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ABSTRACT 

Background: While several demographic and clinical correlates of Coronavirus Disease 2019 

(COVID-19) outcome have been identified, they remain imprecise tools for clinical management 

of disease. Furthermore, there are limited data on how these factors are associated with 

virological and immunological parameters over time.  

 
Methods and Findings: Nasopharyngeal swabs and blood samples were longitudinally collected 

from a cohort of 58 hospitalized adults with COVID-19 in Chicago, Illinois between March 27 and 

June 9, 2020. Samples were assessed for SARS-CoV-2 viral load, viral genotype, viral diversity, 

and antibody titer. Demographic and clinical information, including patient blood tests and several 

composite measures of disease severity, were extracted from electronic health records. All 

parameters were assessed for association with three patient outcome groups: discharge without 

intensive care unit (ICU) admission (n = 23), discharge with ICU admission (n = 29), and COVID-

19 related death (n = 6). Higher age, male sex, and higher body mass index (BMI) were 

significantly associated with ICU admission. At hospital admission, higher 4C Mortality scores and 

lactate dehydrogenase (LDH) levels were likewise associated with ICU admission. Longitudinal 

trends in Deterioration Index (DI) score, Modified Early Warning Score (MEWS), and serum 

neutrophil count were also associated with ICU admission, though only the retrospectively 

calculated median DI score was predictive of death. While viral load and genotype were not 

significantly associated with outcome in this study, viral load did correlate positively with C-

reactive protein levels and negatively with D-dimer, lymphocyte count, and antibody titer. Intra-

host viral genetic diversity resulted in changes in viral genotype in some participants over time, 

though intra-host evolution was not associated with outcome. A stepwise-generated multivariable 

model including BMI, lymphocyte count at admission, and neutrophil count at admission was 

sufficient to predict outcome with a 0.82 accuracy rate in this cohort.  

 
Conclusions: These studies suggest that COVID-19 disease severity and poor outcomes among 

hospitalized patients are likely driven by dysfunctional host responses to infection and underlying 

co-morbid conditions rather than SARS-CoV-2 viral loads. Several parameters, including 4C 

mortality score, LDH levels, and DI score, were ultimately predictive of participant outcome and 

warrant further exploration in larger cohort studies for use in clinical management and risk 

assessment. Finally, the prevalence of intra-host diversity and viral evolution in hospitalized 

patients suggests a mechanism for population-level change, further emphasizing the need for 

effective antivirals to suppress viral replication and to avoid the emergence of new variants. 
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INTRODUCTION 
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in late 2019 

and its subsequent pandemic spread has ignited a global health crisis. Over 174 million cases of 

Coronavirus disease 2019 (COVID-19) have been reported as of June 2021, accounting for over 

3.7 million deaths worldwide [1]. SARS-CoV-2 infection initiates in the airway epithelia of the 

upper respiratory tract, usually presenting with symptoms typical of a respiratory illness, including 

fever, fatigue, cough, shortness of breath, and loss of taste and/or smell [1]. Nevertheless, clinical 

presentation can range widely from asymptomatic infection to more severe symptoms, including 

hypoxia and chest pressure [2]. Additional infection and inflammation of the lower respiratory tract 

can result in life-threatening pneumonia and acute respiratory distress syndrome (ARDS) [3]. 

Therefore, while most cases are mild, some require clinical intervention in a hospital setting [4].  

 

Understanding risk factors associated with severe disease, hospitalization, and death are crucial 

for understanding and managing populations most at risk and for improving clinical care of 

COVID-19 patients. Several studies early in the pandemic identified a number of demographic 

factors associated with severe COVID-19 including sex (male), age (65 or older), and 

race/ethnicity (Black, Hispanic, Native American) [5]. Comorbidities and other preexisting 

conditions - including diabetes, heart disease, asthma, high body mass index (BMI), and 

immunodeficiency - have likewise been linked with worse clinical outcomes [6-8]. Socioeconomic 

status, access to healthcare, and exposure risk also have large impacts on risk of transmission 

and disease [9].   

 

A variety of composite scores have been developed to help predict clinical outcomes and inform 

medical management and level of care [10]. These scores are typically calculated from several 

clinical/demographic assessments, including age, BMI, co-morbid conditions, oxygenation status, 

mental acuity, symptom profile, and laboratory testing. They are designed to aid clinicians in the 

identification of deteriorating patients with the ultimate goal of improving clinical outcomes. 

Several of these scores are often used in assessing hospitalized COVID-19 patients, including: 

the 4C mortality score [11, 12], the Epic Deterioration Index (DI) model [13], and the Modified 

Early Warning Score (MEWS) [14]. Serial measurement of these scores can be useful for 

monitoring a patient’s disease progression over time, though they have not been directly 

compared to one another for their relative clinical utility in assessing COVID-19 outcome. 
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Besides patient demographics and composite clinical scores, more direct measurements of 

SARS-CoV-2 infection have similarly been examined as potential biomarkers for disease severity 

and outcomes. Early reports suggested that viral load in the upper respiratory tract may be a 

significant predictor of severe disease [15, 16], though this has not been observed in other studies 

[17]. Likewise, while several new viral lineages have evolved with enhanced transmission or 

fitness [18-21], few associations have been found between these new genetic variants and 

disease severity, presentation, or outcomes [22-25]. The host response to infection, on the other 

hand, has been linked to disease severity in a number of ways. Several individual clinical lab 

results that monitor the host immune response correlate with COVID-19 disease severity, 

including lymphopenia, elevated levels of proinflammatory cytokines, and elevated C-reactive 

protein (CRP) [26, 27]. Individuals with defects in innate immune signaling or who evolve 

autoantibodies against type I interferons likewise have increased risk for severe disease [28]. 

Furthermore, serological testing for antibodies against SARS-CoV-2 Spike (S) or Nucleoprotein 

(N) has suggested that a stronger response to N over S correlates with more severe disease in 

retrospective analysis [29, 30].  

 

While a number of specific demographic, clinical, virological, and serological measurements have 

been independently associated with COVID-19 severity and outcomes, the success of these 

parameters as predictors has been highly variable. It is furthermore unclear how longitudinal 

assessment of virologic or serologic data might improve composite measures and models of 

COVID-19 outcome, particularly among hospitalized individuals. Towards this end, we 

established a biobank of nasopharyngeal swabs and blood samples collected longitudinally from 

a cohort of hospitalized adults with COVID-19. Serological and virological information from these 

samples, including viral load, viral genotype, viral diversity, and antibody levels, were analyzed 

for associations with common clinical metrics of disease severity and participant outcome. 

Ultimately, these findings will help inform the design and parameters of predictive tools in clinical 

care and management of COVID-19. 

 
METHODS 
Specimen collection and processing 

After IRB approval, individuals over the age of 18 admitted to Northwestern Memorial Hospital 

with a positive, PCR-based COVID-19 diagnostic test, who provided informed consent 

themselves or through an appropriate surrogate, were enrolled in the study. Nasopharyngeal 

swabs were collected from study participants on the enrollment date and every 4 ± 1 days after 
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enrollment up to 30 days of hospitalization. Swabs were stored in 2-3mL of Primestore MTM 

(Longhorn Vaccines & Diagnostics, San Antonio, Texas). The Primestore MTM was aliquoted into 

2-3 vials of 1mL per tube and stored at -80°C. A total of 238 nasopharyngeal specimens were 

collected from 58 participants throughout the course of the study.  Whole blood was collected 

from study participants every 8 ± 1 days after enrollment up to 30 days of hospitalization in 

Vacutainer CPT Mononuclear Cell Preparation tubes containing sodium heparin (Becton 

Dickinson). Three CPT tubes containing roughly 8 ml of whole blood were collected per participant 

per time point. A total of 65 whole blood specimens were collected from 34 participants throughout 

the course of the study; 24 participants either declined consent to blood collection or were unable 

to provide it at the time of collection. Briefly, sample tubes containing whole blood were 

centrifuged at 1500-1800 xg in a swing-bucket centrifuge for 30 minutes.  Plasma from each of 

the three collection tubes was removed, pooled, and frozen in 1mL aliquots at -80°C. Peripheral 

blood mononuclear cells (PBMCs) were removed, washed with 1x PBS containing 0.5% BSA and 

2mM EDTA, and frozen in cryopreservation media (1x FBS, 10% DMSO) at -80°C. 

