VeroE6 cells (National Institutes of Biomedical 109 

Innovation, Health and Nutrition, Japan) were then absorbed with the mixtures at 37˚C. After a 1-hour 110 

incubation, the mixtures were replaced with fresh 2% FBS DMEM. After an 8-hour culture at 37˚C, 111 

infection rates of the cells were determined by immunofluorescent staining, as follows. After fixation 112 

(4% paraformaldehyde, 15 minutes), cells were permeabilized (0.1% TritonX100, 15 minutes) and 113 

incubated with rabbit anti-spike monoclonal antibodies (Sino biological, China) (1:1000, 1 hour at 114 
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37˚C). Cells were then washed and incubated with Alexa488-conjugated goat anti-rabbit IgG 115 

(Thermofisher scientific, USA) (1:500, 45 minutes at 37˚C). Antigen positive cells were counted under 116 

a fluorescent microscope and the percentage of neutralization was estimated as the viral infectivity 117 

under serum-treated conditions compared with that without serum.  118 

Epitope mapping of the RBD 119 

For precise linear epitope screening, overlapping 15-mer peptides (shift by 3 amino acids) were 120 

sequentially synthesized according to the sequence of the RBD on cellulose membrane by MultiPep 121 

synthesizer (Intavis Bioanalytical Instruments, Germany) using SPOT technology (23,24). The 122 

sequence of the RBD was obtained by GenBank (accession: MN908947.3, S319–S541) Additional 15-123 

mer peptides containing single mutations of variants of concerns found within the RBD were designed. 124 

Single mutations included K417N, K417T, E484K and N501Y (25). Detailed peptide sequences used 125 

in this study can be found in Supplement Table 2. 126 

Synthesized arrays were probed with sera at a 1:400 dilution followed by incubation with 127 

horseradish peroxidase conjugated goat anti-human IgA, IgG, and IgM polyclonal antibody at a 128 

1:30,000 dilution. The bound of the secondary antibody on each peptide was detected and quantified 129 

by enhanced chemiluminescence. The peptide synthesis, probing and quantification were outsourced 130 

to Kinexus Bioinformatics Corporation. The epitopes were detected by subjective visual inspection. 131 

Our cutoff for signal detection was set at visually detectable peaks in a graph depicting a mostly 132 

minimum of 0.5 z-score of the mean peptide signals and/or regions previously reported as neutralizing 133 

antibodies in the RBD (27,28). 134 

Statistical analysis 135 

Chemiluminescence signal intensities of the peptide arrays were standardized in two ways: 136 

relative values to the maximum signal level of each array as 100, and z-scores considering peptide 137 
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signals of individual subjects as population. These calculations were done by Microsoft Excel for 138 

Microsoft 365 MSO (16.0.14026.20202). 139 

Nonlinear regression curve fitting was performed to calculate half-maximal neutralization titers 140 

(NT50) of the neutralization assay. Statistical significance was calculated using un-paired two-tailed 141 

t-test. GraphPad Prism 9.1.0.221 was used for these statistical analyses.  142 

The sequence and conformational information of the RBD was obtained under the accession 143 

number 6M0J (5) and 7A94 (26) at Protein Data Bank (PDB). The images to depict the recognized 144 

epitopes are shown using The PyMOL (Molecular Graphics System, Version 1.2r3pre, Schrödinger, 145 

LLC). 146 

Results 147 

Total IgG titers targeting the RBD and neutralization assay using live SARS-CoV-2 148 

All vaccine recipients (N=21) and COVID-19 patients (N=20) revealed seropositivity to anti-149 

RBD IgG according to the manufacturer’s threshold (>50 AU/mL) and the two groups did not show 150 

significant difference in their levels of anti-RBD IgG titers (Figure 1a). However, the neutralization 151 

assay using live SARS-CoV-2 showed remarkably lower NT50 in vaccine recipients compared to 152 

COVID-19 patients (p=0.0035) (Figure 1b). The ratio between the anti-RBD IgG antibody titer and 153 

the NT50 value was calculated in individual as shown in Figure 1c. It appeared that the anti-RBD 154 

IgG/NT50 ratios were significantly higher in vaccine recipients compared to COVID19 patients 155 

