
Time Windows Voting Classifier for COVID-19 Mortality Prediction 

 

Background. 

The ability to predict COVID-19 patients’ level of severity (death or survival) enables clinicians to prioritise 

treatment. Recently, using three blood biomarkers, an interpretable machine learning model was developed to 

predict the mortality of COVID-19 patients. The method was reported to be suffering from performance stability 

because the identified biomarkers are not consistent predictors over an extended duration. 

Methods. 

To sustain performance, the proposed method partitioned data into three different time windows. For each 

window, an end-classifier, a mid-classifier and a front-classifier were designed respectively using the XGboost 

single tree approach. These time window classifiers were integrated into a majority vote classifier and tested with 

an isolated test data set. 

Results. 

The voting classifier strengthens the overall performance of 90% cumulative accuracy from a 14 days window to a 

21 days prediction window. 

Conclusions. 

An additional 7 days of prediction window can have a considerable impact on a patient’s chance of survival. This 

study validated the feasibility of the time window voting classifier and further support the selection of biomarkers 

features set for the early prognosis of patients with a higher risk of mortality. 
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There is an urgent need to assess the likelihood of a COVID-19 patient dying from the disease and to 

support the decisions for prioritising treatment and resource planning in the hospital. Recently Yan 

et al. (2020) and his team used machine learning tools to identify three biomarkers − lactic 

dehydrogenase, lymphocyte and high-sensitivity C-reactive protein − reported to predict the severity 

of the disease in individual patients more than 10 days in advance with more than 90% accuracy. 

Their training set consists of 375 cases of which 201 (53.6%) survived and 174 (46.4%) died. Their 

algorithm was developed using the last complete blood test data. However, a recent study has 

suggested that the performance degraded over a longer predictive window and suffered from a high 

level of fluctuation (Huang et al., 2020). The assumption that the same biomarkers are consistent 

predictors over an extended duration is unrealistic. Biomarkers in a different time frame reveal 

different stages of illness as each stage is characterised by specific biochemical alterations (Marcello 

& Luisa, 2020). Using only the last complete blood test data suffers from information loss and lower 

predictive performance over an extended time window. To sustain the performance, this study 

proposes to use all the available data to minimise information loss by designing three classifiers 

based on samples over three different time windows. Subsequently, the classifiers are integrated 

into a majority vote classifier to optimise performance (Lam & Suen, 1997). 

MATERIALS AND METHODS 

Data Collection 

For this study, we used the data in Yan et al. (2020). The medical data of all patients were collected 

from hospitals in Wuhan, China between 10 January and 18 February 2020 using standard case 

report forms that included epidemiological, demographic, clinical, laboratory and mortality outcome 

information (Yan et al., 2020). Only the laboratory, mortality outcome and days to outcome fields 

were used for modelling, validating and testing. The data consists of 375 patients with 201 (53.6%) 

discharged and 174 (46.4%) deceased. In total 75 blood sample features were sparingly recorded 

across the data set. The minimal and maximal follow-up times (from admission to hospital to death 

or discharge) for the patients are 0 to 35 days. 

 

Laboratory Methods 

Statistical Analysis 

A parametric test (t test) and nonparametric test (Mann-Whitney U test) were used for continuous 

variables with or without normal distribution, respectively. Missing data was handled by XGBoost 

during model development. A two-sided α of less than 0.05 was considered statistically significant. 

Statistical analyses were computed using SPSS (version 24). 
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Classifier Development  

The original blood sample data set was merged into daily data for each patient. The data were 

partitioned into 3 sub-sample sets of 7 day windows. Data set 0 consists of the final 7 days of data 

with 237 samples for training and validation and 101 samples for testing. Data set 1 consists of 

samples from 8 to 14 days with 146 samples for training and validation and 62 samples for testing, 

and data set 2 consists of samples beyond 14 days with 72 samples for training and validation and 31 

samples for testing. For each data set, we used the XGboost method to select the important features 

for the respective window and used the important features to generate a single decision tree. This 

process created three classifiers each representing a specific time window. Finally, we combined the 

three classifiers into a majority vote classifier to establish the final prediction outcome. For features 

extraction, XGBoost parameters setting were maximum depth equal to 4, learning rate equal to 0.2, 

number of tree estimators set to 150, regularisation parameter α set to 1 and ‘subsample’ and 

‘colsample_bytree’ both set to 0.9. To generate the single tree, we set the maximum depth to 2 and 

tree estimator to 1. Figure 1 depicts the classifier development process. 