 

Clinical Data Extraction 

Early in the COVID-19 pandemic we obtained IRB approval to create a data mart of all adults 

diagnosed and treated for COVID-19 across Northwestern Medicine (NM) using the NM 

Enterprise Data Warehouse (NMEDW) to study the epidemiology, presentation, 

laboratory/radiographic findings, treatment, co-morbidities, and outcomes of COVD-19. The 

NMEDW is a joint initiative across Northwestern University Feinberg School of Medicine and 

Northwestern Memorial Healthcare Corporation to create a single, comprehensive, and integrated 

repository of all clinical and research data sources to facilitate research, clinical quality, and 

healthcare operations.  The following electronic data elements were extracted and complied once 

a week from the NMEDW for all adults diagnosed with COVID-19: demographics, health system 

visits/level of care (i.e., outpatient, ED, hospital, ICU), vital signs, specific laboratory test results, 

imaging studies, co-morbid conditions/diagnoses (via ICD9/ICD10 coding), pharmacologic 

therapy (initially via NMEDW pharmacy/medication records then confirmed as needed with 

electronic chart review), and oxygen delivery/respiratory therapies (initially via NMEDW 

respiratory therapy records or CPT codes and then confirmed as needed with electronic chart 

review).  From March 1 to June 15, 2020, we also performed electronic chart review and extraction 

to verify certain NMEDW data (as above) and to collect information on COVID-19 specific 

symptoms, symptom onset, exposures, and high-risk behaviors. For this study, we linked all 

available NMEDW and electronic chart review data to this subset of hospitalized participants who 
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provided longitudinal specimens (nasopharyngeal swabs and whole blood) as per the study 

population and protocol described above.  These NMEDW data were utilized to determine 

demographics, clinical assessments, symptom onset, laboratory measurements, COVID-19 

disease severity, and hospital outcomes (ICU care and death) for the study analyses. 

 

Viral Load Determination  

Viral RNA was extracted from nasopharyngeal specimens utilizing the QIAamp Viral RNA Minikit 

(Qiagen). Laboratory testing for SARS-CoV-2 presence was performed by quantitative reverse 

transcription and PCR (qRT-PCR) with the CDC 2019-nCoV RT-PCR Diagnostic Panel utilizing 

N1 and RNase P probes as previously described [31]. Specimens with undetectable RNase P 

levels were considered to be of insufficient quality and were excluded from future studies. Ct 

values from the N1 probes were used in all subsequent analyses with N1 Ct values less than or 

equal to 35 considered positive. 

 

cDNA Synthesis and Viral Genome Amplification  

cDNA synthesis was performed with SuperScript IV First Strand Synthesis Kit (Thermo) using 

random hexamer primers according to manufacturer’s specifications. Direct amplification of the 

viral genome cDNA was performed in multiplexed PCR reactions to generate ~400 base pair 

amplicons tiled across the genome. The multiplex primer set, comprised of two non-overlapping 

primer pools, was created using Primal Scheme and provided by the Artic Network (version 3 

release). PCR amplification was carried out using Q5 Hot Start HF Taq Polymerase (NEB) with 5 

µl of cDNA in a 25 µl reaction volume. A two-step PCR program was used with an initial step of 

98°C for 30 seconds, then 35 cycles of 98°C for 15 seconds followed by five minutes at 65°C. 

Separate reactions were carried out for each primer pool and validated by agarose gel 

electrophoresis. 

 

Sequencing Library Preparation and Illumina Sequencing 

The sequencing library approach was adapted from previously published methods [32]. Briefly, 

amplicons from both primer pools were combined and purified with a 1x volume of AmpureXP 

beads (Beckman Coulter). A total of 75 ng of DNA was treated with KAPA HyperPrep End Prep 

Enzyme mix (KAPA). Up to 96 specimen libraries were barcoded using NEXTflex barcodes and 

KAPA HyperPrep DNA Ligase (KAPA) for simultaneous sequencing. Uniquely barcoded samples 

were pooled and purified with a 0.8x volume of AmpureXP beads. Library amplification was 

performed using KAPA HiFi HotStart with KAPA Library Amp Primers.  Amplicons were purified 
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with a 0.8x volume of AmpureXP beads and normalized to 5 nM and pooled.  The pooled library 

was denatured and loaded onto a MiSeq v2 500 cycle flow cell (Illumina). Viral genome consensus 

sequences were determined from sequencing reads as previously described [33]. Sequencing 

reads were aligned to the reference SARS-CoV-2 genome sequence MN908947.3 using bwa 

version 0.7.15. Barcode sequences were trimmed from aligned reads and consensus sequence 

determined using iVar v1.2.2 [33] with a minimum alignment depth of 10 reads and minimum base 

quality of 20, and a consensus frequency threshold of 0 (i.e. majority base as the consensus). 

Consensus sequences with ≥ 10% missing bases were discarded. 

 

SARS-CoV-2 Nucleocapsid Protein Expression and Purification for ELISA 

For expression of the SARS-CoV-2 Nucleocapsid (N-protein) N-terminal domain (NTD, amino 

acids 47-173) and C-terminal domain (CTD, amino acids 247-364), the corresponding DNA 

sequence from the Wuhan-Hu-1 nucleocapsid open reading frame [34] was codon optimized for 

expression in Escherichia coli (E. coli) using Genscript Gensmart and Bio Basic software, 

respectively. The NTD sequence was synthesized (Twist Bioscience) and cloned into pMCSG53 

[35], yielding pMCSG53-N-NTD (available through BEI Resources, NR-52428). The CTD 

sequence was synthesized (Bio Basic) and cloned into pET11a (Novagen), yielding pET11a-N-

CTD (available through BEI Resources, NR-52434). These expression plasmids were 

transformed into BL21(DE3) E.coli cells [36]. For expression of full-length SARS-CoV-2 N-protein 

(N-FL, amino acids 1-412), pET-28a(+) containing the entire Wuhan-Hu-1 Nucleocapsid open 

reading frame was obtained from BEI Resources (NIAID, NIH, Catalog # NR-53507) and 

transformed into E. coli Rosetta-1 cells (Novagen). E.coli expressing each of the three plasmids 

were independently grown overnight under appropriate selection and protein expression was 

induced with isopropyl-d-thiogalactopyranoside (IPTG). For all three proteins, E. coli cells were 

harvested by centrifugation at 6,000 RCF for 10 minutes. Cell pellets were resuspended in lysis 

buffer (500 mM NaCl, 10mM Tris pH 7.5, and 5% glycerol) and sonicated (5 seconds on, 10 

seconds off, 10% amplitude for 20 minutes) using a Qsonica Q500 Sonicator. The sonicated 

lysate was centrifuged at 18,000 RCF for 40 minutes and the supernatant was purified on an 

ÄKTA Pure fast protein liquid chromatography (FPLC) system using a 5 mL GE Healthcare 

HisTrapFF nickel (Ni2+) affinity column. The column was first equilibrated with loading buffer (0.5 

M NaCl, 10 mM tris(hydroxymethyl)aminomethane (Tris) pH 7.5, 1 mM tris2-

carboxyethylphosphine (TCEP)). After sample application, the column was washed with loading 

buffer followed by a high salt buffer (1 M NaCl, 10 mM TRIS pH 7.5, 25 mM imidazole, 0.1 mM 

TCEP) and purified proteins were eluted with elution buffer (0.5 M NaCl, 10 mM Tris pH 7.5, 0.5 
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M imidazole, 0.1 mM TCEP). Eluted protein was dialyzed overnight in loading buffer. Purified 

protein was aliquoted and stored in 50% glycerol at -80˚C.  

 

ELISA for SARS-CoV-2 NTD, CTD and N-FL proteins 

Human serum samples were centrifuged at 15,000 RCF for 10 minutes. The top layer was 

harvested and heat inactivated at 55˚C for 30 minutes. Following heat inactivation, the serum was 

centrifuged at 21,000 RCF for 30 minutes at 4˚C and stored at -20˚C.  Briefly, 96-well microtiter 

plates (Nunc-Immuno™MicroWell™96 well solid plates, Fisher) were coated with 100 µL of 5 

µg/mL target protein in 1x Phosphate Buffered Saline (PBS) and incubated at 4˚C for 48 hours.  

