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Abstract:  25 

Integrative analysis that combines genome-wide association data with expression quantitative trait 26 
analysis and network representation may illuminate causal relationships between genes and 27 
diseases. To identify causal lipid genes, we utilized genotype, gene expression, protein-protein 28 
interaction networks, and phenotype data from 5,257 Framingham Heart Study participants and 29 
performed Mendelian randomization to investigate possible mechanistic explanations for observed 30 
associations. We selected three putatively causal candidate genes (ABCA6, ALDH2, and SIDT2) 31 
for lipid traits (LDL cholesterol, HDL cholesterol and triglycerides) in humans and conducted 32 
mouse knockout studies for each gene to confirm its causal effect on the corresponding lipid trait. 33 
We conducted the RNA-seq from mouse livers to explore transcriptome-wide alterations after 34 
knocking out the target genes. Our work builds upon a lipid-related gene network and expands 35 
upon it by including protein-protein interactions. These resources, along with the innovative 36 
combination of emerging analytical techniques, provide a groundwork upon which future studies 37 
can be designed to more fully understand genetic contributions to cardiovascular diseases. 38 
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Introduction 61 

Cardiovascular disease (CVD) remains the leading cause of death worldwide1. A key goal of CVD 62 
research is the identification of specific genes and genetic variants that contribute to the disease2. 63 
Genome-wide association studies (GWAS) have revealed numerous inherited DNA sequence 64 
variants associated with CVD and its risk factors3-5. For many known CVD-associated variants, 65 
however, the biological mechanisms and underlying causal genes remain largely unknown. The 66 
overwhelming majority of CVD-related genetic variants lie within intergenic or noncoding regions 67 
of the genome 3, indicating that these single nucleotide polymorphisms (SNPs) impact CVD risk 68 
indirectly, for example, by altering transcription levels of nearby (cis) or remote (trans) genes. The 69 
identification of genetic variants that alter gene expression – expression quantitative trait loci 70 
(eQTLs) – has paved the way for functional studies linking candidate genes to disease6.  71 

    We postulated a priori that a network approach could portray biological systems underlying 72 
CVD traits and provide insights into disease-related genes and pathways. Network-based 73 
approaches have many biological and clinical applications and have yielded promising results in 74 
recent studies7, 8. Not only do networks allow for the integration of different types of biological 75 
information, but they also allow for unbiased discovery of disease genes that, when integrated with 76 
protein-protein interactions (PPI), can provide mechanistic explanations for diseases9. In a 77 
previous study, we linked 21 CVD traits based on their shared SNP associations, and in doing so, 78 
recapitulated the clustering of metabolic risk factors observed in epidemiological studies 10. Here, 79 
we expand that network model to identify causal genes and pathways for lipid traits and tested 80 
three genes for causality.  81 

    By integrating high-quality PPI data11 with SNPs associated in GWAS of lipids, gene 82 
expression, and fasting blood lipid levels in 5,257 Framingham Heart Study (FHS) participants 83 
(Supplementary table 1), we selected ABCA6, ALDH2, and SIDT2 as candidate causal genes for 84 
lipid traits (low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, 85 
and triglycerides (TG)). Dysregulation of circulating lipid levels has been implicated in the 86 
pathogenesis of CVD12.  To confirm that the candidate genes identified from the network model 87 
are causal for the corresponding lipid traits, we created mouse knockout (KO) models to assess, in 88 
vivo, the consequences of perturbing key genes as well as the networks in which they function. 89 
The mouse KO models were therefore phenotyped for the corresponding lipid traits and 90 
additionally liver gene expression was measured by RNA-Seq to study perturbations within the 91 
network (Figure 1).  92 

    We posit that creating a network based on the relationships among genes, traits, and PPIs can 93 
further our understanding of the genetic basis of lipid traits and their contributions to lipid 94 
dysregulation. By combining human genotype data with mouse KO experiments, we also provide 95 
a framework for selecting and validating lipid-related candidate genes.  96 

Results  97 

Identifying lipid trait-related expression quantitative loci  98 

We identified 4670 (84%) lipid trait-associated expression quantitative loci (eQTLs; SNPs 99 
association with gene expression) by linking 5568 lipid trait GWAS SNPs (Supplementary Table 100 
2) that were also associated with gene expression in whole blood in 5,257 Framingham 101 
participants13 (Supplementary Table 3). Seventy-two percent of these eQTLs affected the 102 
expression of a nearby (cis) transcript (SNP located within 1 Mb of the transcript), suggesting that 103 
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they may play a role in regulating gene expression. For these eQTLs, we conducted mediation 104 
testing to detect if the association of the GWAS SNP with the corresponding trait was mediated 105 
by gene expression. At P<0.005, we identified 464 SNPs with significant mediation effects on 106 
lipids traits (Supplementary Table 4).  107 