Original 375 cases
(201 survived,
174 mortality)

Data set 1
(data from 7 to 14 days)
208 cases, 153 survived 

and 55 mortality

Data set 0
(data from 0 to 7 days)
338 cases, 185 survived 

and 153 mortality

Data set 2
(data beyond 14 days)
103 cases, 82 survived 

and 21 mortality
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Figure 1. Data processing and classifier development procedures 
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RESULTS 

Data Characteristics of COVID-19 Patients 

Table 1 depicts the differences between features in the 3 data sets and patients’ outcomes. For the 

outcome=1 group, 13 features are significantly different (p1<0.05) between the 3 data sets, whereas 

the outcome=0 group 33 features are significantly different (p0<0.05) between the 3 data sets. This 

suggests that for the outcome=0 group, biomarkers are changing over the 3 time windows. When 

comparing patient outcomes between corresponding data sets, a significant majority of the features 

were different between the survival and the mortality group (p_dso < 0.05, p_ds1 < 0.05, p_ds2 < 

0.05). These differences provide the basis for building machine learning classifiers. However, the 

difference statistics are not sufficient to provide information on which features are most important 

to provide diagnostics and predictive analysis. 

Prognostic Factors of Severe COVID-19 

The XGBoost algorithm is used to select the important features for each of the data sets. For each 

data set we built a single tree decision classifier for each time window. Table 2 depicts the selected 

prognostic features and the rules for each decision tree classifier. The biomarkers selected by the 

algorithm are linked to serious outcomes in patients (Ponti et al., 2020). Lactate dehydrogenase 

measures tissue damage associated with a wide range of disorders, including liver disease and 

interstitial lung disease, and C-reactive protein is a marker of inflammation or infection-reduced lung 

function. Lymphopenia is a common feature in patients with COVID-19 and might be a critical factor 

associated with disease severity and mortality (Zhao et al., 2020). Neutrophils are associated with 

infection, increasing the inflammation and haemorrhagic lesions in the lungs of infected patients 

(Hemmat et al., 2020). Neutrophils may be responsible for mortality in these severe coronavirus 

cases (Tomar et al., 2020). Biomolecules such as D-dimer indicate a breakdown product of blood 

clots. These features were identified as relevant to complications associated with COVID-19 and 

were dramatically increased in patients that died versus those that recovered. A study by Zhou et al. 

(2020) showed that D-dimer greater than 1 μg/mL could help clinicians to identify patients with a 

poor prognosis about 20 days in advance. D-dimer values are even higher in patients with severe 

COVID-19 than in those with milder forms and therefore, D-dimer measurement may be associated 

with evolution toward worse clinical outcomes (Lippi & Favaloro, 2020). 
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Table 1. Data Sets Characteristics 

 

  

Features DS0 DS1 DS2 P1 DS0 DS1 DS2 P0 P_DS0 P_DS1 P_DS2

Gender 1.29(0.45) 1.24(0.43) 1.29(0.46) 0.803 1.52(0.5) 1.52(0.5) 1.51(0.5) 0.978 0.000 0.000 0.073

Age 69.19(12.24) 69.57(9.33) 68.1(9.08) 0.879 50.6(15.21) 49.32(14.78) 51.09(13.95) 0.621 0.000 0.000 0.000

Days 2.62(1.43) 9.67(1.58) 22.19(4.56) 0.000 3.4(1.39) 10.91(1.65) 18.34(3.47) 0.000 0.000 0.000 0.000

(%)lymphocyte 6.34(5.87) 6.6(5.03) 6.86(5.18) 0.904 25.75(10.4) 24.32(10.83) 23.09(10.29) 0.163 0.000 0.000 0.000

Activation of partial thromboplastin time 43.1(10.33) 39.69(8.08) 41.67(5.6) 0.169 38.29(6.4) 39.62(6.02) 41.16(4.71) 0.029 0.000 0.961 0.707

