
Object and Instance Detection Within Image
Scenes

Daniel Adenisimi

Contents

1 Introduction 1

2 Related Work 2
2.1 Region CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Fast Region CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Faster Region CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 You Only Look Once (YOLO) 3

4 Experiment 4

5 Results 5

6 Discussion and Conclusion 5

Abstract

This paper compares state-of-the-art methods in object and instance detection, and examines why YOLO (You
Only Look Once) outperforms top detection methods. Different Pascal VOC dataset is used as the benchmark to
explore mean average precision(mAP). YOLO is twice as accurate to prior works on real-time detection. The
outcome of of merging YOLO with Fast R-CNN is an increased mean average precision (mAP) which results in
performance boost. Hence, YOLO is an enhanced model of top detection methods.

1. Introduction

Humans glance at an image and instantly know
what objects are there, where they are and
how they interact. The human visual system
is fast and accurate, allowing the performance of
complex tasks like driving with little conscious
thought.

Fast and accurate algorithms for object detec-
tion would allow computers to drive cars, enable
assistive devices to convey real-time scene infor-
mation to humans, and unlock the potential for
general purpose robotic systems.[1]

Historically, deep learning has improved im-
age classification and object detection accuracy.
But compared to image classification, object and
instance detection remain a complex and chal-

Fig. 1: Human Eye.
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lenging task. According to Redmon et. al, the
complexity arises because detection requires an
accurate localization of objects, which creates
two primary challenges. First, candidate ob-
ject locations (often called “proposals”) must
be processed. Second, these proposals provide
only a rough localization that must be refined
to achieve precise localization. While there have
been successful advances like region proposal
methods and region-based convolutional neural
networks (R-CNN).[2] These methods compro-
mise on speed, accuracy, or simplicity [3]. Unlike
image classification, detection requires localizing
objects within an image. Hence, different schol-
arly articles has framed object detection as a re-
gression problem [[3], [1]]. That is, straight from
image pixels to bounding box coordinates and
class probabilities. While this is the case, a new
approach that asserts you only look once (YOLO)
at an image to predict what objects are present
and where they are has shown to be promising
[1]. YOLO is extremely fast, it reasons globally
about an image when making predictions and
learns generalizable representations of objects[1].

This paper aims to compare state-of-the-art ob-
ject and instance detection methods. Specifically,
to analyze why YOLO outperforms top detection
methods like R-CNN by a wide margin[1].

2. Related Work

This section reviews existing object and instance
detection methods most related to this work.

2.1 Region CNN

Region-based Convolutional Network
method (R-CNN) achieves excellent
object detection accuracy by using a
deep ConvNet to classify proposals.
This detection system consist of three
modules (Fig.2). The first produces
category-independent region proposals
(Examples include: objectness, selec-
tive search, category-independent ob-
ject proposals, constrained parametric
min-cuts (CPMC) and multi-scale com-
binatorial grouping), the second, a large
convolutional neural network that ex-
tracts a fixed-length feature vector from
each region, while the third is a set of
class specific linear Support Vector Ma-
chines which classifies these regions.[3]

Fig. 2: Object detection system overview. The
system (1) takes an input image, (2) extracts around
2000 bottom-up region proposals, (3) computes fea-
tures for each proposal using a large convolutional
neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs.[3]
.

Although R-CNN achieves excellent de-
tection accuracy, it has setbacks that in-
cludes:

1. Multi-stage training pipeline: R-
CNN must first fine-tune a Con-
vNet on object proposals using
log loss. It furthers needs to fit
an algorithm that sorts data into
two categories called support vec-
tor machines (SVMs) to ConvNet
features. Where SVMs act as ob-
ject detectors replacing the softmax
classifier learnt by fine-tuning. In
the third training stage, bounding-
box regressors are learned. [3]

2. Expensive training in space
and time: To train SVMs and
bounding-box regressors, features
are extracted from each object
proposal in each image and
written to disk. For example,
in a deep network architecture
like the Oxford trained Visual
Geometry Group 16 (VGG16), the
process takes 2.5 GPU-days for
the 5k resolution images of the
VOC07 trainval dataset. And the
features also requires hundreds of
gigabytes of storage. [3]