Expanding the candidate gene network 108 

To expand the candidate gene network, we built a CVD gene network by incorporating all protein 109 
coding genes containing CVD GWAS SNPs. Our CVD-centric network contained binary PPIs for 110 
846 CVD-associated proteins (out of ~1,300 tested) extracted from a dataset of ~58,000 binary 111 
PPIs among 10,690 human proteins obtained from both systematic binary mapping and literature 112 
curations14. The 846 CVD-associated proteins and their first-degree neighbors constituted a 113 
network of ~8,600 interactions among 4,336 proteins (Supplementary Table 5), including 444 114 
intra-CVD PPIs among 349 lipids-associated proteins (Supplementary Table 6). This expanded 115 
network is amenable to investigating disease models by analyzing other features such as shared 116 
gene ontology (GO) terms, shared expression profiles, and functional similarity.  117 

Ranking candidate genes 118 

Combining GWAS lipid trait SNPs, eQTLs, and mediation results, we selected seven candidate 119 
genes to test against three lipid traits in Mendelian randomization (MR) analyses: DOCK7, 120 
TAGLN, SIDT2, ALDH2, SLC44A4, ABCA6, and ATG4C (See Methods for gene selection). We 121 
used genetic variants (focusing on those that are eQTLs variants) as instruments to investigate the 122 
causal relations between gene expression and lipid phenotypes. The causal effects of the seven 123 
genes were further tested by MR using independent GWAS data from the Global Lipids Genetics 124 
Consortium (GLGL)15 (Table 1) and filtered based on 1) gene novelty (not previously studied in a 125 
mouse model for cardiovascular phenotypes), 2) repository availability of knockout sperm or 126 
embryos that have been shown to produce viable animals, and 3) interaction with CVD-related 127 
proteins in an integrated network based on PPIs. This approach identified three genes as suitable 128 
for detailed mouse KO experiments: ABCA6 for non-HDL, ALDH2 for HDL, and SIDT2 for TG 129 
(Table 2). Though ABCA6 was not found to be causally associated with lipids traits by MR. 130 
rs740516, a variant in ABCA6, was significantly associated with LDL in GWAS (P=7x10-9) and 131 
was associated with expression of ABCA6 (P=3.3x10-5).  SIDT2 has been previously studied in 132 
relation to lipid metabolism and homeostasis, our finding is one of the first to utilize an integrative 133 
genomics framework to better understand the genetic basis of its effect on lipid traits16, 17. The 134 
effects of these genes on secondary lipid traits (ABCA6 on HDL and TG, ALDH2 on non-HDL and 135 
TG, SIDT2 on HDL and non-HDL) are also summarized.  136 

ABCA6, ALDH2, SIDT2, and the corresponding mouse knockout models 137 

ABCA6 Knockout 138 

The protein ABCA6, encoded by ABCA6, is a member of the superfamily of ATP-binding cassette 139 
(ABC) transporters. ABC proteins transport various substrates, including lipids, peptides, 140 
vitamins, and ions18, across extra- and intracellular membranes. ABCA6 is expressed exclusively 141 
in multicellular eukaryotes and has been suspected of acting as an intracellular transporter in 142 
macrophage lipid homeostasis19. 143 

Comparing total cholesterol and non-HDL cholesterol levels (which are primarily comprised of 144 
LDL cholesterol) between C57BL/6N-Abca6tm2a(KOMP)Wtsi/TcpRkorJ mice (Abca6 knockout) and 145 
WT C57BL/6N mice, we observed a significant increase in total cholesterol in males on the chow 146 
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diet at 22 weeks of age and in males on the high-fat diet at both 18 and 22 weeks of age (Figure 147 
2). A similar trend was identified in females. 148 

In addition, knockout of ABCA6 led to a significant increase in HDL cholesterol in male mice 149 
on the chow diet but not on a high-fat diet with a similar but nonsignificant trend observed in 150 
females. This finding is supported by previous studies that have shown that ABCA6 is involved in 151 
reverse cholesterol transport, specifically by facilitating phospholipid and cholesterol export from 152 
the cell19, 20. There were no significant differences in TG levels in the female mice on both chow 153 
and high-fat diet, but the male Abca6-/- mice had lower TG levels on the chow diet.  154 