Coated plates were washed three times with 250 µL of wash buffer (1x PBS with 0.5% Tween-

20) using a Thermo Fisher Wellwash™ Versa microplate washer. Plates were then blocked for 

four hours with 200 µL of blocking buffer (1x PBS, 0.5% Tween-20, 2% Bovine Serum Albumin 

(Millipore Sigma)). Human serum was diluted 1:1000 in blocking buffer, and 100 µL was added to 

each well and incubated for one hour at room temperature. Following another three washes, 

plates were incubated for one hour with 100 µL/well of 1 µg/mL horseradish peroxidase 

conjugated goat anti-human IgG antibody, F(ab′)2 (Chemicon) in blocking buffer prior to 

development with 3,3',5,5'-Tetramethylbenzidine (TMB) solution (Fisher). Development was 

quenched with 100 µl of 0.2 M sulfuric acid and absorbance was measured at 450 nm (Molecular 

Devices spectra max m3spec using SoftMax Pro v6.5.1 software). Each serum sample was 

analyzed in triplicate (n=3) and ELISAs were replicated for each protein (NTD, CTD, N-FL) on two 

separate days, yielding a total of six data points for each serum sample for each of the three 

proteins assayed. 

 

Anti-Spike Antibody Quantification by ELISA 

Anti-Spike IgG concentration in serum samples was determined utilizing an ELISA assay as 

described [37, 38].  In brief, 96-well plates (ThermoFisher Scientific #3855) were coated with 2 

µg/mL RBD antigen overnight.  Plates were washed and blocked for 2 hrs.  Diluted serum was 

transferred to the coated 96-well plate and incubated for 60 mins.  SIGMAFAST™ OPD (Sigma-

Aldrich #P9187) was prepared and 100µl added to each well for 10 mins.  3M HCL was used as 

a stop solution.  Absorbance (optical density, OD) was read at 490 nm (BioTek Synergy H1).  All 

samples dilutions were run in duplicate and reported as an average.  A four-parameter logistic 

regression of the multi-concentration standard curve was obtained using CR3022, a recombinant 

human anti-SARS-CoV-RBD IgG antibody, with a known affinity to the RBD of SARS-CoV-2 

(CR3022 antibody, Creative Biolabs #MRO-1214LC).  The standard curve was used to calculate 
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the anti-RBD IgG concentration (µg/ml) in serum samples.  A value >0.39µg/ml CR3022 was 

considered positive as described [38]. 

 

Anti-HLA Antibody Quantification 

The presence of HLA Class I and Class II antibodies was measured using the FlowPRA™ 

Screening assay (One Lambda, A Thermo Fisher Scientific Brand), following manufacturer’s 

recommendation. Each of the FlowPRA Class I and Class II assays consist of a pool of 30 different 

bead preparations, representing all common antigens as well as many rare HLA alleles. 

Participant serum was centrifuged to remove any aggregates and incubated with Class I and II 

beads to bind. Class I and Class II antibodies were screened simultaneously using flow cytometry 

(Cytoflex, Beckman Coulter). Histograms of participants’ sera were compared to the negative 

control and the positive population was gated to determine percent positivity. 

 

PAI-1 Quantification by ELISA 

To measure the plasma levels of human plasminogen activator inhibitor type-1 (PAI-1), we 

performed a sandwich ELISA method that detects free, latent, and complexed forms of PAI-1 

using a Human PAI-1 total antigen assay ELISA kit (Molecular Innovations, Catalog #: HPAIKT-

TOT). Following the manufacturer’s recommended protocol, plasma samples were diluted five to 

ten times in Tris-Buffered Saline (TBS) containing 3% BSA (w/v) before added into the microtiter 

plate wells containing the PAI-1 capture antibodies. After washing away the unbound fraction of 

plasma samples, the amount of PAI-1 captured in the wells was quantified after sequential 

binding, washing, incubation of primary antibody against PAI-1, incubation of the secondary 

antibody-HRP conjugate and development utilizing a TMB substrate. The optical density was 

measured at 450 nm on a plate reader. 

 

Phylogenetic Analysis 

Consensus sequences for all longitudinal samples from each participant were aligned using 

MAFFT v7.453 software and manually edited using MEGA v6.06. A Maximum Likelihood (ML) 

phylogeny with all consensus sequences were inferred with IQ-Tree v2.0.5 using its ModelFinder 

function before each analysis to estimate the nucleotide substitution model best-fitted for each 

dataset by means of Bayesian information criterion (BIC). We assessed the tree topology for each 

phylogeny both with the Shimodaira–Hasegawa approximate likelihood-ratio test (SH-aLRT) and 

with ultrafast bootstrap (UFboot) with 1000 replicates each. SARS-CoV-2 clades were assessed 

using Nextclade (clades.nextstrain.org) and Pango lineages were assigned to the consensus 
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sequences using pangolin software [39]. Nucleotide changes along the tree branches were 

identified by ML ancestral reconstruction using TreeTime v0.7.6. 

 

Viral Diversity Analysis 

All trimmed sequencing reads obtained were also used to reconstruct the SARS-CoV2 haplotypes 

for all SARS-CoV-2 genes following genome sequence MN908947.3 location in every sample 

with successful viral amplification. We used QuasiRecomb [40] to perform a probabilistic inference 

of the viral haplotypes per gene present in each viral population. After haplotype reconstruction, 

we discarded sequences with less than 1% frequency of the reads to avoid including sequencing 

errors and we calculated the pairwise genetic distance between every haplotype and the most 

predominant haplotype using DistanceCalculator in biopython 1.74. Following genetic distance 

calculation, values were weighted by haplotype frequency and a weighted average diversity value 

was obtained by the sum of all the values obtained per gene for every sample. To obtain the 

number of nonsynonymous substitutions per non-synonymous site (dN) and the number of 

synonymous substitutions per synonymous site (dS), we followed a similar approach 

using CodonSeq and cal_dn_ds with the NG86 method from biopython 1.74.  These values were 

weighted by the frequency of the haplotype and the difference dN-dS was calculated. The low 

levels of intra-host diversity in the collected SARS-CoV-2 isolates resulted in a high number of ‘0’ 

values that precluded the use of dN/dS ratios in this study, so dN-dS values were calculated 

instead. All calculations were performed using in-house scripts in python 3.8 (available upon 

request). 

 

Statistics and Modeling 

All statistical analyses and modeling were performed using R version 4.0.3. All simple correlations 

were performed using Spearman's rank correlation. Pairwise group comparisons were performed 

using Wilcoxon rank sum test followed by the Benjamini-Hochberg procedure to control the False 

Discovery Rate (FDR) for multiple comparisons. A FDR<0.05 was used as statistical significance 

cut-off. Initial modeling of outcome as a function of demographic predictor was performed by fitting 

a multinomial log-linear model using nnet package followed by chi-squared tests to examine the 

contributions of the individual factors. We included all demographic factors as well as the 

comorbidity score in the fitted model to examine which of these factors significantly contributed to 

the observed outcome. To cluster participants according to their N antibody levels, we used 

Principal Component Analysis (PCA) where we included all replicate values obtained for each of 

the three antibody types analyzed. The clustering of each study participant was subsequently 
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obtained by agglomerative hierarchical clustering on the PCA results. After building and initial 

hierarchical tree, the sum of within-cluster inertia was calculated for each partition. The selected 

partition was the one with the higher relative loss of inertia. Both PCA and agglomerative 

hierarchical clustering were performed using FactoMineR package and factoextra was used for 

visualization of the clustering results. Multinomial logistic models were performed only in datasets 

with complete cases using nnet package and stepwise model selection was performed by Akaike 

Information Criterion (AIC) both using forward inclusion and backward elimination of variables 

using MASS package. 

 

RESULTS 
 

Demographic and clinical characteristics of the cohort 

A total of 63 participants admitted to Northwestern Memorial Hospital with a positive COVID-19 

diagnostic test were enrolled in the study between March 27, 2020 and June 9, 2020 during the 

first wave of the pandemic in Chicago. Of these participants, 58 provided at least one 

nasopharyngeal swab and 32 provided at least one blood specimen (Figure 1A). Four 

participants ultimately had no samples collected while one participant declined nasopharyngeal 

swab collection; these participants were excluded from further analysis. The cohort skewed 

slightly male (36 male, 22 female), consistent with broader COVID-19 hospitalization trends [41] 

(Table 1 and Figure 1B). Age of the participants was roughly equivalent by sex with an average 

age of 63.6 years (S.D. = 15.2) among males and 62 years (S.D. = 18.2) among females (Table 
1 and Figure 1B). Additional demographic and clinical data are summarized in Table 1.  