Alkaline phosphatase 101.97(48.9) 83.95(40.89) 82.34(37.43) 0.023 66.36(49.55) 67.9(27.34) 62.65(17.56) 0.607 0.000 0.002 0.001

Amino-terminal brain natriuretic peptide precursor(NT-proBNP) 5221.81(9469.79) 1978.36(2513.65) 1096.04(1076.89) 0.020 2634.95(10934.24) 118.76(142.93) 140.31(200.56) 0.068 0.138 0.000 0.000

Corrected calcium 2.34(0.13) 2.37(0.11) 2.35(0.12) 0.224 2.36(0.12) 2.37(0.11) 2.32(0.1) 0.021 0.140 0.674 0.374

D-D dimer 12.62(8.72) 9.66(9.12) 12.82(8.51) 0.117 0.84(0.77) 1.52(3.28) 1.23(2.77) 0.217 0.000 0.000 0.000

Direct bilirubin 15.55(33.14) 7.78(5.03) 10.4(15.96) 0.204 3.87(1.84) 4.2(2.28) 3.83(1.53) 0.268 0.000 0.000 0.000

ESR 39.75(28.91) 40.31(23.96) 34.06(23.46) 0.704 30.5(26.85) 26.61(17.67) 32.98(22.23) 0.162 0.087 0.001 0.859

Eosinophil count 0.02(0.04) 0.01(0.03) 0.01(0.03) 0.648 0.08(0.06) 0.05(0.07) 0.02(0.04) 0.000 0.000 0.000 0.181

Fibrin degradation products 90.94(60.25) 75.9(68.98) 75.63(51.04) 0.426 4.42(1.2) 9.87(21.61) 5.16(5.5) 0.157 0.000 0.000 0.000

HBsAg 19.82(65.73) 13.52(57.31) 1.78(7.07) 0.526 0.01(0.01) 5.01(32.42) 0.49(2.37) 0.408 0.136 0.347 0.230

HCO3- 21(4.14) 21.41(4.21) 21.72(4.15) 0.684 25.62(2.93) 24.45(2.67) 23.3(2.11) 0.000 0.000 0.000 0.017

HCV antibody quantification 0.16(0.33) 0.13(0.27) 0.11(0.19) 0.787 0.1(0.09) 0.07(0.08) 0.09(0.12) 0.491 0.336 0.118 0.551

HIV antibody quantification 0.1(0.05) 0.1(0.05) 0.08(0.01) 0.079 0.13(0.05) 0.1(0.03) 0.1(0.02) 0.000 0.056 0.785 0.005

High sensitivity C-reactive protein 129.72(70.61) 129.06(73.16) 118.11(71.81) 0.784 10.3(27.88) 24.77(32.92) 43.98(47.13) 0.000 0.000 0.000 0.000

Hypersensitive cardiac troponinI 1652.89(6284.83) 2031.74(7360.49) 920.1(2709.46) 0.810 20.79(87.94) 6.32(7.11) 7.44(10.42) 0.242 0.066 0.023 0.028

Interleukin 10 27.28(94) 13.4(8.53) 18.11(14.37) 0.787 5.69(3.64) 6.64(3.73) 9.02(5.78) 0.002 0.167 0.000 0.001

Interleukin 1β 7.8(11.31) 6.18(4.87) 5.05(0.17) 0.600 6.29(7.41) 6.66(5.76) 5.76(2.66) 0.711 0.467 0.754 0.360

Interleukin 2 receptor 1332.8(813.75) 1699.82(1540.21) 1193.88(839.25) 0.311 592(617.17) 625.19(302.53) 599.42(255.41) 0.905 0.000 0.000 0.000

Interleukin 6 255.85(726.72) 108.06(142.72) 294.61(726.4) 0.676 8.64(21.48) 18.29(27.49) 25.88(26.94) 0.011 0.034 0.000 0.015

Interleukin 8 107.38(381.44) 62(65.65) 345.42(970.5) 0.221 9.88(8.72) 18.77(28.69) 28.73(49.01) 0.042 0.124 0.000 0.031

International standard ratio 1.54(0.8) 1.24(0.3) 1.34(0.29) 0.022 1.03(0.07) 1.05(0.08) 1.06(0.1) 0.020 0.000 0.000 0.000

