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Abstract 

Emerging SARS-CoV-2 variants have shaped the second year of the COVID-19 pandemic and the public health 

discourse around effective control measures. Evaluating the public health threat posed by a new variant is 

essential for appropriately adapting response efforts when community transmission is detected. However, this 

assessment requires that a true comparison can be made between the new variant and its predecessors because 

factors other than the virus genotype may influence spread and transmission. In this study, we develop a 

framework that integrates genomic surveillance data to estimate the relative effective reproduction number (R t) 

of co-circulating lineages. We use Connecticut, a state in the northeastern United States in which the SARS-

CoV-2 variants B.1.1.7 and B.1.526 co-circulated in early 2021, as a case study for implementing this framework. 

We find that the Rt of B.1.1.7 was 6-10% larger than that of B.1.526 in Connecticut in the midst of a COVID-19 

vaccination campaign. To assess the generalizability of this framework, we apply it to genomic surveillance data 

from New York City and observe the same trend. Finally, we use discrete phylogeography to demonstrate that 

while both variants were introduced into Connecticut at comparable frequencies, clades that resulted from 

introductions of B.1.1.7 were larger than those resulting from B.1.526 introductions. Our framework, which uses 

open-source methods requiring minimal computational resources, may be used to monitor near real-time variant 

dynamics in a myriad of settings. 

 

Introduction 
The emergence of novel SARS-CoV-2 variants has shaped the second year of the COVID-19 pandemic1–3 and 

illustrated the role of genomic epidemiology in facilitating an appropriate, effective, and timely public health 
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response4. In particular, genomic epidemiology can determine the source and frequency of new variant 

introductions into a community, thus indicating where additional surveillance is needed. However, this 

assessment requires the prior establishment of a robust genomic surveillance system. Once community 

transmission is documented, the efficacy of control methods should be re-evaluated by assessing the public 

health risk posed by the variant in comparison to other variants in circulation. This second objective is particularly 

challenging because factors other than the virus genotype influence its transmission and spread5–7. Specifically, 

competition between virus lineages and local levels of immunity could impact the relative success of a new 

variant compared to its predecessors. Therefore, we should compare lineages that have emerged concurrently 

in the same human and virus population as the variant under scrutiny. For an accurate risk assessment of 

emerging variants, we must control for the epidemiological context. Instances in which these criteria are met are 

both rare and exceptionally informative. 

 

At the beginning of 2021 two variants of public health significance synchronously emerged in Connecticut, a 

United States (US) state with high rates of SARS-CoV-2 genomic surveillance. SARS-CoV-2 lineage B.1.526 

(designated as variant ‘iota’) was detected in New York in December 20208. Shortly thereafter, cases of B.1.1.7 

(‘alpha’), the variant first characterized in the United Kingdom, were identified in the northeastern US. Due to 

evidence collected in the United Kingdom that this variant was more transmissible than other lineages, B.1.1.7 

was expected to become dominant in the US by March9–11. Instead, B.1.526 co-circulated in New York with 

B.1.1.7 and may have slowed the decline of COVID-19 incidence in New York City12. Both variants were initially 

detected in Connecticut within the first two weeks of January 2021, likely introduced by infected travelers, and 

continued to co-circulate in the state for months10. 

 

In this study, we develop a framework to measure the relative transmissibility of B.1.1.7 and B.1.526 by 

combining epidemiological and genomic data collected in Connecticut between January and May 2021. We first 

measure the relative transmissibility of these variants by modeling their growth rates and time-varying effective 

reproduction numbers following their emergence. Both metrics indicate that B.1.1.7 was 6-10% more 

transmissible than B.1.526 when these variants circulated in the same population. Interestingly, these findings 

are consistent with the relationship we observed in New York City where B.1.526 was established before B.1.1.7. 

We next estimate the timing, number, and clade size following sustained introductions of each variant into 

Connecticut to determine whether the apparent fitness advantage we observed for B.1.1.7 could be attributed to 

a higher rate of introductions over our study period rather than higher fitness. We use discrete phylogeography 

to infer the source and number of introductions for each variant and find that both were introduced at comparable 

rates, but the size of clades precipitated by introductions of B.1.1.7 were on average larger than those formed 

from introductions of B.1.526. The concordance of our epidemiological and phylodynamic results indicate that 

B.1.1.7 had a fitness advantage over B.1.526 when potentially confounding factors were controlled. Through this 

case study, we demonstrate that our framework, which utilizes open-source computational methods, is a robust 

and useful tool for continually monitoring the dynamics of SARS-CoV-2 variants in near real time. 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 2, 2021. ; https://doi.org/10.1101/2021.07.01.21259859doi: medRxiv preprint 

https://paperpile.com/c/fWpne9/Uey3
https://paperpile.com/c/fWpne9/RMcg+vbmf+DyL0
https://paperpile.com/c/fWpne9/3SUh
https://paperpile.com/c/fWpne9/ajDU+yeBB+QK7E
https://paperpile.com/c/fWpne9/HHy4
https://paperpile.com/c/fWpne9/yeBB
https://doi.org/10.1101/2021.07.01.21259859
http://creativecommons.org/licenses/by-nc-nd/4.0/


Results 

Rapid rise in B.1.1.7 and B.1.526 prevalence in Connecticut and New York City.  