 

Based on overall clinical course, we utilized NMEDW data (described above) to categorize 

participants into three hospital outcome groups: discharged without being admitted to the 

Intensive Care Unit (ICU) (n = 23); discharged after admission to the ICU for some period during 

their hospital stay (n = 29); and death due to COVID-19 related illness (n = 6). The time between 

symptom onset and hospital admission was not significantly different between different outcome 

groups (Figure 1C), though total length of stay was significantly higher for participants admitted 

to the ICU or who died (Figure 1C). The most frequent symptoms prior to admission were cough, 

shortness of breath, fever, fatigue and myalgia, each of which was reported by over 50% of 

participants (Figure 1D). Most participants had at least one underlying co-morbid condition with 

hypertension, renal disease, and cardiovascular disease being the most frequent (Figure 1E). 
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Overall, more males than females were admitted to the ICU (two-thirds of males and one-half of 

females, Table 2), consistent with reports from other hospital systems [42]. 

 

Between March and June of 2020, the standard of care and available treatments for COVID-19 

patients were changing rapidly, with some participants of this study concurrently enrolling in 

double-blinded clinical trials [43, 44]. For participants who were in clinical trials, treatment arm 

was not available to the study team to incorporate into this analysis. While a majority of 

participants of both sexes received supplemental oxygen (81.8% of females and 86.1% of males), 

no other treatment was prescribed to more than 25% of study participants (Table 2).  

 

Demographic associations with COVID-19 outcome 

Previous studies have identified several demographic characteristics that are associated with 

increased risk of severe COVID-19 and worse outcome, including sex (male), age (>65), race 

(Black or African American), ethnicity (Hispanic or Latino), body mass index (BMI >25), and the 

presence of underlying co-morbidities (>1) [45, 46]. To assess for correlations between these 

demographic parameters and outcome in our cohort, we constructed a logistic regression model 

with categorical outcome (non-ICU, ICU, or death) as our dependent variable and sex, age, race, 

ethnicity, BMI, and total number of reported co-morbidities as our independent variables (Figure 
2A). Sex (p-value = 0.0038; Figure 2B), age (p-value = 0.0004; Figure 2C), and BMI (p-value = 

0.0009; Figure 2D) were significantly associated with ICU admission, while race, ethnicity, and 

co-morbidities were not correlated with outcome group in this study. 

 

Associations between composite clinical scores and COVID-19 outcome 

Three composite measures of disease severity were calculated for each participant at admission 

and/or longitudinally over their entire hospital stay: the Epic Deterioration Index (DI) score [13], 

Modified Early Warning score (MEWS) [14] and the 4C Mortality score (4C) [11, 12]. The DI score 

is a proprietary severity score calculated daily by Epic software developed with the goal of 

identifying patients who are deteriorating and require more intensive intervention and/or care [47].  

It ranges from 0 to 100 with higher scores reflective of greater risk of adverse outcomes. Over the 

course of their hospital stay, the non-ICU group had consistently lower DI scores than the ICU 

and death groups, with most participants peaking at or below a score of 50 (Figure 3A). Although 

individuals who required ICU care tended to have higher DI scores at hospital admission (No ICU, 

median DI = 30.30; ICU, median DI = 39.55; COVID-related death, median DI = 45.75; 

Supplemental Figure 1A), they were not significantly different by pairwise comparison. Over 
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their first 10 days of hospitalization, however, participants requiring ICU care exhibited steep 

increases in DI score, suggestive of rapid deterioration (Figure 3B). After the first 10 days, 

participants who ultimately died saw slow, but steady increases in DI score while participants who 

recovered from the ICU saw a lowering of the DI score after a stochastic interval (Figure 3A and 

3B). Reflective of these trends, the median DI score over the participant’s entire hospital stay was 

significantly associated with each outcome group (Figure 3C). The minimum and maximum 

recorded DI score over the participant’s hospital stay was likewise significantly different between 

non-ICU and ICU participants, but not significantly different for ICU participants who recovered 

versus those who died (Supplemental Figure 1A). 

 

The Modified Early Warning score (MEWS) is a clinical severity score that compiles information 

on systolic blood pressure, heart rate, respiratory rate, temperature, and Alert Voice Pain 

Unresponsive (AVPU) Score to predict patient deterioration [48]. MEWS ranges from 0 to 14 with 

higher scores indicative of risk for more adverse outcomes. Over the course of their hospital stay, 

the non-ICU group tended to have lower MEWS scores than the ICU and death groups, though 

this difference was less pronounced than with the DI scores (Figure 3D). Indeed, while the median 

and maximum MEWS values reported over a participant’s hospital stay were significantly different 

between individuals that required ICU care and those that did not (Figure 3E, Supplemental 
Figure 1B), there were no significant differences in MEWS values between outcome groups at 

admission and no significant differences were detected between the ICU and death groups 

(Figure 3E, Supplemental Figure 1B).  

 

Finally, the 4C Mortality score was recently developed by the International Severe Acute 

Respiratory and Emerging Infection Consortium (ISARIC) [12] specifically for risk stratification of 

COVID-19 patients upon hospital admission. It includes a number of both demographic (sex, age, 

number of co-morbidities) and clinical (respiratory rate, peripheral oxygen saturation, urea levels, 

CRP, Glasgow Coma Scale) inputs that are used to generate a score between 0 and 21 with 

higher scores associated with higher risk of mortality [11]. In our cohort, we found that 4C mortality 

scores at admission were significantly higher for both the ICU and death outcome groups 

compared to the non-ICU group, though the 4C Mortality scores between the ICU and death 

groups were not significantly different (Figure 3F). 

 

Associations between clinical measures and COVID-19 outcome 
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A number of individual clinical measures and laboratory test results were collected from 

participants both at the time of admission as well as periodically over the duration of their hospital 

stay. These include blood cell counts (total white blood cells, lymphocytes, neutrophils, etc.), 

blood protein levels [C-reactive Protein (CRP), lactate dehydrogenase (LDH), D-dimer, ferritin, 

procalcitonin, etc.], and measures of oxygenation [fraction of inspired oxygen (FiO2) and oxygen 

saturation (SpO2)]. Non-ICU participants had a significantly lower maximum FiO2 (28.1+/-8.5%) 

and a higher minimum SpO2 (92.5+/-3.1%) at admission compared to participants who required 

ICU care (59.4+/-32.4% and 84.2 +/-12.7%, respectively) or who died (69.7+/-36.2% and 83.8+/-

11.0%, respectively) (Figure 4A). Furthermore, blood levels of LDH, a marker of tissue damage, 

were significantly higher in ICU participants (455.4+/-220.7 Units/L) compared to non-ICU 

participants (287.6+/-95.7 Units/L) at admission (Figure 4A, Figure 4B). No other laboratory test 

result or clinical measure taken at hospital admission was significantly associated with any 

outcome group. 

 

While LDH was the only clinical blood test result to show a significant association with participant 

outcome at admission, several factors were associated with outcome when considered over the 

entire hospital stay (Figure 4C). Most notably, increased neutrophil count over the course of 

hospitalization was significantly associated with worse outcomes. While non-ICU participants had 

relatively low neutrophil counts that slightly decreased over the course of hospitalization, ICU 

participants had higher median levels that persisted throughout their stay (Figure 4D). Among 

participants who died, we observed increasing neutrophil counts over the course of hospitalization 

(Figure 4D), consistent with prior reports [49, 50]. 

 

While these laboratory tests used in routine clinical care capture some cellular and molecular 

aspects of the immune response, they fail to capture the potential impact of the humoral response 

to infection. Both the ratio of anti-Spike to anti-Nucleocapsid antibodies and the increased 

presence of antibodies to the carboxy (C) terminus of Nucleocapsid have been previously 

suggested to correlate with COVID-19 outcome [51, 52].  To assess these patterns in our cohort, 

plasma collected from a subset of participants (Figure 1A) was analyzed for the presence of anti-

Spike IgG (Receptor binding domain, Figure 4E) and anti-Nucleocapsid IgG (N-terminal, C-

terminal, and full-length protein, Figure 4F) by enzyme linked immunosorbent assays (ELISAs). 