(p<0.001) (Figure 3c).  The result indicated that the sera of vaccine recipients were more abundant in 156 

non-neutralizing, mere binding IgG antibodies, suggesting a discrepancy in the epitope profiles 157 

between vaccine recipients and COVID-19 patients. None of the vaccine recipients were seropositive 158 

to anti-N IgG, ensuring that they were naive to SARS-CoV-2 infection (Supplement Table 1). 159 

Comparison of linear epitope profiles targeting the RBD of vaccine-elicited and infection-elicited 160 
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sera  161 

To delineate the discrepancy in the epitope profiles between vaccine recipients and COVID-19 162 

patients with high resolution, we next mapped and compared the immunodominant epitopes of both 163 

sera by using an overlapping 15-mer linear-peptide array (Figure 2a). Sera of vaccine recipients and 164 

COVID-19 patients were incubated with the microarray. Sera of five subjects from the vaccine 165 

recipients and ten from the patients were selected based on their anti-RBD antibody titers and NT50 166 

(denoted as red dots in Figure 1). The sera were incubated with the designed microarrays arranged 167 

with 15-mer overlapping peptides of the RBD on the surface (Figure 2a). The designated array did not 168 

show any considerable unspecific binding of the secondary antibody.  169 

We generated a heatmap according to the relative signals of the overlapping peptides (Figure 170 

2b). Also, z-scores of each peptide were compared individually (Supplement Figure 1) and per group 171 

(Figure 3). Comparing the epitope profiles of the two groups, two types of epitopes were identified: 172 

(1) epitopes recognized by both groups and (2) epitopes recognized only by vaccine-elicited sera. 173 

Overall, seven linear epitopes were recognized within the RBD, four within (1): T415–F42, peptide 174 

No.33; R457–S477, peptide No.47–49; V433–N450, peptide No.39–40; V395-A411, peptide No.26–175 

27 and three within (2): N334–A348, peptide No.6; S373–L390, peptide No.19,20; S514–F541, 176 

peptide No.66–71, respectively (Figure 2b, Figure 3).  177 

(1) Epitopes recognized by both groups 178 

A total of four linear epitopes were recognized in both groups (Figure 2b, Figure 3c). Three 179 

(peptide No.33, No.39–40 and No.47–49) of them shared the epitope regions of the RBD with 180 

neutralizing monoclonal antibodies previously reported as class1 and class 3 (27).  181 

Linear epitopes were identified at peptide No.33 and peptides No.47–49 (Figure 3, Figure 4a,b), 182 

sharing the epitopes with reported class 1 neutralizing antibodies (27). Also, peptide No.39–40 (Figure 183 
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3, Figure 4c) shared epitope residues very similar to human monoclonal antibody REGN10987, 184 

categorized as class 3 neutralizing antibody which sterically hinders the interaction between 185 

angiotensin converting enzyme 2 (ACE2) and the RBD (27,29).  186 

The linear epitope, peptide No.26–27, was reactive at the highest level in most serum samples, 187 

as sera of 2/5 vaccine recipients and 7/10 patients had maximum reactivity to this peptide (Figure 3c, 188 

Supplement Figure 1). However, antibodies binding to this epitope seemed not to contribute to 189 

neutralizing the live virus, based on our observations detailed below. This peptide was found to be 190 

equally reactive, at a high extent, to a serum with negligible neutralizability, obtained from a COVID-191 

19 patient who had undergone Rituximab treatment  (Details found in Supplement Figure 2) (30). In 192 

the RBD structure, the No.27 peptide is located inside the core β sheets, which is not exposed to the 193 

surface of the RBD in either an “up” or “down” position. Judging from the structural composition, this 194 

linear epitope would not affect ACE2 binding (Supplement Figure 2).  195 

(2) Epitopes recognized only in vaccine recipients’ sera 196 

Three linear epitopes of the RBD were uniquely found in vaccine recipients’ sera (Figure 2b, 197 

Figure 3b,c), two of them (peptide No.6 and No.19,20) were sharing the epitope regions of the RBD 198 

with neutralizing monoclonal antibodies known as class 3 and class 4 (27).  199 

At N-terminus of the RBD, namely the peptide No.1–6, we identified an epitope region detected 200 

only in the post-vaccination sera (Figure 2b, Figure 3c). Especially, peptide No. 6 was an epitope of 201 

note, which shall be recognized by the class3 NAb S309 by P337–A344 helix residues (Figure 5a) 202 