Lactate dehydrogenase 732.57(367.83) 620.98(346.66) 635.91(304.89) 0.116 210.93(68.48) 259.07(88.63) 281.79(99.56) 0.000 0.000 0.000 0.000

Mean platelet volume 11.47(1.16) 11.23(0.88) 11.41(0.86) 0.409 10.46(0.82) 10.51(0.83) 10.6(0.87) 0.465 0.000 0.000 0.000

PH value 6.57(0.73) 6.3(0.74) 6.37(0.71) 0.215 6.24(0.6) 6.53(0.49) 6.36(0.54) 0.028 0.003 0.132 0.988

PLT distribution width 14.44(3.32) 13.6(2.27) 14.16(2.5) 0.247 11.97(1.95) 12.07(1.86) 12.19(1.97) 0.685 0.000 0.000 0.000

Platelet count 137.82(89.78) 149.86(68.49) 131.44(63.9) 0.590 251.1(78.84) 245.89(97.34) 201.44(68.29) 0.000 0.000 0.000 0.000

Prothrombin activity 65.37(19.38) 77.67(18.93) 70.25(14.03) 0.001 96.9(11.16) 94.15(11.61) 92.73(13.64) 0.083 0.000 0.000 0.000

Prothrombin time 18.6(8.28) 15.71(2.87) 16.62(2.75) 0.034 13.48(0.76) 13.78(0.82) 13.94(1) 0.003 0.000 0.000 0.000

Quantification of Treponema pallidum antibodies 0.27(1.43) 0.1(0.21) 0.05(0.04) 0.638 0.08(0.04) 0.05(0.03) 0.12(0.51) 0.470 0.500 0.105 0.588

RBC distribution width SD 44.47(7.91) 42.48(6.1) 45.24(4.72) 0.181 40.25(3.53) 39.68(3.37) 39.51(2.95) 0.202 0.000 0.000 0.000

Red blood cell count 9.11(23.24) 12.38(18.68) 7.78(7.52) 0.569 6.27(17.96) 4.86(2.65) 9.52(30.5) 0.198 0.225 0.000 0.797

Red blood cell distribution width 13.74(2.09) 13.04(2.06) 13.64(1.34) 0.103 12.48(0.97) 12.3(0.92) 12.33(1.05) 0.245 0.000 0.001 0.000

Serum chloride 104.2(8.87) 100.38(6.96) 108.39(9.52) 0.001 100.99(3.86) 100.7(3.48) 100.62(3.28) 0.689 0.000 0.688 0.000

Serum potassium 4.52(0.79) 4.63(0.71) 4.6(0.65) 0.667 4.43(0.49) 4.22(0.49) 4.06(0.45) 0.000 0.234 0.000 0.000

Thrombin time 18.33(3.94) 22(24.11) 19.58(5.67) 0.276 16.55(1.25) 16.33(1.31) 16.55(1.22) 0.469 0.000 0.034 0.001

Total bilirubin 23.95(41.77) 14.65(6.69) 16.99(22.25) 0.229 9.85(5.17) 9.98(5.03) 8.7(3.57) 0.144 0.000 0.000 0.002

Total cholesterol 3.3(0.89) 3.56(0.91) 3.42(0.69) 0.205 4.31(0.96) 3.85(0.81) 3.63(0.71) 0.000 0.000 0.038 0.232

Tumor necrosis factorα 15.71(14.46) 15.76(15.09) 18.69(19.58) 0.822 7.17(4.91) 8.08(2.84) 9.37(3.12) 0.021 0.001 0.000 0.003

Urea 12.58(8.89) 11.9(8.02) 15.42(12.87) 0.323 5.37(4.97) 4.35(1.63) 4.19(1.84) 0.015 0.000 0.000 0.000

Uric acid 296.63(170.75) 322.9(168.09) 304.29(174.57) 0.640 278.34(103.11) 248.02(92.55) 244.2(68.93) 0.006 0.267 0.000 0.017