As expected, most participants developed an antibody response to both the SARS-CoV-2 Spike 

and Nucleocapsid protein within 10-20 days of symptom onset (Figure 4E, Figure 4F). Overall, 

the response to each antigen was highly correlated across participants (Supplemental Figure 
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2D). While some patient-to-patient variation was observed, there was no clear difference in either 

the timing or intensity of the response between any of the outcome groups. Indeed, comparing 

the levels of each antibody at the first blood draw, there was no significant difference observed 

between ICU and non-ICU participants in this cohort (Supplemental Figure 2C). 

 

While the antibody levels were highly correlated, there were some patient-specific differences, 

especially in the development of N-terminal versus C-terminal specific anti-Nucleocapsid 

antibodies. To better assess this, we performed principal component analysis (PCA) on the anti-

Nucleocapsid antibody data, which identified 5 independent clusters (Figure 4G, Supplemental 
Figure 2E). Cluster 1, 2, and 5 corresponded to specimens with consistently low, medium, and 

high levels of anti-Nucleocapsid antibodies (C-terminal, N-terminal, and full-length, Figure 4H). 

Cluster 3, however, consisted of three participants with high antibody levels to the Nucleocapsid 

C-terminus, but low antibody levels to the Nucleocapsid N-terminus, while Cluster 4 consisted of 

three participants with high antibody levels to the N-terminus, but low antibody levels to the C-

terminus (Figure 4H). Interestingly, levels of anti-Spike antibodies tracked more closely with the 

antibody levels against anti-Nucleocapsid C-terminus (higher in Cluster 3 and lower in Cluster 4, 

Figure 4H), though more specimens would be needed to verify this observation. Regardless, PCA 

cluster by serology did not significantly predict outcome (Supplemental Figure 2F), consistent 

with our prior analysis. Similarly, the presence of anti-HLA antibodies and plasma levels of PAI-1 

were measured, but neither were significantly associated with outcome (Supplemental Figure 
2A, Supplemental Figure 2B). 

 

Association of viral load with clinical measures and COVID-19 outcome 

While early reports suggested associations between viral load and disease severity in COVID-19, 

subsequent reports have found little to no association [53].  Using a validated quantitative PCR 

(qPCR) assay for SARS-CoV-2 (N1 primer set, CDC assay [31]), we determined cycle threshold 

(Ct) values as a proxy for viral load in each of the nasopharyngeal swabs longitudinally collected 

from the study participants (Figure 1A). All study participants had detectable viral loads upon 

enrollment and generally showed a reduction in virus levels (increase in Ct values) over their 

hospital stay (Figure 5A and Figure 5B). The timing of this reduction was not always uniform, 

with several ICU participants and several participants who would ultimately die showing transient 

increases in viral load even 2 weeks after hospitalization (Figure 5A). While Ct values measured 

at or within 10 days of admission showed no significant difference by outcome (Supplemental 
Figure S3A), Ct values were significantly lower in non-ICU participants compared to ICU 
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participants at or within 10 days of discharge (Figure 5C). Indeed, all non-ICU participants had 

detectable viral loads at or within 10 days of discharge while several ICU participants had at least 

one specimen with no detectable virus over the course of hospitalization (Figure 5A and Figure 
5B).  

 

Comparing Ct values in nasopharyngeal swabs with anti-Spike and anti-Nucleocapsid antibodies 

in time-matched patient plasma, there is a weak, but significant correlation with higher antibody 

titers correlated with higher Ct values. Antibodies targeting the Spike receptor-binding domain 

were the most highly correlated with Ct value (R = 0.5, p-value = 0.000065) while antibodies to 

the Nucleocapsid N-terminus were the least correlated (R = 0.28, p = 0.03) (Supplemental Figure 
S3B and Supplemental Figure S3C). Likewise, comparing Ct values with time-matched clinical 

laboratory test results identified several significant correlates (Figure 5D), including positive 

correlations with lymphocyte count, white cell count, and D-dimer levels, and negative correlations 

with aspartate aminotransferase (AST) and C-reactive protein (CRP) levels (Figure 5E). Notably, 

the factors most associated with disease severity (LDH level and neutrophil count, Figure 4C) 

were not significantly correlated with Ct values, while AST levels and lymphocyte counts were 

correlated with Ct values, but not disease severity.   

 

Analysis of viral genotype and intra-host diversity 

As SARS-CoV-2 continues to diversify across the globe, several variations associated with 

increased viral load, viral transmission, and/or disease severity have been identified [54, 55]. To 

determine if viral genotype was significantly associated with outcome in this cohort, we attempted 

whole genome sequencing of viral isolates in all available nasopharyngeal swabs. Of the 238 

swabs collected, 83 had adequate viral copies for sequencing (Ct value <30). Of these, 69 

specimens from 34 independent participants yielded SARS-CoV-2 sequence of sufficient quality 

to assemble near complete genomes (at least 90% coverage, minimum read depth of 10 reads). 

Phylogenetic analysis revealed these viruses belonged to four primary clades, consistent with the 

population structure of the epidemic in Chicago during the study: Nextstrain clades 19A (2 

sequences in 2 participants, representing Pango lineage A.3), 20A (13 sequences in 8 

participants, representing Pango lineages B.1, B.1.378, and B.1.416), 20B (3 sequences in 1 

participant, representing Pango lineage B.1.1.29), and 20C (51 sequences in 23 participants, 

representing Pango lineages B.1, B.1.162, B.1.521, B.1.313, B.1.422, and B.1.2) (Figure 6A).  

Longitudinal samples from the same participant clustered closely together, as expected, with 23 

participants yielding identical consensus sequences at each timepoint. 9 participants, however, 
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saw evidence of viral diversification with one or two mutations arising over time (Figure 6A). 

Clade membership was not significantly associated with any one outcome group (Figure 6B), nor 

did it correlate significantly with Ct value at the first sampled timepoint (Figure 6C).  

 

Given the appearance of mutations in the consensus sequence of some patient isolates over 

time, we investigated the degree of intra-host diversity in each participant at each timepoint. While 

the amount of intra-host diversity varied isolate to isolate, there was no clear trend either as a 

function of participant outcome or as a function of time since symptom onset (Figure 6D). On the 

contrary, the viral population diversity of any given isolate was roughly 0.0001 substitutions per 

base pair. Diversity did vary by open-reading frame (ORF), with a majority of sequences showing 

some diversity in nucleoprotein (N, n = 63), membrane (M, n = 57), and nsp12 (n = 49) sequences 

(Figure 6E). While nsp11 and ORF7b showed the highest number of substitutions per base pair, 

this was in fewer isolates (n = 9 and n = 7, respectively) and was largely driven by small ORF 

size.  

 

To determine if this diversity reflected any significant negative selection or positive selection, we 

calculated the difference in the number of nonsynonymous substitutions per nonsynonymous site 

(dN) and the number of synonymous substitutions per synonymous site (dS) (dN-dS). A bias in 

dN-dS towards synonymous mutations (negative value) is suggestive of negative selective 

pressure, while a bias in dN-dS towards nonsynonymous mutations (positive value) is suggestive 

of positive selective pressure [56, 57]. Overall, we find that dN-dS across the entire genome does 

not change notably by outcome or as a function of time since symptom onset (Figure 6F). dN-dS 

does vary as a function of ORF with the two most frequently changed ORFs (M and N), showing 

a significant bias towards synonymous mutations, suggestive of negative selective pressure 

operating at the intra-host level (Figure 6G). On the other hand, Nsp11 and the immune regulatory 

factors ORF3a/b and OR7a/b showed some bias towards a positive dN-dS, suggestive of positive 

selection, though this was not apparent in all participants (Figure 6G).  

 

Model of COVID-19 Outcome 

A multinomial logistic model with the three COVID-19 outcome groups as the outcome variable 

was constructed to assess the relative predictive value of each measured parameter at or near 

(within 10 days) the time of hospital admission. Based on the univariant analyses above, 

candidate predictors with p-value less than 0.1 were identified for multivariable assessment 

including: time since symptom onset, sex, age, BMI, LDH levels, lymphocyte count, CRP levels, 
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neutrophil count, white blood cell count, DI score, and N1 Ct value. SpO2 and FiO2 were excluded 

from these analyses as these parameters were used in part by clinical staff to dictate ICU 

admission during the course of the study. Only study participants with complete datasets for all 

measurements were included in the model (n = 34).  