(31). The epitope is distinct from the receptor-binding motif and has a good accessibility both in the 203 

up and down compositions of the RBD (PDB, 7A49, Figure 5b). 204 

Another identified epitope, peptide No.19 and 20, shared epitope residues with a neutralizing 205 

monoclonal antibody CR3022, categorized as class 4, isolated from a SARS-CoV convalescent (32,33). 206 
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This class 4 neutralizing antibody attaches to the RBD but distal to the ACE2 binding site and is highly 207 

conserved among different CoV species (34).  208 

The third epitope, located at the peptide No.66–71, did not match with any known monoclonal 209 

antibodies. Yi et al. detected the same region of the peptides (V524–F541) reactive from COVID-19 210 

convalescent serum in their linear epitope analysis (11). They also demonstrated that these peptides 211 

interacted with control sera as well  (11). Thus, we considered our results on the corresponding peptides 212 

to be non-specific.   213 

Linear epitopes mapping with single mutations found in SARS-CoV-2 variants 214 

Our analysis included single amino acid mutations of the RBD that are reported in the SARS-215 

CoV-2 variants of concerns including B.1.1.7, B.1.351 and P.1 (PANGO lineage (35)). Additional 15-216 

mer peptides with the substituting amino acid, K417N, K417T, E484K, and N501Y, were incubated 217 

with both vaccine recipients’ and patients’ sera. Interestingly, vaccine-induced sera showed consistent 218 

signals to the mutated peptides, whereas patients’ sera had almost no reaction (Figure 6).   219 

In our original peptide array (Figure 2b, Figure 3), the overlapping peptides encoding the 220 

mentioned mutations sites (K417, E484, and N501 of the RBD) corresponded to peptides No.29–33, 221 

No.52–56, and No.57–61, respectively. The peptides No.52–61, containing E484 and N501, did not 222 

show any significant reaction in both vaccine recipients and COVID-19 patients (Figure 2b, Figure 3). 223 

The peptides No.29–33 containing K417, considered as escape mutation, was reactive to antibodies in 224 

both patients and vaccine recipients’ sera as mentioned above (Figure 2b, Figure 3). 225 

Discussion 226 

This study revealed the linear epitope profiles targeting RBD elicited by BNT162b2 mRNA 227 

vaccination and natural infection of SARS-CoV-2. Our principal finding was that the variation of linear 228 

epitopes was broader in vaccine-elicited antibodies compared with infection-elicited antibodies, which 229 
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may contribute to potent neutralization and thus resistance of the vaccine-elicited antibodies against 230 

the SARS-CoV-2 variants of concern. 231 

Now, four categories of NAbs classes are proposed to characterize the mode of recognition and 232 

epitope specificity (27). Class 1 NAbs block several proximal sites in the receptor binding motif 233 

(RBM) of the RBD and directly block ACE2 binding (27); class 2 NAbs recognize both up and down 234 

formations of the RBDs and epitope overlapping or close to ACE2-binding site (27); class 3 NAbs 235 

recognize both up and down RBD and bind outside ACE2-binding site (27,31); class 4 NAbs bind only 236 

to up RBDs and do not directly block ACE2 binding, but destabilizes the virus’ prefusion spike 237 

conformation (33,34). Many of the human-isolated NAbs target RBD, while some target N-terminal 238 

domain of subunit 1 spike protein (14,36). In our study, two classes of NAbs exclusively relevant in 239 

vaccine-elicited sera were found to be of specific note; peptide No.6 (Figure 5a,b) targeted by the class 240 

3 NAb (31) and peptide No.19–20 (Figure 5c) targeted by the class 4 NAb (33,34). These epitopes 241 

locate outside the ACE2-binding RBM (Figure 5), while epitopes commonly detected in both vaccine 242 

and infection-elicited repertoires clustered adjacent to the ACE2-binding site (Figure 4). 243 

The majority of NAbs targeting the RBM, which correspond to class 1 and 2, have been shown 244 

to exhibit decreased neutralization against the virus variants (15,18,37). For example, antibodies 245 

recognizing the linear epitope, here included in peptide No.33, would possibly fail in neutralizing 246 

variants with K417N mutation as previously described (15,18,37,38). To the contrary, the linear 247 

peptides No.6 and No.19–20 (Figure 5a,b,c), corresponding to epitopes found exclusively in vaccine-248 

elicited sera (Figure 2b, Figure 3c), revealed corresponding epitopes targeted by human NAbs isolated 249 

from SAR-CoV convalescent (S309 and CR3022, respectively) (31,33,34). These cross-neutralizing 250 

antibodies, belonging to class 3 and 4, recognize linear epitopes highly conserved among different 251 

