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Abstract
We present our considerations for using multiple imputation to account for missing data

in propensity score-weighted analysis with bootstrap percentile confidence interval. We 

outline the assumptions underlying each of the methods and discuss the methodological 

and practical implications of our choices and briefly point to alternatives. We made a 

number of choices a priori for example to use logistic regression-based propensity 

scores to produce “standardized mortality ratio”-weights and Substantive Model Com-

patible-Full Conditional Specification to multiply impute missing data (given no viola-

tion of underlying assumptions). We present a methodology to combine these methods 

by choosing the propensity score model based on covariate balance, using this model as 

the substantive model in the multiple imputation, producing and averaging the point es-

timates from each multiple imputed data set to give the estimate of association and com-
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puting the percentile confidence interval by bootstrapping. The described methodology 

is demanding in both work-load and in computational time, however, we do not con-

sider the prior a draw-back: it makes some of the underlying assumptions explicit and 

the latter may be a nuisance that will diminish with faster computers and better imple-

mentations.

Introduction
In this paper we present the considerations behind estimating the change in prevalence 

of post-traumatic stress disorder (PTSD) associated with long-distance migration using 

multiple imputation to handle missing data, propensity score-weighting to adjust for 

confounding and bootstrap to produce a percentile confidence interval. We will focus on

the many statistical methodological problems we encountered and refer the reader to the

accompanying paper (1) for the subject matter problem. The relevant data consisted of a

20-items questionnaire and a clinical examination including assessment of possible psy-

chiatric disorders, applied to a sample of Syrian asylum seekers in Denmark and a sam-

ple of Syrian refugees in Lebanon. The outcome, PTSD, was assessed using the “Har-

vard Trauma Questionnaire” part IV (2), giving a score from 1 to 4 with 2.5 being the 

commonly used cut-off-score for PTSD.

In a propensity score-weighted analysis you first estimate the propensity given a rele-

vant set of predictors, Pr (E=1∣Z), for each individual in the study population, ê i. The 

association between long-distance migration and PTSD was estimated as the prevalence

among those who migrated to Denmark minus a weighted average of the prevalence of 
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PTSD among refugees who migrated to Lebanon, using weights equal to ê i / (1− ê i). This

requires a number of decisions including: Which covariates to include in the propensity 

score model? What complexity of the model to use? How to deal with extreme weights?

And how to calculate the standard error of the parameter of interest? As we had missing 

data in the covariates and PTSD status, we set out to combine the propensity score-

weighted analysis with multiple imputation. This raised additional questions such as: 

What are the required assumptions of the missing data process? What is the substantial 

model and what variables should be included in the model? How to combine the multi-

ple imputations with the propensity score analysis? How to find a valid confidence in-

terval for the parameter of interest? In the following sub-sections we outline the prob-

lems we had to consider and the underlying theory. In Methods we discuss our consider-

ations on how to implement these in our specific study and in Results we provide details

on our final implementation. The problems, theory, considerations and our decisions are

summarized in Table 1, 2 and 3.

The propensity score analysis
Table 1 provides an overview of the considerations and decision for building the 

propensity score model. The relevant predictors to include in the propensity score model

are covariates that (potentially) confound the relationship between the exposure and the 

outcome. The outcome itself and variables that are only associated with the exposure 

should not be included in the model (3). The complexity of the regression model should 

be examined so that balance is obtained for all covariates between exposure groups. Ex-

treme weights may lead to suboptimal covariate balance and unstable estimates and are 
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most often remedied by smoothing or truncation, at the cost of potentially introducing 

bias (4). The estimate of association When only considering the propensity score-

weighted analysis, the confidence intervals can be produced by applying some approxi-

mate formula to obtain a standard error or via bootstrapping.