ALDH2 Knockout 155 

ALDH2 encodes aldehyde dehydrogenase, the second enzyme of the major oxidative pathway of 156 
alcohol metabolism. This gene encodes a mitochondrial isoform, which has a high affinity for 157 
acetaldehydes and is localized in the mitochondrial matrix. Deficiencies in ALDH2 have been 158 
shown to be correlated with differences in lipid levels due to its role in the metabolism of lipid-159 
peroxidation-derived aldehydes 21. 160 

ALDH2 was causally related to all three lipids in MR (Table 1). In addition, SNPs in ALDH2 161 
were significantly associated with HDL and LDL in GWAS and gene expression in FHS 162 
(Supplementary Table 3).  Comparing HDL cholesterol levels between B6Dnk;B6N-163 
Aldh2tm1a(EUCOMM)Wtsi/IegRkorJ mice (Aldh2 knockout) and WT C57BL/6N mice, we found 164 
significantly increased HDL cholesterol levels in both female and male Aldh2 KO mice at several 165 
time points compared to controls when fed the chow diet (Figure 3). On a high-fat diet, we no 166 
longer observed a difference in males, but there was a significant difference in females at 18 weeks 167 
of age.  168 

Except for a few specific time points, there were no differences in non-HDL levels for either 169 
diet in males or females. There were no differences in TG levels in the female mice, but in the 170 
male mice we observed increased TG levels in the KO animals on a high-fat diet. This suggests 171 
that the knockout of Aldh2 in males might lead to a decreased risk of CVD on the chow diet, but 172 
an increased risk on the high-fat diet. 173 

SIDT2 Knockout 174 

SIDT2 is a transmembrane protein that predominantly localizes on lysosomes but is also detectable 175 
in the plasma membrane of human embryonic kidney cells. Overexpression of SIDT2 in some 176 
cells is accompanied by a significant reduction of detectable lysosomes, indicating that the 177 
overexpressed protein leads to lysosomal dysfunction. Lysosomes are thought to be the major 178 
intracellular compartment for the degradation of macromolecules and play an important role in 179 
regulating lipid degradation pathways22, 23. Previous SIDT2-knockout experimentation has shown 180 
that SIDT2 plays a major role in regulating lipid autophagy and metabolism and cholesterol and 181 
triglyceride transport in mammalian cells, particularly in the liver16, 17. 182 

SIDT2 was significant in MR test for all three lipids traits. SNPs in SIDT2 were significantly 183 
associated with LDL in GWAS and gene expression in FHS (Supplementary Table 3). We 184 
identified SIDT2 in our human cohort to be associated primarily with triglycerides and therefore 185 
compared TG levels between B6;129S5-Sidt2tm1Lex/MmucdRkorJ mice (Sidt2 knockout) and WT 186 
control littermates. We observed a significant increase in TG levels in the female mice on the chow 187 
diet at 18 and 22 weeks of age (Figure 4). Male TG levels were only increased at 8 weeks of age. 188 
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In addition, HDL cholesterol levels were significantly decreased in male and female KO mice 189 
on the high-fat diet. On a chow diet, HDL cholesterol levels appeared to decrease even further in 190 
male mice. HDL cholesterol levels, however, increased slightly in females. Female non-HDL 191 
cholesterol levels did not change on the chow diet; in the early stages there was a large decrease 192 
in non-HDL cholesterol on the high-fat diet that ultimately dissipated. Male non-HDL cholesterol 193 
levels did not change on the high-fat diet and significantly increased on a chow diet.  194 