White blood cell count 14.04(9.84) 15.11(28.95) 13.55(10.28) 0.905 14.94(56.81) 8.83(28.05) 14.34(45.58) 0.484 0.853 0.172 0.937

albumin 28.58(4.02) 29.68(3.89) 28.91(5.69) 0.275 36.93(3.91) 35.83(4.31) 36.35(4.4) 0.083 0.000 0.000 0.000

antithrombin 78.2(17.49) 86.98(17.01) 84.96(17.93) 0.043 98.34(13.21) 95.46(14.02) 89.85(10.12) 0.016 0.000 0.026 0.225

aspartate aminotransferase 74.56(129.3) 56.02(105.55) 47.54(28.82) 0.451 23.43(17.52) 25.7(14.11) 28.06(13.53) 0.093 0.000 0.001 0.000

basophil count(#) 0.02(0.02) 0.02(0.02) 0.01(0.02) 0.087 0.02(0.02) 0.01(0.01) 0.01(0.01) 0.000 0.512 0.219 0.050

basophil(%) 0.16(0.17) 0.13(0.11) 0.1(0.09) 0.134 0.36(0.28) 0.23(0.2) 0.18(0.23) 0.000 0.000 0.000 0.120

calcium 2(0.12) 2.04(0.11) 2.01(0.13) 0.143 2.2(0.11) 2.17(0.1) 2.14(0.1) 0.000 0.000 0.000 0.000

creatinine 116.67(78.62) 128.75(111.55) 156.8(180.72) 0.215 99.09(183.06) 69(22.88) 69.93(20.01) 0.069 0.289 0.000 0.000

eGFR 69.62(28.35) 64.47(27.92) 66.49(28.55) 0.517 95.86(26.07) 99.13(23.16) 97.8(18.75) 0.507 0.000 0.000 0.000

eosinophils(%) 0.16(0.4) 0.1(0.22) 0.08(0.18) 0.474 1.47(1.28) 1.05(1.44) 0.46(0.7) 0.000 0.000 0.000 0.016

ferritin 2602.4(3470.67) 2221.81(1642.86) 5745.61(14095.98) 0.211 631.14(426.3) 617.84(567.11) 666.1(634.7) 0.898 0.000 0.000 0.017

fibrinogen 4.31(2) 4.74(2.36) 3.8(1.57) 0.254 4.23(1.33) 4.77(1.26) 4.53(1.08) 0.023 0.757 0.936 0.034

globulin 34.68(5.56) 36.14(4.87) 32.8(4.41) 0.045 31.32(5.27) 32.52(4.19) 32.99(3.3) 0.013 0.000 0.000 0.823

glucose 10.32(4.59) 10.71(5.62) 11.26(4.58) 0.677 6.36(3.12) 6.9(3.13) 7.51(2.73) 0.032 0.000 0.000 0.000

glutamic-pyruvic transaminase 50.64(110.29) 36.04(57.22) 31.8(17.62) 0.504 32.71(26.74) 30.54(26.84) 24.27(17.29) 0.053 0.051 0.377 0.081

hematocrit 36.42(6.12) 37.71(5.44) 35.52(6.15) 0.273 37.08(4.37) 37.38(4.21) 36.89(4.05) 0.690 0.277 0.662 0.223

hemoglobin 124.77(20.93) 130.68(17.69) 114.93(22.83) 0.011 127.23(15.48) 125.71(19.81) 124.27(17.59) 0.453 0.241 0.116 0.046

indirect bilirubin 8.39(9.8) 6.95(3.11) 6.56(6.97) 0.440 6.09(3.5) 5.87(3.29) 4.87(2.42) 0.023 0.008 0.047 0.076

lymphocyte count 0.6(0.34) 0.53(0.28) 0.5(0.19) 0.208 1.73(3.3) 1.25(0.53) 1.09(0.44) 0.054 0.000 0.000 0.000

mean corpuscular hemoglobin 31.29(3.18) 31.37(2.24) 30.32(2.79) 0.342 30.9(2.35) 30.82(2.75) 30.29(2.77) 0.205 0.228 0.204 0.961

mean corpuscular hemoglobin concentration 345.01(18.47) 347.3(15.63) 331.43(15.09) 0.002 343.21(13.86) 344.82(16.63) 342.01(12.8) 0.378 0.334 0.355 0.002

mean corpuscular volume 90.65(7.1) 90.33(5.04) 91.53(7.96) 0.788 90(5.1) 89.31(5.36) 88.47(6.12) 0.115 0.355 0.241 0.059