The rapid spread of SARS-CoV-2 lineages B.1.1.7 in the United Kingdom13 and B.1.526 (including sublineages 

B.1.526.1 and B.1.526.2) in New York City12,14 suggested that these variants have a competitive advantage over 

other SARS-CoV-2 lineages. Both variants are defined by key amino acid substitutions in the spike protein that 

may contribute to this advantage. We therefore hypothesized that B.1.1.7 and B.1.526 would compete for 

dominance in Connecticut soon after they emerged. To test this hypothesis, we measured the daily 

frequencies and growth rates of B.1.1.7 and B.1.526 in Connecticut and compared these patterns to those 

observed in New York City (Fig. 1). Our analysis revealed that B.1.1.7 and B.1.526 displaced nearly all other 

lineages circulating in both regions within three months of emergence. Moreover, the frequency of B.1.1.7 grew 

at a faster rate than B.1.526. 

 

Unlike the situation in New York City, which may be the origin of B.1.526, B.1.1.7 and B.1.526 emerged 

concurrently in Connecticut through infected travelers. Connecticut is a state in the northeast US, bordered by 

Rhode Island, Massachusetts, and New York (Fig. 1a, map). These states experienced synchronous waves of 

COVID-19 incidence throughout the pandemic (Fig. 1a, graphs). We first detected B.1.1.7 in Connecticut on 

January 6, 2021 (sample collection date) in New Haven County 10, and we detected the first B.1.526 soon after 

on January 14, 2021. 

 

As of early May 2021, B.1.526 contains two sublineages, and SARS-CoV-2 sequences belonging to this clade 

can be classified as either B.1.526, B.1.526.1, or B.1.526.2 (Supplementary Fig. 1). This clade has a poorly 

resolved phylogenetic relationship and the lineages have different patterns of three key amino acid substitutions 

in the spike gene: L452R, S477N, and E484K (Supplementary Fig. 1a)12,14–17. B.1.526 does not include the 

L452R substitution, but ~20% include S477N and ~75% include E484K3,18; B.1.526.1 only includes L452R; 

B.1.526.2 only includes S477N. The CDC classified B.1.526 and B.1.526.1 as ‘Variants of Interest’ (VOI), but 

did not include B.1.526.2 in this category15. Even with these ostensibly important molecular differences, all three 

lineages had similar epidemiological dynamics and co-circulated in Connecticut since February 2021 at relatively 

equal frequencies (Supplementary Fig. 1b). We therefore elected to analyze the dynamics of B.1.526, 

B.1.526.1, and B.1.526.2 collectively, which we hereafter refer to as B.1.526*. 

 

To compare the relative growth rates of B.1.1.7 and B.1.526* over time, we collected and sequenced 2,951 

whole SARS-CoV-2 genomes from Connecticut between November 30, 2020 and May 9, 2021 using an 

unbiased sampling approach. Specifically, we excluded genomes that were targeted for sequencing because of 

spike-gene target failure or any other anomaly. We assigned PANGO lineages to each genome19 and created a 

general lineage classification with three categories: ‘B.1.1.7’, ‘B.1.526*’, or ‘other’. The ‘other’ lineages primarily 

include B.1.2, B.1.517, B.1.575, and B.1.243, but they also include low frequencies of several ‘Variants of 

Concern’ (VOCs) and VOIs (Supplementary Table 1). We calculated a rolling 7-day average for each general 

lineage classification to mitigate the impact of daily reporting trends. 

 

In southern Connecticut, B.1.1.7 and B.1.526* collectively rose to above 50% prevalence by March 2021, but 

the relative prevalence of these variants differed across the region (Fig. 1c). Due to the close proximity of New 

Haven and Fairfield counties to New York City and the large volume of travelers between New York City and 

southern Connecticut, we hypothesized that the frequency patterns in Connecticut would reflect those observed 

in New York City. We therefore modeled the logistic growth of each variant across locations (Fig. 1d). While the 

growth rates of B.1.1.7 and B.1.526* were comparable and consistently higher than all other lineages (Fig. 1e), 

we observed heterogeneity in the relative growth of these variants. The estimated logistic growth rate of B.1.1.7 

was twice that of B.1.526* in New Haven County (B.1.1.7 = 0.042, B.1.526* = 0.021) and New York City (B.1.1.7 

= 0.035, B.1.526* = 0.016). The rate of B.1.1.7. growth was 1.37 times that of B.1.526* in Fairfield County (B.1.1.7 

= 0.037, B.1.526* = 0.028). These findings suggest that B.1.1.7 and B.1.526* had a competitive fitness 
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advantage over their predecessors, and, once established, B.1.1.7 may have spread more quickly than B.1.526*. 

This pattern was particularly noticeable in New York City, where B.1.526* emerged first but increased in 

frequency more slowly than B.1.1.7 (Fig. 1c). 

 
Figure 1: B.1.1.7 and B.1.526* dominated the circulating SARS-CoV-2 populations in Connecticut and 

New York City in early 2021. (a) Trends in COVID-19 incidence were consistent across northeastern states 

throughout the pandemic. (map) Connecticut (teal) is bordered by New York, Rhode Island, and Massachusetts. 