Expression changes after gene knock out   195 

To explore transcriptome-wide alterations resulting from knocking out the target genes, we 196 
conducted RNA-Seq for ALDH2 and ABCA6 in three male and three female knockout animals and 197 
three male and three female control littermates for each of the two diets. We didn’t conduct the 198 
RNA-Seq for SIDT2 in light of previously reported studies of this knockout 16, 17. At FDR<0.05 (T 199 
test, P<0.014), we identified an average of 238 differentially-expressed genes (ranging from 69 to 200 
403 for eight comparisons) after knockout (Supplementary Table 7). The differentially-expressed 201 
genes were analyzed through the use of Ingenuity Pathway Analysis (IPA,QIAGEN Inc.,)24. 202 
Function enrichment analyses were conducted on the differentially expressed genes using curated 203 
information from the QIAGEN Knowledge Base24. Though canonical pathways of differentially 204 
expressed genes from mice of different diet conditions are enriched in different metabolic and cell 205 
signaling pathways, the affected diseases and molecular functions are highly consistent with regard 206 
to metabolic disease and lipid metabolism (Supplementary figure 1). The top toxicological 207 
functions were liver steatosis and cardiac dysfunction. Network analysis based on Ingenuity 208 
Knowledge Base24 revealed that Abca6 affected cholesterol level via cytokine IFNG (interferon 209 
gamma) and that Aldh2 affected cholesterol level through enzyme GNMT (glycine N-210 
methyltransferase) and acetaldehyde (Supplementary Figure 2). Comparing RNA-seq data from 211 
Abca6 and Aldh2 knockout of the same sex and diet, we found 19%-60% overlap of differentially 212 
expressed genes. Using IPA functional enrichment at P<0.005, we found that the overlapping 213 
genes are enriched in lipid metabolism (Supplementary Table 8), suggesting a common pathway 214 
affected by these two very different genes. 215 

Discussion  216 

To represent the complex molecular dynamics that underlie CVD, we constructed a network that 217 
integrates SNPs, gene expression, protein-protein interactions, and lipid phenotypes. From this 218 
integrated network approach, we identified three genes – ABCA6, ALDH2, and SIDT2 – that were 219 
linked to lipid levels and were investigated further through mouse knockout models. The mouse 220 
experiments recapitulated network-predicted relations of all three genes to the corresponding lipid 221 
traits and provided experimental support for the integrative approach we developed.  222 

Disease processes involve many interacting molecules and physical and biochemical processes, 223 
and thus the analysis of single data types is often insufficient to explain the etiology of complex 224 
traits. For example, carriers of risk alleles do not always have phenotypic consequences as such 225 
genetic variants do not necessarily alter the expression of disease-related genes or proteins. 226 
Therefore, in order to draw a more comprehensive view of biological processes, high-throughput 227 
data from different elements of multidimensional molecular information must be integrated and 228 
analyzed. 229 

Results from our mouse knockout models provide proof of principle for the utility of the 230 
integrative network approach that we developed. Results of the mouse experiments largely support 231 
our network model, with a few exceptions. Knockout of Abca6, which contains GWAS SNPs for 232 
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LDL cholesterol and total cholesterol, resulted in higher total cholesterol (which is largely LDL 233 
cholesterol) and HDL cholesterol in male mice, suggesting a potential role of this gene in CVD 234 
development. ABCA6 plays a key role in macrophage lipid homeostasis by facilitating 235 
phospholipid and cholesterol export from the cell19, 20. ABCA6 dysfunction may cause a buildup 236 
of intracellular phospholipids and cholesterol. Knockout of Aldh2, which was chosen for its 237 
putatively causal association with HDL cholesterol, resulted in significantly increased HDL 238 
cholesterol levels in both female and male mice. Aldehyde dehydrogenase, the protein encoded by 239 
ALDH2, is an enzyme in the oxidative pathway and plays a major role  the metabolism of lipid 240 
peroxidation-derived aldehydes 21. In our knockout models, the absence of Aldh2 resulted in higher 241 
lipid levels, which supports the idea that ALDH2 is involved in lipid degradation/clearance. 242 
Knockout of Sidt2, which contains GWAS SNPs for HDL cholesterol, resulted in a significant 243 
increase in triglyceride levels in the females on the chow diet at 18 and 22 weeks of age. SIDT2 244 
plays a crucial role in the uptake and intracellular transport of triglycerides and cholesterol 22, 23. 245 
Previous studies16 have shown that the absence of Sidt2 causes increased serum triglycerides and 246 
free fatty acids in mice. After analyzing the knockout results, we compared them with expression 247 
data for the corresponding human genes. We discovered that while each gene knockout produced 248 
some significantly different results in the female and male mice, FHS human gene expression data 249 
did not reveal sex differences in lipid effects for any of the genes (P>0.05, data not shown). This 250 
may be due to innate differences in lipid metabolism and regulation between the two species.   251 