 

Of all examined parameters, DI score at admission was by far the most significant predictor (p-

value <0.0001), yielding an accuracy rate of 0.88, even when considered independently from all 

other variables. Given that DI score is proprietary to the Epic medical record systems and only 

available in hospital settings that use that software, we reran the model excluding DI score. After 

fitting the initial model (Figure 7A), we performed a stepwise selection using both forward 

inclusion and backward elimination of the candidate predictors. After selection, only BMI, 

lymphocyte count, and neutrophil count were maintained in the final model, which had an 

accuracy rate of 0.82 in predicting all outcome groups (Figure 7A). A detailed analysis performed 

on the outcome predictor effect for each variable indicated that BMI and lymphocyte count were 

the primary drivers differentiating between ICU and non-ICU individuals, while neutrophil count 

enabled discrimination of COVID-related deaths (Figure 7B). Although the predictive capability 

of this model is limited due to small sample size, this model was able to correctly predict all 

COVID-19 related deaths included in the model dataset. Furthermore, it performed significantly 

better than a model using only the significantly associated demographic variables (age, sex, and 

BMI), which yielded an accuracy rate of only 0.62. 

 

DISCUSSION 
De novo prediction of a patient’s risk of severe COVID-19 and poor outcome remains imprecise, 

despite the identification of several independently associated factors, including: demographic 

factors, such as age and sex [1], clinical factors, such as BMI, known co-morbidities, and 

respiratory rate [9, 58], virological factors, such as viral load and viral genotype [53]; and 

serological factors, such as inflammatory markers, antibody responses, and autoimmune 

complications [59, 60]. A number of composite measures of patient deterioration have likewise 

been developed to assist with clinical management of disease, but no one measure is utilized 

consistently across disparate health systems [16]. Furthermore, few studies have directly 

compared and validated independent associations in the context of a single cohort. Here, we have 

assessed and compared a series of demographic, clinical, virological, and serological parameters 

for association with patient outcome in a single cohort of hospitalized COVID-19 participants in 

Chicago, Illinois during the first wave of the pandemic in early 2020.  
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A total of 58 participants were longitudinally sampled and compared between three hospital 

outcome groups: discharged without ICU care, discharged after some ICU care, and death due 

to COVID-19 related complications. As expected, and as reported by other studies, higher age, 

male sex, and higher body mass index (BMI) were associated with ICU admission. Neither race 

nor ethnicity were significantly associated with hospital outcomes in this cohort, though we would 

note that our study was limited to individuals admitted within a single system, negating some of 

the potential impacts due to disparities in access and quality of health care. We furthermore saw 

no significant impact of co-morbidities on outcome among already hospitalized participants, 

though the average number of co-morbidities was relatively high (roughly 3) in all outcome groups. 

Although this study did not include a non-hospitalized control group for comparison, it is possible 

that the number of co-morbidities may be a better predictor of requirement for hospitalization than 

outcome after hospitalization.   

 

Several longitudinally assessed measurements taken during routine clinical care were also found 

to be significantly associated with outcomes. As previously reported, neutrophil and white blood 

cell counts over the course of hospitalization were associated with the need for ICU care [50, 61, 

62].  Both longitudinally assessed composite measures of deterioration, MEWS and DI score, 

likewise reached significantly higher maximum and median levels in participants who spent time 

in the ICU. DI score, in particular, was starkly different between ICU and non-ICU participants, 

with the median DI score showing significant differences even between individuals in the ICU who 

would recover versus die. Modeling of these two groups showed almost identical behavior of the 

DI score over the first 10 days of hospitalization, after which time individuals who would eventually 

recover displayed a gradual decrease while those who died showed a gradual increase. This was 

one of the only measures in this study to show significant differences for death as an outcome, 

suggesting that tracking of not just daily, but cumulative measures of these deterioration indices 

may be useful for risk stratification. 

 

While these factors all correlated over the course of hospitalization, fewer measures were found 

to be predictive of outcome upon hospital admission. Of all the clinical laboratory tests examined, 

only LDH levels showed a significant association with ICU admission. LDH is a commonly used 

marker of tissue damage, suggesting these participants may have been experiencing more 

severe disease even at the time of hospitalization. Importantly, this is not a function of symptom 

duration prior to hospital presentation as there were no significant differences between outcome 
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groups in the time from symptom onset to the time of hospital admission. The 4C mortality score, 

which was originally developed to predict patient outcome at admission, likewise showed 

significant differences between non-ICU and ICU participants at hospital admission, though it was 

not significantly different between ICU participants who recovered and those who died. No 

parameter monitored at hospital admission was significantly associated with death in this cohort, 

emphasizing the importance of longitudinal monitoring and further study.  

 

Viral load was not associated with outcome group in this study, consistent with prior reports [63]. 

Indeed, non-ICU participants had significantly higher viral loads at the time of discharge compared 

to ICU participants, though this may simply be due to shorter hospital stays. Likewise, the 

significant correlates of outcome (LDH and neutrophil count) were not significantly associated 

with viral load. Taken together, these results suggest that inflammatory responses in response to 

infection and markers of lung damage are more important than baseline viral load to predict 

outcomes. Interestingly, viral load did correlate with other measured parameters in this study, 

including positively with AST levels and negatively with total lymphocyte count and antibody titer, 

none of which were associated with outcome. Examination of these competing markers in a larger 

cohort would be warranted to determine how such commonly performed lab tests could be 

repurposed to not only inform disease severity predictions, but also risk of transmission. In 

addition, these markers may be useful to look at in populations that received antiviral and/or anti-

inflammatory therapy for COVID-19 to define predictive biomarkers for selecting optimal therapy 

for individual patients.   

 

Most patients infected with SARS-CoV-2 elicit robust antibody responses to both the S and N 

proteins [64-66], though the significance of timing and strength of those responses to predicting 

clinical outcome remains unclear [52, 53, 67]. Here, we likewise observed that a majority of 

participants developed antibodies to both the N and S protein, usually within two weeks of 

symptom onset. These responses were not observed to differ by outcome group, though they 

were broadly correlated with viral load over time. We furthermore observed unique clusters of 

participants with differential antibody responses by antigen, most notably in response to different 

domains of the nucleocapsid protein. Previous reports have suggested that C-terminal fragments 

of N are highly immunogenic in more severely ill hospitalized patients as compared to non-

hospitalized controls [64, 68]. While this was not observed here, the study was limited to only 

hospitalized individuals. Interestingly, antibody responses to the Spike RBD were more closely 
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correlated with responses to the C-terminal domain of N, though this would need to be validated 

in larger cohort studies.  

 

Viral genotype in the cohort was broadly reflective of the epidemiological trends in the city of 

Chicago at the time of sample collection and showed no significant correlation with outcome group 

[69]. No significant associations between SARS-CoV-2 clade and viral load were detected either, 

though only two of the isolates were from clade 19A. These two isolates were the only ones to 

have Spike D614 as opposed to the D614G mutation, which had been previously shown to 

influence viral loads in patient upper airways [54, 55]. Both of these samples did have lower overall 

viral loads, but a larger cohort would be needed to assess significance. Sample collection was 

completed prior to the emergence of the now prevalent variants-of-concern, several of which have 

been associated with elevated viral loads, increased transmission, and potentially worse patient 

outcomes [18-25]. Overall viral genetic diversity in the population was lower earlier in the epidemic 

while this study was ongoing compared to diversity observed today among currently circulating 

variants. While this limited potential linkage of viral variation with phenotype here, it was also 

beneficial in removing one potential confounder when assessing correlation with other variables. 

Going forward, this cohort may prove valuable as an outgroup for more recent and future patient 

cohorts to determine the impact of emerging variants on disease severity and patient outcomes. 