New York City is less than 50 miles from Fairfield County. Weekly COVID-19 incidence was tabulated according 

to the Johns Hopkins COVID-19 portal (https://github.com/CSSEGISandData/COVID-19). Shapefile source: 

United States Census Bureau. (b) New Haven County led the state in the percentage of COVID-19 cases 

sequenced between November 30, 2020 and May 9, 2021 (3.33%). During this period, 0.51% of COVID-19 

cases in New York City were sequenced. Genomes that were collected through targeted variant screening (e.g., 

spike-gene target failure) were excluded from this analysis. Shapefile source: the Connecticut Department of 

Energy & Environmental Protection (DEEP) Geographic Information Systems Open Data Website. (c) Together, 

B.1.1.7 and B.1.526* variants displaced nearly all other SARS-CoV-2 lineages in New Haven County (n = 2,086), 

Fairfield County (n = 612), and New York City (n = 4,528). The lineages of sequenced viruses were assigned 

using pangolin v.2.4.2. The lineages B.1.526, B.1.526.1, and B.1.526.2 were assigned to the general lineage 

category ‘B.1.526*’. We calculated a 7-day rolling average for the proportion of B.1.1.7, B.1526*, and ‘other’ 

SARS-CoV-2 lineages sequenced in our dataset. (d) Logistic regression of the growth rates per lineage using 

Rv.4.0.1. Line colors correspond to the legend in (c). (e) Slope of logistic growth shown in (d). Bar colors 

correspond to the legend in (c).   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 2, 2021. ; https://doi.org/10.1101/2021.07.01.21259859doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.01.21259859
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evidence that B.1.1.7 is more transmissible than B.1.526* 

The relative changes in frequency and growth rates reflected by our sequencing data indicated that B.1.1.7 and 

B.1.526* outcompeted other co-circulating SARS-CoV-2 lineages (Fig. 1). They also provided some evidence 

that the prevalence of B.1.1.7 increased at a faster rate than that of B.1.526* in three different populations. 

However, these observations did not account for COVID-19 incidence in each population. Over the duration of 

our study period, the weekly number of reported COVID-19 cases in Connecticut declined, peaking at 53 cases 

per 10,000 residents and falling to 9 cases per 10,000 residents with fluctuations in between. To more accurately 

measure the relative transmissibility of B.1.1.7 and B.1.526*, we combined the frequency estimates from our 

genomic data with daily reported COVID-19 cases and estimated the effective reproduction numbers (Rt), which 

quantifies the average number of secondary cases from a primary infection, for each variant (Fig. 2). In New 

Haven County, Connecticut, we found that B.1.1.7 was 6-10% more transmissible than B.1.526* (Fig. 2c). We 

obtained consistent albeit noisier results in New York City, providing further evidence that B.1.1.7 was more 

transmissible than B.1.526* (Fig. 2f). 

 

We estimated Rt for B.1.1.7 and B.1.526* by extrapolating the variant frequencies among sequenced cases to 

the total number of reported cases in New Haven County (Fig. 2a). We selected New Haven County because 

we sequenced a higher percentage of cases compared to other counties in Connecticut (Fig. 1b), providing us 

with better estimates. We assumed that the 7-day rolling average of B.1.1.7 and B.1.526* in our dataset was 

representative of the true prevalence of these variants in the population because these datasets were compiled 

using genomes collected from the same sources. Therefore, we assumed that any biases introduced through 

subsampling would be systematic across all lineages. However, we also calculated a Jeffreys interval for daily 

variant frequencies and used the 0.025 and 0.975 quantiles to compute R t and improve the robustness of our 

analysis (Supplementary Fig. 2). 

 

In New Haven County, our Rt estimates for B.1.1.7 and B.1.526* followed similar decreasing trajectories as 

COVID-19 vaccination rates increased, though B.1.1.7 consistently had a higher Rt (Fig 2b). The Rt for both 

B.1.1.7 and B.1.526* were above 1 between March 4, when our estimates began, and the end of April, when 

fully vaccinated rates reached ~25%. An Rt value above 1 indicates that on average an infected individual infects 

more than one additional person. The Rt estimates for ‘other’ lineages fell below 1 in early January. Notably, the 

Rt for B.1.526* decreased to below 1 about one week earlier than that for B.1.1.7 (Fig. 2b). To directly compare 

the transmissibility of B.1.1.7 and B.1.526*, we calculated the ratio of Rt for each lineage over time (Fig. 2c). 

Once our estimates stabilized at the end of March, the Rt of B.1.1.7 was consistently higher than that of B.1.526* 

(range: 1.057-1.10). These findings indicate that B.1.1.7 was approximately 6-10% more transmissible than 

B.1.526* when both variants circulated concurrently in the same population. The ratio of Rt estimates calculated 

using the lower and upper quantiles of our Jeffreys intervals also exhibited this pattern (Supplementary Fig. 2). 

We observed a similar relationship in New York City, though with larger fluctuations (range: 1.02-1.29). The 

consistency of these findings suggests that B.1.1.7 was more transmissible than B.1.526* even when B.1.526* 

emerged before B.1.1.7. 
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Figure 2: B.1.1.7 had a larger effective reproduction number (Rt) than B.1.526 during the COVID-19 

vaccination campaign. (a, d) Daily incidence and full vaccination rates (2 weeks post last dose) of B.1.1.7, 