In contrast to similar studies that have relied on public databases to identify eQTLs25, our study 252 
takes a direct and thorough approach, analyzing extensive phenotypic datasets in relation to gene 253 
expression in human peripheral blood. This method, combined with mediation analysis, allowed 254 
us not only to identify significant pathway enrichment from GWAS SNPs, but also to investigate 255 
mechanisms underlying lipids traits. Our study is also unique in that we combined several 256 
emerging techniques to identify and validate genes; these techniques included the use of functional 257 
eQTL studies and the integration of PPI data. Functional studies, especially those involving the 258 
use of networks to mirror biological systems, have shown great promise in the ability to identify 259 
candidate genes for various diseases26. In one study, Atanasovska et. al used a network-based 260 
approach to prioritize genes for hundreds of cardiometabolic SNPs to identify disease-predisposing 261 
genes27. The integration of PPI with eQTL analyses also has great potential to offer mechanistic 262 
explanations for diseases11, 14.  263 

One limitation of our study is the use of whole blood for expression profiling. Although the lipid 264 
traits were measured in blood, and as such, whole blood-derived eQTLs may be highly relevant to 265 
the phenotypes we studied, in some cases, we observed opposite direction between MR predicted 266 
effects and mouse knockout (ALDH2 on HDL). Another limitation is that our MR analyses could 267 
not infer sex-specific causal effects because the underlying GWAS studies were conducted in 268 
pooled-sex analyses, even though our mouse experiments revealed  notable sex differences. 269 
Differential lipid metabolic responses between male and female mice have also been previously 270 
identified in other gene knockout studies28. 271 

In summary, our network approach allowed us to identify novel candidate genes that may 272 
contribute to CVD via lipid effects. As such, these genes represent attractive targets for the 273 
treatment of dyslipidemia and the prevention of CVD. Looking forward, we plan to continue to 274 
expand the CVD network and investigate additional causal genes. As we do so, we anticipate that 275 
it will increasingly explain genes, pathways, and mechanisms underlying CVD and point toward 276 
promising precision drug targets. Our integrative network also provides insights into how 277 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 2, 2021. ; https://doi.org/10.1101/2021.07.01.21259304doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.01.21259304


7 
 

dysfunction of novel CVD-associate genes is manifested at the molecular level 29. Approaches 278 
similar to those used in this study may not only be expanded upon in relation to CVD but also be 279 
used to investigate other diseases impacted by genetic and epigenetic factors. To make future 280 
studies more comprehensive and accurate, it will be important to expand eQTL databases to other 281 
disease-related tissues and to include additional clinically important traits as well. 282 

Materials and Methods 283 

Samples and Phenotypes 284 

In 1948, the FHS started recruiting participants (original cohort) from Framingham, MA to begin 285 
the first round of extensive physical examinations and lifestyle surveys to investigate CVD and its 286 
risk factors 30. In 1971 and 2002, the FHS recruited offspring (and their spouses) and adult 287 
grandchildren of the original cohort participants into the offspring and third-generation cohorts, 288 
respectively 31-33. Plasma total cholesterol, HDL cholesterol, triglycerides, and glucose were 289 
measured in the morning after an eight-hour overnight fasting. Body mass index (BMI) was 290 
defined as weight (kilograms) divided by height squared (meters2). Current smokers were defined 291 
as those who smoked, on average, at least one cigarette per day during the year prior to the FHS 292 
clinical assessment. Clinical characteristics of the study sample are summarized in Supplementary 293 
Table 1. All participants from the FHS gave informed consent for participation in this study and 294 
for the collection of plasma and DNA for analysis. The FHS study protocol was approved by 295 
Boston Medical Center: Protocol ID: H-27984, Boston University Medical Center IRB (BUMC 296 
IRB) Title: FRAMINGHAM HEART STUDY BIOMARKER PROJECT. 297 

Genotype data: 5,568 SNPs that were associated with the three lipid traits – HDL cholesterol, LDL 298 
cholesterol, and triglycerides – at p≤5×10-8  (in the GRASP database, downloaded in June 2016, 299 
Supplementary Table 2) were curated and matched with the FHS 1000 Genomes Project imputed 300 
genotype data 34. SNPs with imputed quality score (r2) <0.3 and minor allele frequency (MAF) 301 
<0.01 were excluded, resulting in 4173 genome-wide significant SNPs for eQTL analysis.  302 