 

Longitudinal monitoring of viral genotype revealed nine instances of intra-host evolution and the 

emergence of new, predominant mutations in the viral population. Most of these changes were 

rare mutations that are not detected globally at the consensus level indicating random or host-

specific adaptation events. However, one participant developed a mutation in the position 19 of 

the Spike protein (T19I) that, although uncommon (<0.5% of global sequences), is in the same 

position as the mutation T19R in the recently emerging Clade 21A. These mutations all occurred 

at later timepoints, though it is unclear if these were driven by humoral responses or arose due to 

random chance in the setting of ongoing viral replication in the host. Overall viral genetic diversity 

remained relatively constant throughout the course of hospitalization, even up to 45 days after 

admission, and did not vary significantly by outcome. Select ORFs, such as M and N, did show 

evidence of negative selection pressure as measured by dN-dS, though most ORFs showed little 

selection bias. The low variability observed, and the predominance of synonymous mutations 

within this variability, may be indicative of low intra-host selective pressure exerted by the immune 

system during the course of acute infection. Comparing the changes in viral genotype that arose 

in these participants with host-specific humoral and innate responses will be important to better 
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understand the factors that drive evolution of SARS-CoV-2, particularly in cases of prolonged 

hospitalization. This emphasizes the need for effective antivirals to suppress viral replication to 

avoid the evolution of immune evasive variants. This is particularly important in cases of 

prolonged replication as seen in immunocompromised patients [70]. 

 

Comparing outcome correlates head-to-head as predictors of disease outcome at hospital 

admission, the DI score was found to be the most predictive measure, accurately calling 88% of 

outcomes in a logistic model. Retrospective analysis of this measure as a predictor of COVID-19 

outcome in hospital systems that use this software needs to be performed across a larger and 

more diverse sample size to assess its value in risk management, though this is likely to be 

complicated by hospital systems that use this index in part to determine level of care. 

Unfortunately, the proprietary nature of the score prevents further dissection of the factors driving 

predictability. That being said, a multinomial logistic model including BMI, lymphocyte count at 

admission, and neutrophil count at admission was nearly as accurate, calling 82% of outcomes 

correctly in this cohort. Given that these values are more universally available across hospital 

systems, validation of this model in larger cohorts may lead to more broadly applicable risk 

stratification strategies. Notably, both models outperformed the demographics only model, which 

had an accuracy rate of 62%. 

 

Despite its strengths, this study has several limitations. This is a single center study and as such 

our population may be different from the general population. That said, during this phase of the 

pandemic, we were a tertiary referral hospital that continued to accept patients from both our 

usual catchment area but also referrals in from other hospitals around the Chicagoland area.  The 

study included the first wave of the pandemic and as such there was significant variability in the 

therapies that were given to the participants. That said, few of the participants received therapies 

that were subsequently found to be clinically beneficial. As such, the experience reflects the 

natural history of illness with general supportive measures. Nevertheless, continued exploration 

of the trends observed here in larger, multi-institutional cohorts is required. Lastly, the study did 

not include a non-hospitalized control group for comparison and utility of the identified markers to 

predict hospitalization or other outcomes cannot be assessed. 

 

In sum, this study found that the 4C mortality score and LDH levels at the time of admission were 

predictive of admission to the ICU and should be examined in larger cohorts for use in clinical risk 

management. Validation of a novel score based on BMI, lymphocyte count, and neutrophil count 
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on admission may yield a useful tool for predicting outcomes of hospitalized patients. While not 

assessed in this study, the role of these factors and others to predict optimal therapy selection 

are also needed. Continued exploration of these trends in larger cohort data will be essential to 

translate these findings into improved strategies for clinical care and risk stratification.  
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Figure 1 | Cohort Description and Longitudinal Sampling Strategy. A) A graphical 

representation of samples taken per study participant along the clinical time course of inpatient 

treatment for COVID-19 (n = 58 total participants). Participants are grouped by outcome: 

discharge with no ICU care required (blue, n = 23), discharge with come ICU care required 

(purple, n = 29), and COVID-related death (red, n = 6). Sample collection is bracketed by symptom 

onset (asterisk) and hospital discharge or death (diamond) with the dotted line representing the 

time of hospital admission. Nasopharyngeal swabs (closed circles), blood (open squares), or both 

(closed squares) were collected from each study participant as indicated. B) Age distribution of 

study participants by sex with median age depicted by the dotted line. C) Box plots comparing the 

time between symptom onset and hospital admission and the time between hospital admission 

and discharge or death by outcome (Wilcoxon rank sum test with Benjamini-Hochberg procedure 

to control False Discovery Rate (FDR) for multiple comparisons, n.s. = FDR >0.05, ** = FDR 

<0.005, **** = FDR <0.00005). D) Frequency of reported symptoms among study participants 

during hospitalization ranked by most frequently to least frequently reported (green = present, 

yellow = not present, gray = not assessed). E) Frequency of reported symptoms among study 

participants by sex (green = present, yellow = not present).  
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TABLE 1 | Summary of demographics and comorbidities of study participants. 
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TABLE 2 | Summary of treatments administered to study participants during 
hospitalization. 
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FIGURE 2 | Multinomial Logistic Regression Model of Participant Outcome by 
Demographic and Comorbidities. A) Distribution and statistical significance of study participant 

sex, age, race, ethnicity, body mass index (BMI), and comorbidity index towards predicting 

outcome as defined by never requiring ICU care, requiring some ICU care, or COVID-related 

death. Categorical variables are presented as count (percent) while continuous variables are 

represented as mean (standard deviation). Significant contributors to the logistic model (p-value 

< 0.05) are bolded. B)  Probability of each outcome determined by sex in the study cohort per the 

logistic model. C)  Probability of each outcome determined by age in the study cohort per the 

logistic model. The age of each study participant is indicated by a tick mark along the x-axis. D)  
Probability of each outcome determined by BMI in the study cohort per the logistic model. The 

BMI of each study participant is indicated by a tick mark along the x-axis. 
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FIGURE 3 | Analysis of correlations between clinical measures of disease severity and 
participant outcome. A) Plot of the Deterioration Index (DI) score for each study participant over 

the course of hospitalization, separated by participant outcome. B) Generalized additive model fit 

to the average DI score of hospitalized study participants over time separated by outcome. The 

correlation between average DI score and time during hospitalization is provided (R) alongside 

the p-value for each outcome group. C) Box plot comparing the median reported DI score for each 

participant grouped by outcome. D) Plot of the Modified Early Warning Score (MEWS) for each 

study participant over the course of hospitalization, separated by participant outcome. E) Box plot 

comparing the median reported MEWS for each participant grouped by outcome. F) Box plot 

comparing the 4C Mortality score measured at admission for each participant grouped by 

outcome. Significance between groups in all box plots was tested by Wilcoxon rank sum test with 

Benjamini-Hochberg procedure to control FDR for multiple comparisons; n.s. = FDR >0.05, * = 

FDR <0.05, ** = FDR <0.005, *** = FDR <0.0005, **** = FDR <0.00005. 
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SUPPLEMENTAL FIGURE 1 | Analysis of correlations between DI Score and MEWS with 
participant outcome at different times during hospitalization. Box plots comparing the A) 
Deterioration Index (DI) scores and B) Modified Early Warning Scores (MEWS) by participant 

outcome group including the first reported score (left), the maximal reported score (center), and 

the minimal reported score for each study participant (right). Significance between groups in all 

box plots was tested by Wilcoxon rank sum test with Benjamini-Hochberg procedure to control 

FDR for multiple comparisons; n.s. = FDR >0.05, * = FDR <0.05, ** = FDR <0.005, *** = FDR 

<0.0005, **** = FDR <0.00005. 
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FIGURE 4 | Analysis of correlations between clinical laboratory tests, serology, and 
participant outcome. A) Table summarizing the average value of each variable measured in 

routine clinical blood work taken at the time of hospital admission by outcome group. All 

continuous variables are reported as mean (standard deviation). Chi-square test of independence 

was used to assess differences among the outcome groups (p-values < 0.05 in bold). B) Box plot 

of lactate dehydrogenase (LDH) activity in the blood at admission by outcome group (Wilcoxon 

rank sum test with Benjamini-Hochberg procedure to control FDR for multiple comparisons, n.s. 