B.1.526*, and other circulating lineages in New Haven County (a) and New York City (d). Daily cases were 

assigned to one of three lineage categories (‘B.1.1.7’, ‘B.1.526*’, and ‘other’) according to the 7-day rolling 

average of variant frequency among sequenced cases. ‘B.1.526*’ includes the sublineages B.1.526, B.1.526.1, 

and B.1.526.2. (b, e) Time-varying effective reproduction numbers (Rt) were calculated using the R package 

epiEstim. An Rt value above 1 indicates that an infected individual will, on average, infect more than 1 additional 

person. We assumed a serial interval of mean 5.2 days and standard deviation of 4 days for all lineages. We 

used a smoothing spline to smooth the daily Rt curves (line) with the package, stat in R v4.0.1. Non-smoothed 

estimates are shown as individual points. 0.025 and 0.975 quantiles are shown as dotted lines (c, f) Ratios of 

estimated Rt between March 4 and May 4, 2021 calculated using the splines shown in (b) and (e). 
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Association of B.1.1.7 introductions with larger phylogenetic clusters than B.1.526* introductions 

We next considered the possibility that the apparent increased transmissibility of B.1.1.7 compared to B.1.526* 

was due to the number and timing of the introductions of each variant into Connecticut. More frequent 

introductions of B.1.1.7 could artificially inflate our Rt estimates (Fig. 2). To assess this possibility, we used a 

Bayesian phylogeographic method to quantify the number, timing, and source of observed introductions of both 

variants into Connecticut (Fig. 3). We found that while B.1.1.7 was not introduced more often into the state than 

B.1.526*, rather the clusters resulting from each introduction were on average larger than those produced by 

B.1.526* introductions. These observations are in agreement with our epidemiological findings and further 

support the likelihood that B.1.1.7 spread more rapidly than B.1.526*. 

 

To begin our phylogeographic analysis, we combined our SARS-CoV-2 genomic data with randomly sampled 

publicly available B.1.1.7 and B.1.526* genomes (gisaid.org) from outside of Connecticut, New York, and New 

Jersey, normalizing by reported deaths per location (see Methods). We did this independently 5 times for each 

variant to account for any potential biases from the subsampling process (~17,000 and ~13,000 genomes for 

each B.1.1.7 and B.1.526* subsample, respectively; Supplementary Table 2), and constructed the ten, 

corresponding time-resolved trees with TreeTime20. We next performed discrete phylogeographic reconstruction 

over the time-resolved trees in BEAST21,22. We inferred the ancestral geographic states according to four discrete 

geographic categories: Connecticut, New York/New Jersey, domestic, and international. We chose to combine 

New York and New Jersey into one region because of the large volume of commuters and visitors who travel 

from northern New Jersey to New York City. 

 

Due to the notably different geographic distribution of these two variants (Fig. 3a,b), we expected the source of 

introductions for each to also differ. Because B.1.526* was first identified in New York and the majority of 

genomes from this variant family were sequenced in New York, we hypothesized New York would be the main 

source of B.1.526* introductions into Connecticut. B.1.1.7 spread widely in the United Kingdom and Europe, and 

the first case of B.1.1.7 in Connecticut was associated with international travel23, indicating that early introduction 

would likely come from international sources. We anticipated that international sources would drive the initial 

introductions of B.1.1.7 into Connecticut until this variant was established in the US. 

 

We found that the sources and size of B.1.1.7 and B.1.526* sustained introductions differed between variants 

and throughout the study period (Fig. 3c-e). We defined a sustained introduction as a transition from a location 

outside of Connecticut into Connecticut in which (1) the resulting clade contained at least 3 tips and (2) the 

posterior probability of the ancestral, outside-Connecticut node was at least 0.7. As we expected, New York/New 

Jersey was a main source of introductions of B.1.526* into Connecticut, accounting for all but one of the 40 

independent introductions (Fig. 3c-e). The sources of introductions of B.1.1.7 were heterogeneous, including 

international and domestic sources throughout the study period (Fig. 3c-e). The relatively limited role of New 

York/New Jersey in the spread of B.1.1.7 into Connecticut may be due to the lower prevalence of this variant in 

New York City for the majority of our study period (Fig. 1c). Our phylogeographic analysis also revealed that 

although B.1.1.7 was introduced slightly less frequently than B.1.526* (Fig. 3d), B.1.1.7 introductions led to 

larger clusters (Fig. 3e). These patterns were consistent across all five phylodynamic replicates and with our 

estimates of Rt suggesting that B.1.1.7 has a fitness advantage over B.1.526* (Supplementary Fig. 3, Fig. 2c). 
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Figure 3: B.1.1.7 was introduced into Connecticut at a similar frequency as B.1.526* but was associated 

with larger cluster sizes. (a, b) Discrete phylogeography of B.1.1.7 (a) and B.1.526* (b). Tips and nodes were 

assigned one of four possible locations: Connecticut, New York/New Jersey, domestic, and international. The 

phylogeographic analysis was performed in BEAST21 using a time-resolved tree as the fixed topology 22. 