Gene expression: Whole blood was collected in PAXgene™ tubes (PreAnalytiX, Hombrechtikon, 303 
Switzerland) and frozen at −80°C. RNA was extracted using a whole blood RNA System Kit 304 
(Qiagen, Venlo, Netherlands) and mRNA expression profiling was assessed using the Affymetrix 305 
Human Exon 1.0 ST GeneChip platform (Affymetrix Inc, Santa Clara, CA), which contains more 306 
than 5.5 million probes targeting the expression of 17,873 genes. The Robust Multi-array Average 307 
(RMA) package 35 was used to normalize the gene expression values and remove any technical or 308 
spurious background variation. Linear regression models were used to adjust for technical 309 
covariates (batch, first principal component, and residual mean of all probesets). 310 

Identification of LIPIDS-associated eQTLs  311 

The eQTLs were identified from FHS genotype data and whole blood gene expression as described 312 
previously 13. eQTL analyses were conducted in two phases: 1) gene expression residuals were 313 
generated after accounting for the effects of sex, age, platelet count, white blood cell count, and 314 
imputed differential blood cell counts; analyses were performed using R version 3.0.1 with a 315 
mixed-effect modeling package that adjusted for familial relationships; and 2) underlying 316 
confounding factors were accounted for by 20 Probabilistic Estimation of Expression Residuals 317 
(PEERs)36 factors that were computed using the residualized expression data. The residualized 318 
expression was fit to a linear model using the PEER factors along with sex, age, and effect allele 319 
dosages. The algorithm was implemented with Graphical Processing Units (GPUs). cis-eQTLs 320 
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were defined as SNPs that reside within 1 Mb up or downstream of the transcription start site. 321 
False discovery rate (FDR) computations for cis- and trans-eQTLs were computed separately. 322 
SNPs at FDR <0.05 were considered statistically significant eQTLs.  323 

Putative causality was first tested by mediation tests, in which the underlying mechanism for a 324 
relationship between two variables is tested by introducing a third explanatory variable. The 325 
analysis was conducted with the Mediation Package37 in R where the “exposure” variable 326 
represented a SNP, the “mediator” or “explanatory variable” represented gene expression, and the 327 
“outcome” variable represented the phenotype. The mediation effect was measured on a scale from 328 
0-100% where a 100% mediation effect indicated  that the entire relationship between a SNP and 329 
a phenotype (direct effect) was  explained by changes in gene expression, i.e., the “mediator” or 330 
the “explanatory variable.” Significant mediation effects were selected at a permutation p-value 331 
<0.005 (based on 1000 permutations).  332 

Significant mediation effects were further tested by Mendelian randomization (MR)38 to 333 
determine causal associations between gene expression and phenotype. MR uses common genetic 334 
variants with well-understood effects on an exposure as instrumental variables (IV) to infer 335 
causality of an exposure to an outcome. This approach was applied to the aforementioned three 336 
lipid traits (LDL cholesterol, HDL cholesterol, and triglycerides). Here, the sentinel cis-eQTL (top 337 
eQTL located within 1 Mb of the tested gene), based on the lowest SNP-gene expression p-value 338 
from the 1000G GWAS, was selected as the IV for its corresponding gene in MR analysis. Based 339 
on the association between the sentinel cis-eQTL and the summary statistics from the three lipid 340 
GWAS of 188,577 individuals obtained from the Global Lipids Genetics Consortium (GLGL)15, 341 
the MR analysis was performed using the MR Base package39 and the two-sample MR method 38.  342 

Integration with PPI Networks 343 

Binary PPIs were extracted from a systematically generated and literature-curated datasets, which 344 
in total contain ~58,000 PPIs among 10,690 human proteins11, 14 . Putatively causal variants from 345 
genotyping and gene expression analysis were integrated with PPI networks to assess the extent 346 
of potential network perturbations associated with disruption of PPIs or altered expression9. 347 
Network perturbation information on missense alleles for various lipids-associated genes, which 348 
assesses the degree to which a mutant protein exhibits an altered spectrum of PPIs relative to the 349 
WT protein and all other mutants11, 14, was also included. For proteins without direct (physical) 350 
interactions, we use predicted protein-protein interactions from the STRING database to expand 351 
the network40. 352 

Identifying Candidate Genes 353 

All candidate genes were assessed by each of the each of the following criteria: 1) Does the 354 
candidate gene contain a SNP(s) associated with a lipid trait in GWAS (p<5x10-8) and is the  355 
GWAS SNP(s) is also an eQTL? 2) Is expression of the eQTL-associated gene also associated 356 
with the same lipid trait? 3) Are genetic effects on the lipid trait mediated by the expression of the 357 
eQTL-associated gene? 4) Does the gene test positive in MR (p<0.05)? 5) Have any interactions 358 
with CVD related proteins?  359 