Missing data
The statistical properties of many missing data methods rely on the hypothesized miss-

ingness mechanism. The primary interest in applied epidemiology, is whether the miss-

ing data mechanism is ignorable, that is, if valid inference can be drawn despite of miss-

ing data. In many applied papers using multiple imputations (MI) the authors states that 

the data is “missing at random” (MAR) and “as a consequence” the inference based on 

MI is valid. We briefly consider the definition and importance of “missing data” draw-

ing primarily on Seaman et al., (5). Very loosely speaking, data is MAR, if the risk of a 

data point being missing does not depend on the unobserved values, but only on the ob-

served values. However, this is only a superficial definition. The terminology “missing 

at random” (MAR) and “missing completely at random” (MCAR, which imply MAR) 

has been in use at least since Rubin's 1976 paper (6) and was recently extended to in-

clude “realized” and “everywhere” versions of both MAR and MCAR (5). In the latter 

paper the definition is based on parametric models for both the data, Z, (which include 

both outcome variable, Y, and covariates, X) and the missingness indicator vector, M, 

(which for each entry in z, specify if it is observed). Note, we do not observe the entire 

z, but only the entries, where the corresponding entry in m is 1 and we let o ( z , m ) denote

the observed part of the data, z. Furthermore we let f θ ( z ) denote the density for the data 
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and Prφ (m|z ) the conditional probability of the missing pattern, m, given the data z, with

the parameters (φ ,θ ) ∈Ω. In a specific study we have the realized data ~z and missing in-

dicator vector ~m with the realized observed data o (~z ,~m ). 

Example 1. Consider a very small data set with four refugees and four variables: “year 

of residency”, “sex”, ”host country” and “PTSD-status”. One realization could be:

~z=[
2013 Male Lebanon PTSD
2015 Male Lebanon Not PTSD
2015 Female Lebanon Not PTSD
1999 Male Denmark Not PTSD

]~m=[
1 0 1 1
0 1 1 1
1 1 1 1
1 1 1 1

]

With the realised observed data o (~z ,~m )=[
2013 Lebanon PTSD

Male Lebanon Not PTSD
2015 Female Lebanon Not PTSD
1999 Male Denmark Not PTSD

].

Data is said to be realized-MAR if for all φ, Prφ (~m|z )=Prφ (~m|~z ) for all z, where

o ( z ,~m )=o (~z ,~m) that is, the probability of the realized missingness pattern ~m is the same

for all data z that has an observed part that is identical to the realized observed data, i.e. 

the unobserved part is of no interest. In Example 1, the data is realized-MAR, if the con-

ditional probability of data on “sex” for observation number 1 and data on “year of resi-

dency” for observation number 2 are missing and all other entries are observed, does not

depend on the value of the missing sex and year of residency as long as all the observed 

entry is as realized. This is a statement only focusing on the realized missingness pattern

and the realized observed data; we do not consider other possible missingness patterns 

or other possible realizations of the data. To emphasize: it is irrelevant whether for in-
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stance “sex” on observation number 2 or “country” on observation number 3 could be 

missing,

The data generating process is said to be everywhere-MAR if for all φ and all m,

Prφ (m|z )=Prφ (m|z ' ) for all z and z’, where o ( z , m )=o ( z ' , m) . That is, data is every-

where-MAR if it is realized-MAR for all possible realizations and not only for the actu-

ally observed realization of the missingness pattern and data. Returning to Example 1, 

when assuming everywhere-MAR the realized data set is irrelevant: We have to check 

the whole set of possibly missing data conditional probabilities, Prφ (m|z ) for all param-

eter values, φ. 

The elaborations above was necessary to qualify the question of interest: Is the missing-

ness mechanism ignorable? That is, when can we make valid inference about the param-

eter of interest, θ, only based on the observed data? Seaman et al. (5), illustrated that the

answer depends on the type of statistical inference framework and in the “frequentist 

likelihood framework” you need the missingness mechanism to be everywhere-MAR 

(and the parameters (φ , θ ) be variation independent, i.e Ω=Ωφ × Ωθ). So in order to ig-

nore the missingness mechanism we have to argue that it is reasonable to assume every-

where-MAR. This implies that, for all possible missingness patterns and corresponding 

observed data, it is reasonable to assume that the risk of that specific pattern does not 

depend on the value of the missing data but only of the observed data. This is of course 

an impossible task without some insight into why data is missing in the study. One way 

to start off is to assume that the missing data mechanism is identical and work indepen-
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dently from person to person, which reduce the problem to a discussion of the mecha-

nism for a single person. 