Bootstrap values for each clade are shown at each ancestral node (right) and were obtained by constructing 

individual maximum likelihood trees with 1000 ultrafast bootstraps in IQTree24. Clades without a support value 

were part of polytomies. (c) We summed the number of sustained introductions for each variant by week. We 

defined sustained introductions as Connecticut-only clades containing at least 3 tips related by a non-

Connecticut ancestor with at least 0.7 posterior probability for the inferred location. Bar colors indicate the source 

of introduction. (d) There were more sustained introductions of B.1.526* than B.1.1.7 into Connecticut. (e) The 

size of B.1.1.7 clades in Connecticut was on average larger than B.1.526* clades in Connecticut. We calculated 

the log10 size of Connecticut clades shown in (a) and (b). The horizontal line denotes the median log cluster size. 
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Discussion 

In this study, we developed and implemented a novel framework that combines epidemiological and genomic 

data to quantify the relative fitness of SARS-CoV-2 variants of public health significance. This framework, which 

measures changes in frequencies and estimates the effective reproduction number for individual variants, can 

be used to monitor the epidemiological dynamics of variants. Our approach is more informative than the current 

practice of tracking variant prevalence because it accounts for both the change in lineage frequencies and the 

number of incident cases. We demonstrated the utility of our framework by applying it to the dynamics of B.1.1.7 

and B.1.526* in Connecticut. In doing so, we found that while both B.1.1.7 and B.1.526* likely had a fitness 

advantage over other lineages (Fig. 1), B.1.1.7 was 6-10% more transmissible than B.1.526* (Fig. 2). Notably, 

the transmissibility of B.1.1.7 decreased at a slower rate than that of B.1.526* as COVID-19 vaccination rates 

increased (Fig. 2). These conclusions were consistent with those of our phylogeographic analysis (Fig. 3), the 

typical albeit more computationally-intensive method for evaluating the dynamics of virus transmission and 

spread. 

 

Our framework facilitates the continual monitoring of SARS-CoV-2 variant epidemiology across different settings, 

which is critical for informing public health policy decisions that must be made with readily available data. We 

also used our framework to analyze the dynamics of B.1.1.7 and B.1.526* in New York City, where both variants 

also co-circulated. Our results were consistent with those from Connecticut (Fig. 2) but had some discrepancies 

with previous reports of relative growth rates in New York City. Specifically, West et al. reported that B.1.526 

with the spike E484K substitution was growing at a faster rate than B.1.1.7 in New York City between December 

2020 and March 202112. We also observed this rapid rise in B.1.526* prevalence during that time period (Fig. 

1d); however, we found that the growth rate of B.1.526* slowed shortly thereafter (Fig. 1d), and B.1.1.7 became 

the dominant circulating lineage in April (Fig. 1c). Moreover, we estimated that the effective reproduction number 

of B.1.1.7 was equal to or greater than that of B.1.526* by February (Fig. 2e), an early indicator of the eventual 

rise in B.1.1.7 prevalence a few months later. This second finding is particularly crucial because it illustrates that 

while variant frequencies at specific time points may not be indicative of variant fitness, the changes in these 

frequencies can reveal relative variant transmission dynamics when combined with daily incidence data. 

Therefore, our framework can be used to accurately compare the fitness of competing variants soon after they 

emerge. 

 

The epidemiological findings from our case study also have broader public health implications as new SARS-

CoV-2 variants continue to emerge worldwide. The sources of introductions of novel variants reflect their global 

distribution (Fig. 3a-c), which will likely change over time. This heterogeneity poses a serious obstacle to control 

and prevention efforts because it limits the efficacy of policies that target specific points of entry. For variants 

that are prevalent on multiple continents like B.1.1.7 and, more recently, B.1.617.2 (‘delta’), testing, contact 

tracing, and vaccination campaigns within communities will likely prove more efficient in limiting their spread than 

targeting a specific subset of travelers. Once local transmission of a new variant has been established, assessing 

the public health threat is both challenging and necessarily retrospective. However, a robust genomic 

surveillance infrastructure coupled with the application of our framework would enable the monitoring of variant 

epidemiology in close to real time. The phylodynamic methods we applied in this study can be run on a desktop 

computer in a few hours, making the collation of representative datasets the rate limiting step. Expanding 

genomic surveillance efforts would remove this barrier and promote a rapid and efficient response to outbreaks 

caused by new variants. 

 

There were some limitations to the epidemiological findings we have presented. First, we were not able to directly 

measure the secondary attack rates of individuals infected with B.1.1.7 or one of the B.1.526* sublineages. 

Collecting this information requires extensive contact tracing and sequencing of all secondary infections that are 

not available in Connecticut. Instead, we assumed that biases introduced by the method we employed in this 

study would be systematic across SARS-CoV-2 lineages so that estimates of the relative transmissibility of 
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B.1.1.7 and B.1.526* would be unaffected. Second, we used a small subset of publicly available SARS-CoV-2 

genomes for our phylodynamic analyses to make them computationally tractable. Incorporating a small 

proportion of available data into our analyses may have introduced biases, but by demonstrating the 

reproducibility of our findings with independent replicates (Supplemental Fig. 3), we substantially mitigated this 

issue. Finally, the scope of our study was limited to Connecticut and, in some cases, New York City, which may 

impinge upon the generalizability of our findings. However, our objective was to directly compare the fitness of 

B.1.1.7 and B.1.526*, and Connecticut is one of few locations with a robust genomic surveillance infrastructure 

where these variants emerged concurrently. 

 

Here, we present a framework that uses genomic data to estimate the effective reproduction number of individual 

virus lineages as a measure of relative transmission and fitness. In applying our framework to Connecticut, this 

study is the first to directly compare the fitness of B.1.1.7 and B.1.526* in a setting where they emerged 

concurrently. Moreover, our findings highlight that many factors influence a variant’s success including the timing 

of introduction, the existing virus population, host immunity, and advantageous amino acid substitutions. As new 

SARS-CoV-2 variants emerge, it will be critical to assess the magnitude of the role that each of these elements 

play in precipitating local outbreaks so that appropriate, effective, and immediate steps may be taken to control 

further SARS-CoV-2 transmission. 
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Methods 

Ethics 

Yale University 

The Institutional Review Board from the Yale University Human Research Protection Program determined that 

the RT-qPCR testing and sequencing of de-identified remnant COVID-19 clinical samples obtained from clinical 

partners conducted in this study is not research involving human subjects (IRB Protocol ID: 2000028599). 