    We then ranked the genes based on how many of the criteria were met and further excluded any 360 
genes if the knockout was known to be lethal based on existing literature. Three genes ABCA6, 361 
ALDH2, and SIDT2 met more than three of these selection criteria and were selected for further 362 
investigation. 363 
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Validation of Candidate Genes in Animal Models 364 

To test the hypothesis that key genes identified in the LIPIDS networks can be validated in mouse 365 
models for the corresponding traits, we obtained KO mouse strains for the three genes identified 366 
as having causal effects on HDL cholesterol, LDL cholesterol, and triglycerides, respectively. 367 
C57BL/6N-Abca6tm2a(KOMP)Wtsi/TcpRkorJ, B6Dnk;B6N-Aldh2tm1a(EUCOMM)Wtsi/IegRkorJ, and 368 
B6;129S5-Sidt2tm1Lex/MmucdRkorJ KO mice were generated at The Jackson Laboratory using 369 
sperm or embryos provided by the International Knockout Mouse Consortium and maintained on 370 
a C57BL/6NJ genetic background. All animals were housed at The Jackson Laboratory, which is 371 
approved by the American Association for Accreditation of Laboratory Animal Care. Animals 372 
were kept on a 12-hour (6am-6pm) light/dark cycle with a room temperature between 68 and 72°F, 373 
and either fed a chow diet (5K52, LabDiet) or a high-fat diet (TD.06414, Teklad Custom Diet). 374 

Cohorts of 20 males and 20 females of both KO strains and C57BL/6NJ control mice were 375 
raised on the chow diet. At 12 weeks of age, ten males and ten females from each cohort were 376 
switched to the high-fat diet while the other animals continued on the chow diet. Plasma samples 377 
were collected at 8, 14, 18, and 22 weeks after a four-hour fast. Total cholesterol, HDL cholesterol, 378 
and triglycerides were measured using a Beckman Coulter Synchron CX5 Delta autoanalyzer. 379 
Non-HDL was calculated as the difference between total cholesterol and HDL cholesterol. 380 

At 22 weeks of age, animals were euthanized and their livers were snap-frozen. RNA was 381 
isolated from liver tissue using the MagMAX mirVana Total RNA Isolation Kit (ThermoFisher) 382 
and the KingFisher Flex purification system (ThermoFisher). Tissues were lysed and homogenized 383 
in TRIzol Reagent (ThermoFisher). After the addition of chloroform, the RNA-containing aqueous 384 
layer was removed for RNA isolation according to the manufacturer’s protocol, beginning with 385 
the RNA bead binding step. RNA concentration and quality were assessed using the Nanodrop 386 
2000 spectrophotometer (Thermo Scientific) and the RNA 6000 Nano LabChip assay (Agilent 387 
Technologies). 388 

Libraries were prepared by the Genome Technologies core facility at The Jackson Laboratory 389 
using the KAPA Stranded mRNA-Seq Kit (KAPA Biosystems), according to the manufacturer’s 390 
instructions. Briefly, the protocol entailed isolation of polyA containing mRNA using oligo-dT 391 
magnetic beads, RNA fragmentation, first and second-strand cDNA synthesis, ligation of Illumina-392 
specific adapters containing a unique barcode sequence for each library, and polymerase chain 393 
reaction (PCR) amplification. Libraries were checked for quality and concentration using the DNA 394 
1000 LabChip assay (Agilent Technologies) and quantitative PCR (KAPA Biosystems), according 395 
to the manufacturer’s instructions. A total of 36 liver samples were collected (3 male and 3 female 396 
Aldh2 knockout mice, 3 male and 3 female Abca6 knockout mice, and 3 male and 3 female 397 
wildtype mice, for each of the two diets). A library was made for each sample followed by pooling 398 
of 6 libraries and samples were sequenced by the Genome Technologies core facility at The 399 
Jackson Laboratory, 125 bp paired-end on the HiSeq 2500 system (Illumina, Inc.; San Diego, CA) 400 
using the TruSeq SBS Kit v4 reagents (Illumina, Inc.) with a minimum of 40M reads per sample. 401 
A repeated measures two-way ANOVA test with post-hoc pairwise comparison was used to test 402 
for differentially expressed genes between wild type and knock-out mouse. A significant 403 
difference was determined at a false discovery rate <0.05 to account multiple testing.  404 