For example, in Example 1, we have no missing in “PTSD” in the realized observed 

data, however, we can easily imagine this information missing in another realization of 

the study. If we assume identical and independent missing mechanism, we have to think

of why “year of residency”, “sex”, and “PTSD” could be missing for a person and if the 

risk of this is independent of the unobserved values given what we have observed for 

that person. For example, if we only observe “country”, we have to argue, that the risk 

of this is the same for all individuals in each country, i.e. it does not depend on year, sex

or whether or not the person has PTSD. We note that the assumption of independent 

missingness mechanism might easily be invalid, for example missingness could depend 

on some unobserved event common for several persons in the study. In the accompany-

ing paper (1) we discuss the everywhere-MAR assumption in the specific study.

In the following, we will assume that the purpose of the data analysis is to estimate β, 

typically a vector of regression coefficients based on the proposed model for the analy-

sis of interest—i.e. the substantive model—of Y given the covariates X: Pr ( y∣x ; β ) .

Multiple imputations
Table 2 gives an overview of the considerations and decision for using multiple imputa-

tion to deal with missing data. Many statistical methods assume no missing data or 

missingness mechanism MCAR and will produce biased estimates otherwise (7). A 

popular way to deal with missing data is to use multiple imputation which gives unbi-
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ased estimates assuming ignorable missingness mechanism and correctly specified mul-

tiple imputation model (8,9). Briefly, multiple imputation consists of producing a num-

ber, K, of data sets with imputed values for the missing data and analyze these complete 

data sets as planned, resulting in K estimates of β which are combined, typically by tak-

ing taking the average, into a final estimate for β . When implemented, the imputation is

done for each variable with missing data (a) specifying a regression model for the con-

ditional distribution of the variable given the other (relevant) variables (b) using the ob-

served data to estimate the parameters in this model (c) impute the missing values of the

variable by simulating from the Bayesian posterior predictive distribution. The last two 

steps will in general be taken care of by a software program, as long as the imputation 

regression models are chosen within the most common regression model families. Often

one or several of the “predictor” variables in the imputation regression will have miss-

ing values too, resulting in a so-called “chained equation”, that is, the imputed values in 

one variable are needed to impute the values in another variable and vice versa. Luckily,

many software packages can solve this problem using iterative methods. Thus, after de-

ciding on what implementation of multiple imputation to use we are left with problem 

(a): How to specify the imputation regression models, i.e., what should be used as the 

substantive model in the multiple imputation, what variables to include in the multiple 

imputation models and how many iterations must be run between sampling? It has been 

known for a while that you can introduce bias in the estimation of β, if you do not take 

care in this specification (10). This can happen if the relationship between y and x in the

substantive model is more complicated than the relationship between x and y in the im-

plemented imputation regression models. For example, if you do not include y in the 
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imputation regression model for the covariate x i then the imputed data for x i will be un-

related with y and, as a consequence, you will underestimate the regression coefficient

β i relating y to x i in the substantive model. Furthermore, if x i and x j interact in the sub-

stantive model for y, then y and x j should (at least) interact in the imputation model for

x i to avoid bias in the estimate of the magnitude of the interaction. It is difficult, even 

for relatively simple substantive models, to determine how to specify the imputation 

models in order to avoid this problem. Luckily there exist a statistical method that can 

combine a specification of the substantive regression model, y on x, with univariate re-

gression models for each of the variables in x given the rest of the x’s, into an imputa-

tion algorithm (11). This Substantive Model Compatible-Full Conditional Specification 

(SMC-FCS) algorithm has been implemented in R and Stata for a set of standard regres-

sion models (12,13). As the SMC-FCS algorithm is an iterative algorithm, it will not 

generate independent samples. This implies that one cannot use subsequent samples but 

only use samples with a specific interval between them. 

Bootstrapping
Table 3 gives an overview of the considerations and decision combining propensity 

score-weighting and multiple imputation and obtaining a valid confidence interval. 