 

Jackson Laboratory 

The Institutional Review Board of The Jackson Laboratory determined that use of de-identified residual 

COVID-19 clinical samples obtained from the Clinical Genomics Laboratory for RT-qPCR testing and 

sequencing for this study is not research involving human subjects (IRB Determination: 2020-NHSR-

021). 

New York State Department of Health, Wadsworth Center 

Residual portions of respiratory specimens from individuals who tested positive for SARS-CoV-2 by RT-PCR 

were obtained from the Wadsworth Center and partnering clinical laboratories. This work was approved by the 

New York State Department of Health Institutional Review Board, under study numbers 02-054 and 07-022. 

 

Reported COVID-19 case data 

We used daily reported cases compiled by the Johns Hopkins COVID-19 portal 

(https://github.com/CSSEGISandData/COVID-19). We summed the number of incident cases by week by state 

for Massachusetts, New York, Rhode Island, New Jersey, and Connecticut, and we aggregated incident cases 

by week by county for New Haven, Fairfield, and Westchester. We visualized these data using Prism v.9.0.2 

(plots) and Rv.1.2 (maps). For the latter, we obtained the shapefiles from the United States Census Bureau (east 

coast) and the Connecticut Department of Energy & Environmental Protection (DEEP) Geographic Information 

Systems Open Data Website (Connecticut). 

 

SARS-CoV-2 sequencing and consensus generation 

Yale University 

We received clinical samples from confirmed SARS-CoV-2 positive individuals from routine testing provided by 

Yale New Haven Hospital, Yale Pathology Laboratory, “Yale Campus Study”, Connecticut Department of Public 

Health, and Murphy Medical Associates. These samples were sent as either nasal swabs in viral transport media, 

raw saliva, or extracted and purified RNA. For the former two, we extracted RNA from 300µL of the original 

sample using the MagMAX viral/pathogen nucleic acid isolation kit, eluting in 75µl of elution buffer. We tested 

the extracted nucleic acid using our ‘variant of concern’ RT-qPCR assay to determine the SARS-CoV-2 viral 

RNA load 25. Samples with cycle thresholds <35 were prepared for sequencing using the Illumina COVIDSeq 

Test RUO version to synthesize cDNA, and generate and tagment amplicons. Amplicons were pooled and 

cleaned before quantification with Qubit High Sensitivity dsDNA kit. The resulting libraries were sequenced using 

a 2x100 or 2x150 approach on an Illumina NovaSeq at the Yale Center for Genomic Analysis. Each sample was 

given at least 1 million reads. Samples were typically processed in sets of 94 with negative controls incorporated 

during the RNA extraction, cDNA synthesis, and amplicon generation steps. 

 

Using BWA-MEM v.0.7.1526, we aligned reads to the Wuhan-Hu-1 reference genomes (GenBank MN908937.3). 

With iVar v1.2.127 and SAMtools28, we trimmed sequencing adaptors, masked primer sequences, and called 

bases by simple majority (>50% frequency) at each site to generate consensus genomes. An ambiguous ‘N’ was 

used when fewer than 10 reads were present at a site. In all cases, negative controls were analyzed and 

confirmed to consist of at least 95% Ns. We used pangolin v.2.4.229 to assign lineages19. 

 

Jackson Laboratory 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 2, 2021. ; https://doi.org/10.1101/2021.07.01.21259859doi: medRxiv preprint 

https://paperpile.com/c/fWpne9/e3LD
https://paperpile.com/c/fWpne9/NqKM
https://paperpile.com/c/fWpne9/IiLY
https://paperpile.com/c/fWpne9/6tB8
https://paperpile.com/c/fWpne9/kUXg
https://paperpile.com/c/fWpne9/6GV6
https://doi.org/10.1101/2021.07.01.21259859
http://creativecommons.org/licenses/by-nc-nd/4.0/


Clinical samples were received in The Jackson Laboratory Clinical Genomics Laboratory (CGL) as part of a 

statewide COVID-19 surveillance program, with the majority of samples representing asymptomatic screening 

of nursing home and assisted living facility residents and staff. Total nucleic acids were extracted from anterior 

nares swabs in viral transport media or saline (200µL) using the MagMAX Viral RNA Isolation kit (ThermoFisher) 

on a KingFisher Flex purification system. Samples were tested for the presence of SARS-CoV-2 RNA using the 

TaqPath COVID-19 Combo Kit (ThermoFisher). Samples with cycle thresholds ≤30 for the N gene target were 

prepared for sequencing using the Illumina COVIDSeq Test kit. Sequencing was performed on an Illumina 

NovaSeq or NextSeq in the CGL. Data analysis was performed using the DRAGEN COVID Lineage App in 

BaseSpace Sequence Hub. Sequences with >80% of bases with non-N basecalls and ≥1500-fold median 

coverage were considered successful and were submitted to GISAID. Lineages were assigned using pangolin 

v.2.4.229 and the most current version of the pangoLEARN assignment algorithm. 