Data availability 405 

The genotype data, gene expression, phenotype data that support the findings from the FHS of this 406 
study have been deposited in dbGaP (dbGaP Study Accession: phs000363.v16.p10). 407 
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Fig. S1. The functional analyses of differentially expressed genes generated through IPA. 411 

Fig.S2.  Interaction networks of molecules based on known relationships in the QIAGEN 412 
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Figures:  672 

Figure 1. Study Design 673 
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 674 

Schematic diagram of stepwise approach to identify target genes by utilizing  human lipid GWAS 675 
datasets, gene expression, protein interaction network and phenotype data , cross-reference with 676 
mouse knockout database, prioritize genes, and validate candidate genes. 677 
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 684 

 685 

Figure 2. Comparison between Abca6 knockout (solid line) and wildtype (dotted line) mice 686 
in females and males on regular chow and high-fat diet. Ten mice for each genotype and sex 687 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted July 2, 2021. ; https://doi.org/10.1101/2021.07.01.21259304doi: medRxiv preprint 

https://doi.org/10.1101/2021.07.01.21259304


17 
 

per diet group. Asterisk indicates a significant difference (P<0.05) between knockout and wildtype 688 
at the specific time point.  689 
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Figure 3. Comparison between Aldh2 knockout (solid line) and wildtype (dotted line) mice 699 
in females and males on regular chow and high-fat diet. Ten mice for each genotype and sex 700 
per diet group. Asterisk indicates a significant difference (P<0.05) between knockout and wildtype 701 
at the specific time point. 702 
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Figure 4. Comparison between Sidt2 knockout (solid line) and wildtype (dotted line) mice in 730 
males and females on regular chow and high-fat diet. Ten mice for each genotype and sex per 731 
diet group. Asterisk indicates a significant difference (P<0.05) between knockout and wildtype at 732 
the specific time point. 733 
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Table 1 . MR tests for candidate genes 743 

Exposure Outcome Instrumental 

 

Beta SE P Value 

DOCK7 HDL cholesterol rs10889354 0.22 0.0821 0.0067 

LDL cholesterol rs10889354 0.75 0.086 2.22E-18 

Triglycerides rs10889354 1.15 0.078 1.56E-48 

TAGLN HDL cholesterol rs3736120 -0.18 0.067 0.0091 

LDL cholesterol rs3736120 -0.14 0.074 0.064 

Triglycerides rs3736120 -0.34 0.066 2.90E-07 

SIDT2 HDL cholesterol rs12420127 0.27 0.11 0.013 

LDL cholesterol rs12420127 0.32 0.12 0.0065 

Triglycerides rs12420127 0.32 0.11 0.0027 

ALDH2 HDL cholesterol rs10744777 0.20 0.09 0.017 

LDL cholesterol rs10744777 0.49 0.093 1.28E-07 

Triglycerides rs10744777 -0.23 0.083 0.0056 

SLC44A4 HDL cholesterol rs535586 0.079 0.055 0.15 

LDL cholesterol rs535586 -0.23 0.059 0.00011 

Triglycerides rs535586 -0.38 0.054 2.56E-12 

ABCA6 HDL cholesterol rs918167 0.10 0.093 0.27 

LDL cholesterol rs918167 0.061 0.10 0.55 

Triglycerides rs918167 -0.16 0.091 0.079 

ATG4C HDL cholesterol rs7540030 0.14 0.19 0.46 

LDL cholesterol rs7540030 0.17 0.20 0.40 

Triglycerides rs7540030 0.10 0.18 0.56 

 744 
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Table 2. Criteria of candidate gene selection 745 

 746 

 Causal effects 
(MR P<0.05) 

Novelty Availability of 
knockout mice 

Associated 
with CVD-
proteins in 

PPI network 

DOCK7 3 lipids traits No Yes Yes 

TAGLN 2 lipids traits No Yes Yes 

SIDT2 2 lipids traits No Yes Yes 

ALDH2 3 lipids traits Yes Yes Yes 

SLC44A4 2 lipids traits Yes No No 

ABCA6 0 lipids traits Yes Yes Yes 

ATG4C 0 lipids traits Yes Yes No 

 747 

 748 
 749 
 750 
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