CoV species. The epitopes recognized by these class 3 and class 4 NAbs are major contributors 252 

broadening the repertoire of vaccine-induced immunity. Located remotely from the RBM, such 253 
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neutralizing epitopes stay rather free from variants (15,18), and explain the resistance of vaccine-254 

elicited sera towards viral mutational escapes (39,40). The vaccine recipients’ broader epitope profile 255 

spanning across the RBD may give immunological flexibility and resilience against this evolving virus. 256 

Our mutation peptide panels have also presented a rather optimistic view on discussing the efficacy of 257 

vaccine-induced immunity to efficiently recognize the SARS-CoV-2 variants (Figure 6). However, 258 

considering that the linear epitope profiles harboring the mutation loci were not dominant in either 259 

vaccine sera or patients’ sera (Figure 2b, Figure 3b,c) and abundancy of conformational epitopes found 260 

adjacent to the RBM, the extent to which these specific linear epitopes contribute in net neutralizability 261 

remains yet to be determined (10,11,14,17). 262 

We observed discrepancy between the neutralizability of sera obtained from vaccine recipients 263 

and patients, which could be partially explained by the difference in the time course of epitope 264 

selection and immune maturation. When comparing convalescent sera and vaccine-elicited immunity, 265 

the distribution of neutralizing epitopes was less generalized and focalized at specific peptides (Figure 266 

3, Individual epitope distribution can be found in Supplement Figure 1). Among the two modes of 267 

acquired immunity, our results indicate that infection-induced humoral immunity had established a 268 

more mature, finely selected antibody repertoire. Our snapshot observations are in line with the ideas 269 

that maturation of infection-provoked repertoires occurs as early as 10–20 days after onset, or even 270 

earlier in the case of COVID-19 beginning at 4–7 days after onset (41,42). Positive selection of relevant 271 

epitopes and maturation of antibody repertoire thus may lag behind regarding the vaccine-induced 272 

immunity. Nevertheless, in this study, sera were sampled during the peak period of immune reaction 273 

in the host for both groups. Longitudinal evaluation of the epitope profiles and serological markers are 274 

needed to assess the further host immune evolution and draw conclusions to the above speculations.  275 

In conclusion, we evaluated the similarity and difference in humoral immunity elicited by both 276 

BNT162b2 mRNA vaccine and natural infection of SARS-CoV-2. High resolution linear epitope 277 
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profiles revealed the characteristic distribution of polyclonal antibodies spanning across the RBD in 278 

vaccine recipients’ sera, which possibly accounted for the discrepancy observed in serological markers. 279 

Based on the multiplicity of neutralizing epitopes supporting the protectivity of vaccine-elicited 280 

antibodies, mRNA vaccine-elicited humoral immunity may harbor advantages in resisting against the 281 

rapidly evolving pathogen. 282 

Limitations 283 

There are several limitations in our study. The severity of the COVID-19 patients evaluated in 284 

this study was high (seven out of ten were critical) with comorbidities, whereas the vaccine recipients 285 

were relatively healthy without major comorbidities. The age was distributed in both groups. This 286 

analysis was focused exclusively on the linear epitope profile targeting RBD. Experimental 287 

observations on compositional epitopes nor epitopes outside the RBD region was not made in this 288 

study. Nonetheless, our results reporting the mRNA vaccine’s broader RBD epitope variety are in 289 

concordance with preceding reports (39,43). 290 
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Figure 1. Total antibody titers targeting the RBD and neutralization of live SARS-CoV-2.  321 

(a) Anti-RBD IgG titers of vaccine (BNT162b2) recipients (N=21) and COVID-19 patients (N=19) 322 

were depicted. No significant difference in level of total anti-RBD IgG titers was observed. (b) The 323 

half-maximal neutralization titers (NT50) were remarkably lower in the vaccinated group than in 324 

patients. (c) Anti-RBD IgG/NT50 ratio was plotted in both groups. Black horizontal bars indicate 325 

geometric mean with geometric standard deviation. For detailed information on subjects, see 326 

Supplement Table1. 327 

Figure 2. High resolution linear epitope mapping of the receptor binding domain (RBD) of the 328 