 

New York State Department of Health, Wadsworth Center 

Respiratory swabs positive for SARS-CoV-2 were sent to the Wadsworth Center from collaborating clinical 

laboratories across New York State as part of an enhanced genomic surveillance program initiated by the New 

York State Department of Health in December 2020. Specimens were required to have a real-time cycle 

threshold value less than 30. Nucleic acid extraction was performed on a Roche MagNAPure 96 (Roche, 

Indianapolis, IN) and RNA was processed for whole genome sequencing with a modified ARTIC3 protocol 

(http://artic.network/ncov-2019) in the Applied Genomics Technology Core at the Wadsworth Center, as 

previously described 10. Lineage was determined by GISAID using pangolin software 29, updated June 7, 2021. 

Daily relative frequency of variants within New York City was determined based on sample collection date and 

patient residence within Bronx, Kings, New York, Queens, or Richmond counties. Any specimens that were 

sequenced as a result of pre-screening for specific mutations or clinical/epidemiological criteria were removed 

from the analysis. 

 

Percent of COVID-19 cases sequenced 

To calculate the percent of cases sequenced in each county, we tabulated the number of genomes collected 

from the state with available county-level data. Though this level of geographic resolution was only available for 

genomes sequenced by our laboratory and the Jackson Laboratory for Genomic Medicine, these two sources 

have generated the vast majority of genomes for the state of Connecticut. For New York City, NY, we used 

genomes generated by the Wadsworth Center. Using the case data described above, we summed the number 

of cases reported by each county between November 30, 2020 and May 9, 2021, and divided the total number 

of genomes generated for each county within the same timeframe by that sum. 

 

Frequency of SARS-CoV-2 variants among sequenced cases 

To assess the frequency of circulating lineages, we selected genomes that were sequenced through a non-

biased sampling approach. Specifically, we excluded genomes that were screened and sequenced through a 

targeted S-gene target failure surveillance system. As with the dataset we used to measure the percent of cases 

sequenced by county, these genomes were generated by our laboratory, Jackson Laboratory, and the 

Wadsworth Center. We organized these genomes into three categories using Pangolin v.2.4.229: B.1.1.7, 

B.1.1526*, and ‘other’. We then tabulated the number of genomes in each category by week and calculated the 

percent of the total number of genomes for that week. 

 

Distribution of SARS-CoV-2 variants among cases 

We obtained estimates of the distribution of cases attributed to each lineage category by multiplying the 

frequency of that category by the number of cases reported in the same week. In doing so, we assumed that the 

sequencing frequencies described above were representative of the virus population circulating in New Haven 

and Fairfield counties, and New York City (all counties). We also assumed that the number of reported cases for 

each county was representative of the true number of infections in that region.  
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To account for any uncertainty in our assumption that the sampling frequencies were representative of cases 

per county, we began by calculating p, a 7-day rolling average for the proportion of sequenced cases for each 

lineage category. This produced daily proportion estimates. To further account for any uncertainty, for each p, 

we calculated a Jeffreys interval, which is a Bayesian, equal-tailed interval of the form30: 

2.5 quantile: β(x + 0.5, n - x + 0.5)  

97.5 quantile: β(x + 0.5, n - x + 0.5) 

where β represents the beta distribution, x represents the 7-day rolling average of sequences of a specific 

lineage, and n represents the 7-day rolling average of sequences for all lineages. Our measure of interest, p, is 

calculated by x/n. The Jeffreys intervals were calculated using the package “DescTools” in R v4.0.1. 

 

Logistic regression 

We computed logistic growth models for each lineage category in each county using the frequency estimates 

described above. 

 

Effective reproduction number 

Using p, and the 0.025 and 0.975 quantiles from the Jeffreys interval, we multiplied these values by the number 

of reported cases per day. These three potential case counts were used to calculate the reproduction number 

(Rt), the mean number of secondary cases generated by a typical primary case at time t in a population, curves 

per lineage (Supplementary Fig. 2). Because there is no consensus in the literature as to the precise serial 

interval for each variant, we used an uncertain serial interval with mean of 5.2 days and standard deviation of 4 

days31–33. Through the uncertain serial interval, multiple distributions were explored where the mean was allowed 

to vary from 2.2 to 8.2 days, and the standard deviation varied from 2.5 to 5.5 days. From each of these R t 

distributions, we selected the mean Rt to represent a given lineage’s instantaneous effective reproductive 

number per day. Further, for the Rt distribution calculated from p, we also computed the 0.025 and 0.975 

quantiles (Supplementary Fig. 2). All of the Rt estimates were calculated using the “EpiEstim” package in R 

v4.0.1. Finally, we used a smoothing spline to smooth the daily Rt curves with the package “stat” in R v4.0.1.  

 

COVID-19 vaccination rates 

We obtained vaccination data for New York City from data.cdc.gov and for Connecticut from data.ct.gov 

(COVID-19 Vaccinations by Town and Age Group). 