3. Slow Object Detection: At test-
time, features are extracted from
each object proposal in each test
image. For instance, VGG16 detec-
tion takes 47s / image on a graph-
ics processing unit (GPU). [3]

To sum up, R-CNN is slow because it performs a
ConvNet forward pass for each object proposal,
without sharing computation. [3]

· · Daniel Adenisimi
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Fig. 3: Fast R-CNN architecture. An input image
and multiple regions of interest (RoIs) are input into
a fully convolutional network. Each RoI is pooled into
a fixed-size feature map and then mapped to a feature
vector by fully connected layers (FCs). The network
has two output vectors per RoI: softmax probabilities
and per-class bounding-box regression offsets.[3]

2.2 Fast Region CNN

Fast R-CNN takes as input an entire image and
a set of object proposals. First, the network pro-
cesses the whole image with several convolutions
and max-pooling layers to produce a convolu-
tional feature map. Then, for each object pro-
posal, a region of interest (ROI) pooling layer
extracts a fixed-length feature vector from the
feature map. Each feature vector is then fed into
a sequence of fully connected (fc) layers that fi-
nally branch into two sibling output layers: one
that produces softmax probability estimates over
K object classes plus a catch-all “background”
class and another layer that outputs four real-
valued numbers for each of the K object classes
which defines the bounding-box positions for
one of the K classes. Therefore, it can be noted
that Fast R-CNN method has several advantages
over R-CNN, such as:

1. Higher detection quality mean average pre-
cision (mAP) than R-CNN

2. Training is single-stage, using a multi-task
loss

3. Training can update all network layers

4. No disk storage is required for feature
caching [3]

2.3 Faster Region CNN

Faster R-CNN is similar to Fast R-CNN, but
applies Region Proposal Networks (RPNs) that
shares convolutional layers with state-of-the-art
object detection networks. That is, instead of us-
ing Selective Search (SS) which greedily merges

superpixels based on engineered low-level fea-
tures and is an order of magnitude slower (2s
per image) in a CPU implementation when com-
pared to efficient detection networks, RPNs are
trained end-to-end specifically, for the task of
generating detection proposals. The training
scheme alternates between fine-tuning for the re-
gion proposal task and then fine-tuning for object
detection, while keeping the proposals fixed. The
scheme converges quickly and produces a uni-
fied network with convolutional features that are
shared between both tasks. This scheme doesn’t
only rely on inexpensive features but also enables
nearly cost-free region proposals given the de-
tection network’s detection. And with a simple
alternating optimization, RPN and Fast R-CNN
can be trained to share convolutional features.
[4]

3. You Only Look Once (YOLO)

YOLO is a unified system that is able to detect
the potential region of interests (ROIs) from an
entire whole image and directly predict their
class probabilities[5]. It posses a single neural
network that uses features from an entire image
to predict bounding boxes across all classes of
the image. [1]

YOLO does this by taking an input image and
dividing it into an S x S grid. Each grid cell then
predicts bounding boxes and confidence scores,
including class probabilities for those boxes. The
bounding box each consists of 5 predictions: x,
y, w, h, and confidence. The (x, y) coordinates
represent the center of the box in relation to the
bounds of the grid cell. The width and height
(w, h) are predicted relative to the whole image.
In the same way, the confidence prediction repre-
sents the intersection over union (IOU) between
the predicted box and any other ground truth
box. [1]

During test time, the conditional class prob-
abilities and the individual box confidence pre-
dictions are multiplied which then gives a class-
specific confidence scores for each box. These
scores encode both the probability of that class
appearing in the box and how well the predicted
box fits the object. [1]

Furthermore, YOLO-based deep learning tech-
nique has been employed in different fields. Ex-
amples include: a. Computer aided diagnoses
(CAD) in the detection of breast cancer where a
trained YOLO-based CAD system detects cancer
masses and classifies them into benign or malig-

· · Daniel Adenisimi
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Fig. 4: The Model. Image is divided into an S x S
grid. For each grid cell, it predicts B bounding boxes,
confidence for those boxes and C class probabilities.[1]