SARS-CoV-2 spike protein. (a) Overlapping 15-mer peptides (shift by 3 amino acids) of the RBD 329 

was sequentially synthesized on cellulose membrane. Sera of vaccine recipients and COVID-19 330 

patients were incubated with the microarray, followed by the procedure mentioned in the methodology 331 

section to detect the reactive peptides.  332 

(b) Heat map identifying peptides recognized by IgG, IgA, and IgM in sera of vaccine recipients 333 

(Sample A–E) and COVID-19 patients (sample F–O). Signal of each peptide was calculated to relative 334 

value to the maximum signal of each subject as 100. Legend shows the darker the blue gets; the more 335 

signal was observed at the designated peptide.  336 

Figure 3. Comparison of epitope profiles between two groups: BNT162b2 vaccine recipients 337 

(N=5) and COVID-19 patients (N=10). (a) Thin red lines denote peptide signals of individuals. Bold 338 

red lines depict the mean values of the peptide signals of the COVID-19 patients’ sera (N=10). (b) 339 

Thin grey lines denote peptide signals of individuals. Bold black lines denote the mean values of the 340 

peptide signals of the vaccine recipients’ sera (N=5).  (c) Red arrows denote epitopes recognized in 341 

the sera of both groups. Black arrows denote epitopes identified only in the vaccine recipients’ sera. 342 

Designated peptide numbers are shown above the arrows.  343 
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Figure 4. Linear epitopes in the receptor binding domain (RBD) identified in both groups of 344 

vaccine recipients and COVID-19 patients. Angiotensin converting enzyme2 (ACE2); green, the 345 

RBD; tint blue, (a) linear epitope T415-F429 (peptide No.33); cyan (b) linear epitope R457-S477 346 

(peptide No.47-49); yellow (c) linear epitope A433-S450 (peptide No.39-40); blue. 347 

Figure 5. Linear epitopes in the receptor binding domain (RBD) identified only in vaccine 348 

recipients’ sera. Angiotensin converting enzyme2 (ACE2) is shown in green. (a) The RBD is shown 349 

in tint blue. Linear epitope R334-S348 (peptide No.6); magenta. (b) SARS-CoV-2 spike trimer in one 350 

open, two closed (one RBD up, two RBD up) composition. Spike subunit 2 and N-terminal domain 351 

are in the same color, light blue, yellow, and tint blue. Up RBD is in dark blue, Down RBDs are in 352 

yellow. Linear epitope R334-S348 has good accessibility in both up and down composition of the RBD. 353 

(c) The RBD; green. Linear epitope S373-L390 (peptide No.19-20); orange.  354 

Figure 6.  Mutation peptide panels showed more reactivity to vaccine recipients’ sera than to 355 

patients’ sera. Heat maps identifying peptides encoding the single mutations, recognized by IgG, IgA, 356 

and IgM in sera of vaccine recipients (Sample A–E) and COVID-19 patients (sample F–O). Signal of 357 

each peptide was calculated to relative value to the maximum signal of each subject as 100.  358 

Supplement Figure 1. Epitope profiles of individual subjects are shown in graphs depicting z-scores 359 

of each peptide signal, calculated individually, on y-axis, overlapping peptide sequence on x-axis. 360 

Vaccine-induced sera (V01–V05) had more variety in recognizing epitopes than infection-induced sera 361 

(P01–P10).  362 

Supplement Figure 2. Epitope profile of a COVID-19 patient who had received Rituximab treatment. 363 

The antibodies targeting the peptide No. 27, corresponding to A397–A411 of RBD, were dominant in 364 

the epitope profile of this patient (depicted in the upper right graph), which showed limited 365 

neutralization compared to a COVID-19 positive serum sample from another COVID-19 patient. 366 

Graphic on the left shows the ACE2-RBD complex (ACE2 in green, RBD in tint blue). The position 367 
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of peptide No.27 is depicted in dark gray. 368 

Supplement Table 1. Detailed information of the subjects included in this study. 369 

Supplement Table 2. Sequence of the peptides on microarrays used in this study. 370 

Supplement Table 3. Raw signal of the microarrays. 371 
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Peptide No.33

T415-F429 

180°a
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Peptide No.47-49

R457-S477

180°b
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Peptide No.39-40

R433-S450

180°c
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Peptide No.6

R334-S348

180°a
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Peptide No.19-20

S373-L390

180°c
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ADSFVIRGDEVRQIA

(A397-A411)

Peptide No.27

A397-A411
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