monocytes count 0.46(0.27) 0.41(0.26) 0.37(0.28) 0.193 0.75(2.87) 0.45(0.18) 0.39(0.17) 0.265 0.243 0.247 0.600

monocytes(%) 4.4(4.13) 4.45(3.4) 3.91(2.75) 0.847 8.59(2.99) 8.3(2.96) 8.07(3.08) 0.413 0.000 0.000 0.000

neutrophils count 11.83(5.53) 9.88(6.05) 9.77(5.08) 0.053 4.41(2.69) 3.95(2.15) 3.67(1.82) 0.051 0.000 0.000 0.000

neutrophils(%) 88.94(9.54) 88.72(7.52) 89.04(7.28) 0.985 63.73(12.92) 66.1(12.93) 68.21(12.12) 0.031 0.000 0.000 0.000

platelet large cell ratio 36.22(9.03) 34.34(6.91) 35.67(6.72) 0.402 28.22(6.64) 28.63(6.74) 29.36(6.95) 0.471 0.000 0.000 0.000

procalcitonin 1.48(3.09) 1.51(6.64) 4.27(8.96) 0.068 0.13(0.49) 0.06(0.13) 0.07(0.09) 0.369 0.002 0.057 0.000

serum sodium 141.91(8.24) 139.25(7.6) 146.93(10.14) 0.002 139.92(2.89) 139.67(2.93) 138.45(2.82) 0.001 0.005 0.592 0.000

thrombocytocrit 0.17(0.09) 0.17(0.07) 0.17(0.06) 0.888 0.26(0.07) 0.26(0.09) 0.21(0.06) 0.000 0.000 0.000 0.002

total protein 63.3(6.87) 65.82(6.2) 61.74(7.16) 0.028 68.25(5.38) 68.35(4.88) 69.33(4.82) 0.278 0.000 0.004 0.000

γ-glutamyl transpeptidase 68.32(80.16) 65.11(87.16) 45.4(51.94) 0.470 38.33(45.61) 42.28(60.8) 33.57(22.4) 0.446 0.000 0.046 0.123

OUTCOME= 1 OUTCOME=0
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Table 2  The selected prognostic features and the rules for each decision tree classifier. 

Classifier Features Selected Decision Rules 
0 LDH: Lactate dehydrogenase 

HCP: High sensitivity C-
reactive protein 

=IF(AND([@[LDH]] <340, [@[HCP]] <55.233),0,1) 

1 LDH: Lactate dehydrogenase 
NEU: Neutrophils (%) 

=IF(AND(([@[NEU]] <88.25), ([@[LDH]] 
<393.5)),0,1) 

2 DMR: D-D dimer =IF(([@[DMR]] <2.1),0,1) 
 

Validation of the Predictive Accuracy of the Voting Classifier 

Table 3 depicts the performance of the 3 classifiers for the training, validation and the testing phases. 

Overall classifier 0’s average performance is better than those of classifiers 1 and 2. However when 

we break it down into different time windows, classifier 0’s performance degraded at time >14 days. 

This is the typical when using a single classifier to estimate an extended period. At time>14 days, 

classifier 2 performed much better than classifier 0. For all the time windows, the voting classifier 

was either equal or better than the best classifiers. Figure 2 shows the performance over 21 days. 

The voting classifier performed better than the original classifier by 5% and at above 90% accuracy. 

Table 3 The performance of the 3 classifiers for the training, validation and the testing phases. 

  Survival Vs Mortality 

Model N AUC (95% CI) Sensitivity Specificity (%) 

Model 0     

Training 166 0.990(.980-1.0) 100.0% 97.2% 

Validation 71 0.965(.917-1.0) 94.7% 100% 

Testing 101 0.97 90.9% 93.2% 

Model 1 
  

  
 

Training 102 0.977(.970-.993) 98.6% 96.2% 

Validation 44 0.812(.687-.917) 90.6% 58.3% 

Testing 62 0.863 89.1% 68.8% 

Model 2 
    

Training 50 0.945(.937-.955) 100.0% 90.9% 

Validation 22 0.814(.612-1.00) 94.1% 75.0% 

Testing 31 0.826 95.8% 66.7% 
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CUM_A0_ACCY: Cumulative accuracy for A0 (Yan ); CUM_M0_ACCY: Cumulative accuracy for classifier 0; 