Fig. 5: The Architecture. Yolo detection network has
24 convolutional layers followed by 2 fully connected
layers.[1]

nant[5]. b. Vehicle detection, where it achieved
comparable results with state-of-the-art methods
on several data sets, while being significantly
faster[6].YOLO’s application in breast cancer de-
tection is based on the findings of M. A. Al-masni
et al. proposal of four main stages: mammo-
gram preprocessing, feature extraction utilizing
multiconvolutional deep layers, mass detection
with confidence model, and breast mass classifi-
cation using fully connected neural network (FC-
NN). In fact, the results of the proposed CAD
system show its ability to detect the location of
benign and malignant masses as illustrated in
Fig. 6. When compared to the ground truth in
Fig. 6(a) and (c), YOLO can exactly detect the
masses as shown in Fig.6(b) and (d). At the time,
YOLO’s abnormalities detection performance of
benign and malignancy of the breast in mammo-
grams was shown to have an overall accuracy of
96.33%.[5].

4. Experiment

To prove the hypothesis that YOLO outperforms
top detection methods, YOLO is first compared
with deformable parts model (DPM) and then

Fig. 6: Mass detection. (a) and (b) show the ground-
truth mass over the pectoral muscle and the detected
by Al-masni et al. proposed method, respectively. (c)
and (d) present the ground-truth mass surrounding
by dense tissue and the detected by Al masni et al.
proposed method, respectively.[5]

Fig. 7: Examples for vehicle detection approach on a
road image. The green rectangle is the selected road
region for detection. Red and blue rectangles in (a)
are the initial detection results by YOLO model. After
removing invalid detection results, the final detection
results are shown in (b).[6]

· · Daniel Adenisimi
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Fig. 8: Error Analysis: Fast R-CNN vs. YOLO.
These charts show the percentage of localization and
background errors in the top N detections for various
categories (N = # objects in that category)[1]

with other real time detection variants like R-
CNN [1]. This comparison is based on different
Pascal Visual Object Classes (VOC) data sets, a
publicly available dataset of images and anno-
tation together with a standardised evaluation
procedure [7]. Furthermore, the methodology
and tools of Hoiem et al. is used to compare er-
rors made by YOLO and Fast R-CNN (one of the
highest performing versions of R-CNN) on VOC
2007 [1]. Finally, VOC 2012 and 2007 is used
as the benchmark for comparing YOLO’s perfor-
mance when it is combined with R-CNN and the
result of it’s mean average precision (mAP) to
current state-of-the-art methods.[1]

5. Results

Fast YOLO is the fastest object detection method
on PASCAL when compared with the GPU im-
plementation of DPM which runs at 30Hz or
100Hz. With 52.7% mAP, Fast YOLO is twice as
accurate to prior work on real-time detection and
it retains real-time performance when it’s mAP
is pushed to 63.4%. [1]

On VOC 2007, Fast R-CNN achieves mAP
66.0% [3] and helps speed up the classification
stage of R-CNN [1]. Nevertheless, selective
search remains its requisite which takes around 2
seconds per image to generate bounding box pro-
posals. Therefore, regardless of Fast R-CNN high
mAP, at 0.5 fps, it is still far from realtime detec-
tion when compared to YOLO. [1] While this is
the case, YOLO still struggles to localize objects
correctly leading to a lot of localisation errors[Fig.
7]. Whereas Fast R-CNN, which is also prone to
background errors is still 3 times more likely to
predict background detections than YOLO. [1]

However, when YOLO is combined with Fast
R-CNN, it eliminates the background detections
from Fast R-CNN leading to a significant boost
in performance and making it one of the high-
est performing detection methods on the public
leaderboard on VOC 2012 test. In short, when
two separate Fast R-CNN with mAPs 71.8% and
68.4% on VOC 2007 and 2012 were combined
with YOLO. Their mAPs increased significantly,
at 75% and 70.7% respectively. [1]

6. Discussion and Conclusion

This paper proposes YOLO is simple and straight
forward for object and instance detection when
compared to state-of-the-art methods.YOLO out-
performs other detection methods by quickly
predicting potential region of interest and class
probabilities of an entire image. [1] The result of
Fast YOLO’s fps (155) and YOLO’s stand-alone
mAP of 63.4% and 75% if combined with Fast
R-CNN on Pascal VOC 2007 is a testament that
YOLO is faster and twice as accurate. Therefore,
YOLO is an optimised model of other R-CNN
variants and further research can be done to ex-
plore models that reduces YOLO’s localization
errors. [1]
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