 

SARS-CoV-2 genome selection for phylogenetic analysis 

We downsampled both B.1.1.7 and B.1.526* datasets using COVID-19 death counts. We elected to normalize 

genome counts to the number of deaths because deaths are less likely to be under-reported than cases34. We 

obtained daily death counts for all countries and US states from the Johns Hopkins COVID-19 portal 

(https://github.com/CSSEGISandData/COVID-19). We summed the cumulative number of deaths for each state 

or country between October 1, 2020 and April 23, 2021 because we assumed that deaths could not be attributed 

to either variant before October 1. Because country-level death data were not reported for countries within the 

UK, we calculated the total number of genomes to sample from the UK with the method described above, and 

then calculated the distribution of genomes by UK country based on population size. To calculate the number of 

genomes we would include in our final datasets from each region, we first calculated the ratio of variant genomes 

to deaths. In doing so, we assumed that the number of variant genomes sequenced by each country or state 

was proportional to the total number of genomes sequenced in those places. 

 

For non-US sampling, if the number of variant genomes sequenced comprised less than 1% of cumulative 

deaths, we included all of the genomes from that location. Otherwise, we selected the number of genomes that 

corresponded to 1% of reported cumulative deaths. We used a similar approach for US states except we set the 

minimum threshold to 0.1% of cumulative deaths. In all cases, if a country or state had less than 20 genomes 
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available, we included all of them. For the B.1.526* lineages, we calculated the proportion of each lineage out of 

the total number of B.1.526* genomes sequenced in each country or state and selected genomes according to 

this proportion. 

 

We did not downsample Connecticut, New York, or New Jersey for either variant dataset in the first stage of 

downsampling. Once functional duplicates were removed from these locations, we included 1,408 genomes 

sequenced by Yale (Connecticut), 497 sequenced by Jackson Laboratory (Connecticut), and 803 sequenced by 

the Wadsworth Center (New York City) collected between December 1, 2020 and Apri l 23, 2021. We obtained 

all other genomes for this analysis from GISAID (gisaid.org) (Supplementary Table 2, 3). We also applied a 

modified sampling scheme for B.1.1.7 genomes from Australia, New Zealand, Sint Maarten, Bonaire, Vietnam, 

or Singapore because these locations reported a negligible number of deaths. For this reason, it was impossible 

to downsample based on the number of reported deaths. We therefore randomly selected 1% of available 

genomes from those locations instead. To select the genomes to incorporate into our dataset from the 

downsampled locations, we randomly selected a weekly set of genomes equal to 1% of deaths per week. Using 

this workflow, we generated five datasets for each variant to serve as independent replicates for the remainder 

of our analysis (Table 1). In all cases, we excluded genomes containing more than 30% Ns from our selection. 

Due to the broader global distribution of B.1.1.7, the datasets for this variant were necessarily larger than those 

for B.1.526*. 

 

At that stage, the datasets were still too large to be computationally tractable. We next scaled each dataset by a 

factor of 0.1 by randomly selecting 10% of genomes by country or state (US only). We did not scale genomes 

from Connecticut so that the final datasets were not precisely one tenth the size of the original (Supplementary 

Table 2). 

 

SARS-CoV-2 phylogenetic analysis 

Sequence alignment and refinement 

Having compiled our ten datasets, we aligned the genomes using MAFFT35. We then removed gaps and masked 

problematic sites36. We then removed functional duplicates from each dataset to reduce phylogenetic 

redundancy. We defined a functional duplicate as genomes that shared identical sequences, week of collection, 

and geographic region. For genomes collected in Connecticut and New York, we defined the geographic region 

as the county. For genomes collected elsewhere in the US, we defined it as ‘state’. For genomes collected 

internationally, we defined the geographic region as ‘country’. 

 

Maximum likelihood construction 

To identify and remove problematic genomes from our datasets, we performed a preliminary phylogenetic 

analysis in IQTree24. Each tree was rooted using a P.1 genome (hCoV-19/Brazi/AM-FIOCRUZ-

20842882CA/2020). We performed a root-to-tip analysis in TempEST37 and removed outliers with residuals > 

|0.0015|. We constructed a maximum likelihood tree with each dataset (n = 10) using a GTR substitution model 

with 1000 ultrafast bootstraps again with IQTree. 

 

Time-resolved construction 

To avoid computational bottlenecks in our phylogeographic reconstruction, we did not use a Bayesian method 

to infer the temporal resolution of our maximum likelihood tree. We have previously shown that temporal 

estimates inferred using TreeTime agree with those inferred from BEAST for B.1.1.710, and we assumed this 

would also be the case for B.1.526*. We used the bootstrapped trees and associated alignments to construct 

corresponding time-resolved phylogenetic trees with TreeTime v.0.8.020. This method is implemented in an augur 

pipeline38.  
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Discrete phylogeographic analysis 

We performed a discrete phylogeographic analysis with the time-resolved trees as the fixed topology using 

BEAST21,22. Specifically, we assigned a location to each of the tree tips from four categories: ‘Connecticut’, ‘New 

York/New Jersey’, ‘domestic’, and ‘international’. We used an asymmetric substitution model and a strict clock 

to model location. We ran each tree for 1 million chains and used Tracer v.1.7.1 to confirm that all parameters 

had achieved ESS values of at least 200. 

 

We identified Connecticut-only clades and their source of introduction using the “exploded tree” script 

implemented with baltic 0.1.6 (https://github.com/evogytis/baltic). We restricted our subsequent analysis to 

clades that represented sustained introductions, or clades that were composed of at least 3 tips that were related 

by a non-Connecticut ancestor with at least 0.7 posterior probability for the inferred location. We aggregated the 

number of sustained introductions by week and source, and visualized the results using Prism v.9.0.2. We 

merged the bootstrap values from our original trees with the topology of our geographically-resolved trees using 

baltic. 
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