CUM_M1_ACCY: Cumulative accuracy for classifier 1; CUM_M2_ACCY: Cumulative accuracy for classifier 2  

Figure 2. Comparing cumulative accuracy performance of classifiers over days (all available data) 

Table 4. Comparison of classifiers performance based on different time window (all available data) 

 Average Classifiers Accuracy (Mean/ SD)  

Time Window A0 M0 M1 M2 V 

0-7 days 0.963 0.960 0.931 0.867 0.952  
0.028 0.042 0.060 0.082 0.055 

8-14 days 0.864 0.830 0.877 0.834 0.886  
0.108 0.091 0.128 0.085 0.131 

15-21 days 0.714 0.630 0.921 0.892 0.903  
0.198 0.150 0.094 0.106 0.105 

A0: Classifier based on Yan et al.; M0: Classifier 0: M1 Classifier 1: M2: Classifier 2 V: Voting Classifier 

DISCUSSION 

The purpose of the study is to enhance the classifier performance of Yan et al. (2020) by using all the 

available data instead of just the last set of complete blood data. Overall, the proposed voting 

classifier performs better than the original classifier from the 15 to 21 days window with 5% higher 

cumulative accuracy (Figure 2), 20% average accuracy (Table 4) or overall, 3.5% higher AUC (Table S). 

Classifier 0’s performance which is based on the ending segment of the data is compatible with the 

Yan et al. results as shown in Table 4 and Figure 3, especially for the 0 to 7 days window. When 

evaluated with a separate test data the AUCs are .888, .905,.873, and .937 for classifier 0, classifier 1, 

classifier 2 and the voting classifier respectively as shown in Table S. Overall the voting classifier 

performed as designed, especially for the 15 to 21 days window, to obtain a longer time window for 

the severe patients to be identified.  
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Figure 2 demonstrates a similar decrease in performance with distant data which is also depicted by 

Yan et al. (2020) in their daily performance plots. Model 1, which uses the middle segment of data, 

appears to be more stable than models 0 and 2. The difference in performance in each different 

time segment suggests that using only ending data for training may not be the best option. As can be 

seen from the analysis, different time segments can decrease performance due to different relevant 

feature indicators. When patients are admitted, the ability to establish their illness timeframe and 

severity improves their chance of survival. 

The hard-voting classifier leverages the strength of each classifier (Lam & Suen, 1997). Figure 2 

demonstrates that the overall cumulative accuracy improved from 85% (original classifier from Yan 

et al.) to 92% at day 21 which suggests that the simple voting classifier is a suitable approach to 

identify high risk patients. 

Our study has several strengths. First, the decision tool is based on only 4 features, which are 

relatively inexpensive and easily obtained from routine blood tests. The biomarkers are linked to 

different stages of illness progression for poor prognosis patients. Compared to Yan et al. (2020) , 

the proposed time window voting classifier is easy to implement and the performance is more 

consistent over a 21 day period. The additional test data evaluation ensures the study is rigorous. 

Our study comes with certain limitations. First, the samples are retrospective and consist of 375 

cases with 201 (53.6%) who survived and 174 (46.4%) who died. While the small sample size limits 

generalisation, it does provide a direction for further analysis when larger data sets become 

available. Second, a more comprehensive analysis is needed to establish the stability of the 

algorithm. Our method may have reduced the instability, but we do need further evidence in 

support. Third, the data distribution with respect to mortality would affect the performance of the 

algorithm which requires further validation that takes hospital context into consideration (Wang et 

al., 2020). 
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Supplement materials 

Table S. 100 runs of single tree XGboost classifiers accuracy on test data (Mean /SD) 

 Classifier 0 Classifier 1 Classifier 2 Voting 

All Test Data 0.849 0.895 0.858 0.910 
 0.115 0.050 0.061 0.050 

Test--DS0 0.969 0.913 0.852 0.948 
 0.016 0.035 0.040 0.025 

Test-DS1 0.861 0.865 0.810 0.882 
 0.038 0.040 0.047 0.038 

Test-DS2 0.719 0.907 0.914 0.900 
 0.080 0.058 0.043 0.056 
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