= FDR >0.05, * = FDR <0.05). C) Heat map of correlation among longitudinally reported blood 

work variables over the entire course of hospitalization alongside outcome group. Value of the 

correlation coefficient is colored blue to red from more negatively to more positively correlated, 

respectively. Lack of significant correlation using Spearman correlation (p-value >0.05) is 

indicated by an X. D) Scatterplot of neutrophil count in the blood (cells per microliter) by time since 

symptom onset. Dots are colored by outcome group (no ICU care in blue, some ICU care in 

purple, COVID-related death in red) with the linear regression fit shown as a solid line of the same 

color (Spearman correlation coefficient and p-value shown). E) Line graph of the concentration of 

IgG antibody (micrograms per milliliter) recognizing the receptor binding domain (RBD) of Spike 

as determined by ELISA per study participant relative to the time since symptom onset. Lines are 

colored by outcome group. F) Line graph of the Optical Density (OD) value reflective of the 

concentration of antibody recognizing the full-length (left), N-terminus (center), or C-terminus 

(right) of the Nucleocapsid (N) protein as determined by ELISA per study participant. Values are 

presented relative to time since symptom onset and lines are colored by outcome group. G) 
Principal component analysis (PCA) plot depicting study participant grouping by N antibody levels 

obtained by agglomerative hierarchical clustering. H) Box plots comparing the OD value reflective 

of the concentration of antibody recognizing the C-terminus (left), full-length (center), or N-

terminus (right) of the N protein as determined by ELISA per PCA grouping. The box plot on the 

far right depicts the concentration of IgG antibody recognizing Spike RBD in each specimen by 

PCA grouping.  
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SUPPLEMENTAL FIGURE 2 | Analysis of correlations between PAI-1 levels, anti-HLA 
antibody levels, serology, and participant outcome. A) Box plot of PAI-1 concentration 

(nanograms per milliliter) in the plasma of study participants at their first draw by outcome group 

(Wilcoxon rank sum test with Benjamini-Hochberg procedure to control FDR for multiple 

comparisons, n.s. = FDR >0.05). B) Dot plot depicting the presence or absence of antibodies 

against HLA Class I or Class II in the serum of study participants at their first draw by outcome 

group. C) Box plots comparing the OD value of antibody in patient plasma recognizing the full-

length (left), N-terminus (center), or C-terminus (right) of the Nucleocapsid (N) as determined by 

ELISA by outcome group at the time of the first blood draw. The box plot on the far right depicts 

the concentration of IgG antibody recognizing Spike RBD in each specimen by outcome group at 

the time of the first blood draw. Tests for significance were performed with the Wilcoxon rank sum 

test with Benjamini-Hochberg procedure to control FDR for multiple comparisons (n.s. = FDR 

>0.05). D) Heat map of Spearman correlation among antibodies recognizing Spike RBD, the C-

terminus of N, the N-terminus of N, and full-length N.  The value of the correlation coefficient is 

colored blue to red from more negatively to more positively correlated, respectively. E) Principal 

component analysis (PCA) plot depicting study participant grouping by N antibody levels, 

including vector contributions of each replicate of each variable. The clustering of each study 

participant obtained by agglomerative hierarchical clustering on the PCA results is depicted on 

the right. F) Dot plot depicting the PCA cluster of each study participant by outcome group. 
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FIGURE 5 | Analysis of correlations between viral load, clinical laboratory tests, and 
participant outcome. A) Plot of the quantitative PCR cycle threshold (Ct) values for SARS-CoV-

2 N1 in nasopharyngeal swabs from each study participant relative to hospitalization time, 

separated by participant outcome. Specimens that did not amplify were assigned a value at the 

limit-of-detection. B) Generalized additive model fit to the average Ct value of hospitalized study 

participants over time separated by outcome. The correlation between average DI score and time 

during hospitalization is provided (R) alongside the p-value for each outcome group. C) Box plot 

of SARS-CoV-2 N1 Ct values from the final nasopharyngeal swab collected from each participant 

within 10 days of hospital discharge or death grouped by outcome (Wilcoxon rank sum test with 

Benjamini-Hochberg procedure to control FDR for multiple comparisons; n.s. = FDR >0.05, * = 

FDR <0.05). D) Heat map of Spearman correlation among longitudinally reported blood work 

variables over the entire course of hospitalization alongside Ct value. Value of the correlation 

coefficient is colored blue to red from more negatively to more positively correlated, respectively. 

Lack of significant correlation (p-value >0.05) is indicated by an X. E) Scatterplot of lymphocyte 

count (cells per microliter, top), D-dimer levels (microgram per milliliter, middle), and C-reactive 

protein levels (milligrams per deciliter, bottom) in blood versus time-matched Ct value. Study 

participants are separated by outcome group (no ICU care in blue, some ICU care in purple, 

COVID-related death in red) with the linear regression fit shown as a solid line of the same color 

(Spearman correlation coefficient and p-value shown). 
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SUPPLEMENTAL FIGURE 3 | Analysis of correlations between viral load and serology data. 
A) Box plot of SARS-CoV-2 N1 cycle threshold (Ct) values from the first nasopharyngeal swab 

collected within 10 days of hospital admission for each participant grouped by outcome (Wilcoxon 

rank sum test with Benjamini-Hochberg procedure to control FDR for multiple comparisons; n.s. 

= FDR >0.05).  B) Scatter plot of the Optical Density (OD) value reflective of the concentration of 

antibody recognizing the full-length (left), N-terminus (center), or C-terminus (right) of the 

Nucleocapsid (N) protein in the blood as determined by ELISA versus time-matched SARS-CoV-

2 N1 Ct values from paired nasopharyngeal swabs. Study participants are colored by outcome 

group (no ICU care in blue, some ICU care in purple, COVID-related death in red) with the linear 

regression fit and error overlaid (Spearman correlation coefficient and p-value shown). C) 
Scatterplot of the concentration of IgG antibody (micrograms per milliliter) recognizing the 

receptor binding domain (RBD) of Spike as determined by ELISA versus time-matched SARS-

CoV-2 N1 Ct values from paired nasopharyngeal swabs. Study participants are colored by 

outcome group as above with the linear regression fit and error overlaid (Spearman correlation 

coefficient and p-value shown). 
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FIGURE 6 | Analysis of correlations between viral genotype, intra-host diversity, and 
participant outcome. A) Phylogenetic tree of SARS-CoV-2 whole genome sequences from each 

study participant and timepoint. Each branch is colored by corresponding viral clade and each 

branch tip is colored by study participant; tips are labeled chronologically from timepoint 1 (T1) 

onward ordered clockwise. Changes in consensus viral sequence observed are labeled by 

nucleotide and corresponding amino acid change, when applicable. B) Dot plot depicting the 

clade membership of the virus isolated from each study participant by outcome group. C) Box plot 

comparing the SARS-CoV-2 N1 cycle threshold (Ct) value at timepoint 1 for each participant 

separated by clade. Tests for significance were performed with the Wilcoxon rank sum test with 

Benjamini-Hochberg correction for multiple comparisons (all comparisons not significant, p-value 

>0.05). D) Plot of the observed intra-host diversity (substitutions per base pair) across the entire 

SARS-CoV-2 genome from each study participant relative to days since symptom onset and 

colored by participant outcome. Samples from the same participant over time are linked by lines. 

A loess curve fit to the average intra-host diversity observed over time is overlaid with error. E) 
Box plot of the intra-host diversity observed within each indicated open reading frame in each 

participant specimen. Dots are colored by study participant. The number of specimens in which 

no intra-host diversity was observed is indicated on the bottom (n/d).  F) Plot of the difference 

between the number of nonsynonymous substitutions per non-synonymous site (dN) and the 

number of synonymous substitutions per synonymous site (dS) observed across the SARS-CoV-

2 genome from each study participant relative to days since symptom onset and colored by 

participant outcome. Samples from the same participant over time are linked by lines. A loess 

curve fit to the average dN-dS observed over time is overlaid with error. G) Box plot of the dN-dS 

observed within each indicated open reading frame in each participant specimen. Dots are 

colored by study participant. 
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FIGURE 7 | Stepwise Regression Model of Participant Outcome by Admission Data. A) 

Initial and final stepwise model after Akaike information criterion (AIC) model selection. The 

distribution and statistical significance of study participant body mass index (BMI), blood 

lymphocyte count on admission, and blood neutrophil count on admission towards predicting 

outcome in the final model is depicted in the table. All continuous variables are represented as 

mean (standard deviation). B) Probability of each outcome determined by BMI, lymphocyte count 

at admission, and neutrophil count at admission in the final model. The BMI and cell counts of 

each included study participant are indicated by a tick mark along the x-axis. 