Non-parametric bootstrapping is a method to find an approximate confidence interval 

for a parameter, when applying a specific estimation algorithm to a data set. In boot-

strapping the only input is the data set and the estimation algorithm and no assumption 

is made concerning the distribution or the estimation algorithm. However, the realized 

sample is assumed to be independent and representative of the target population (14). In
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the simple bootstrap, the estimation algorithm is applied to the original data and to a 

number of bootstrap samples, i.e. artificial data sets with the same number of observa-

tions as the original, but with the observations being sampled randomly with replace-

ment from the original data set. This results in the original estimate and a set of boot-

strap estimates from which a 95% confidence interval can be produced as (a) the origi-

nal estimate +/- 1.96 times the standard deviation of the bootstrap estimates or (b) the 

2.5th and 97.5th percentile of the bootstrap estimates. The first strategy will typical re-

quire a relative small number of bootstrap samples, but rely on approximate normality 

of the estimates, while the second require a large number of bootstrap samples, but does

not require any assumptions about the distribution of the estimates.

Methods
Based on the theoretical considerations above we outline our estimation algorithm. The 

analysis plan was defined a priori and included a number of decisions: 

1) the exposure (long-distance migration), outcome (PTSD) and potential con-

founders (age, sex, socioeconomic status, experienced trauma and mental well-

being) (see also (1))

2) addressing of confounding by logistic regression-based propensity score model-

ing and of missing data by multiple imputation

3) three propensity score models of increasing complexity were defined and three 

levels of weight truncation (no truncation, truncating at the 1st and 99th per-
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centile, or truncating at the 5th and 95th percentile) were examined for covariate 

balance (15,16). Based on a single imputed data set for each of the three com-

plexities of the propensity score model, the least complex model with the least 

amount of truncation to obtain acceptable balance, defined as the absolute stan-

dardized difference of ≤ 0.10 on all covariates (15) was chosen for the analysis. 

See supplementary materials and Figures in (1) for details on the specific models

and the exploratory plots

4) given ignorable missingness mechanism, the missing data were multiple im-

puted using the SMC-FCS algorithm with the chosen propensity score model as 

the substantive model

5) for each of the multiply imputed data sets: the propensity scores were computed 

using the chosen propensity score model, converted into weights and the 

weighted point estimates produced

6) the mean of the point estimates from 5) was the estimate of interest

7) the 95 percentile confidence interval was produced by bootstrapping steps 4-6 a 

large number of times.

It should be noted that the existing implementation of the SMC-FCS algorithm does not 

cover our substantive model, the propensity score-weighted analysis, consequently, we 

decided to use the model for the propensity score as our substantive model. For each 

partially observed covariate we specified a “prediction model” meaning a regression 
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model to predict the missing value of a partly observed covariate (the response in the re-

gression model in question) given the PTSD score and any additional covariates as 

deemed relevant based on subject matter insight and exploratory plots. When entering 

as the response variable, all continuous partially observed covariates were modeled us-

ing linear regression with relevant transformation and all discrete covariates were mod-

eled using logistic, multinomial or proportional odds regression. When entering as “pre-

dictor variables”, all continuous covariates were modeled as restricted cubic splines 

with knots at the 10th, 50th and 90th percentiles; all discrete covariates and interactions 

entered unaltered (see supplementary materials in (1)). The sampling interval between 

the imputations was decided based on plots of the parameter estimates against the sam-

pling interval.

To combine propensity score-weighting and multiple imputation to produce the estimate

of association we used the “within” procedure (17,18): a number of data sets were im-

puted, for each data set the prevalence difference of PTSD according to long-distance 

migration was estimated and averaged to give the point estimate (“impute, compute, 

combine”). The 95-percentile confidence interval was found by bootstrapping this pro-

cedure. The procedure is illustrated in Figure 1.

All data management, analysis and plots were done in R (19) with heavy reliance on 

packages “smcfcs” (12) for SMC-FCS multiple imputation; “WeightIt” (20) and 

“cobalt” (21) for estimation of propensity score weights and assessment of covariate 

balance; “boot” (22) for parallelized bootstrapping; “furrr” (23) for further parallelizing 

procedures; and “tidyverse” packages (24) for data wrangling and plotting. The code 
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was run on two Ubuntu systems (18.04.5 and 20.04.1) and a Windows 10 system; all 

running R 4.0.3. The analysis plan and all R code for analysis and plots, including the 

specific settings in each procedure are available from https://github.com/eiset/ARCH.

Results
The simple propensity score model (no interaction terms) with weight truncation at 1st 

and 99th percentile obtained acceptable balance on all covariates and was chosen as our 

model. Unfortunately, but not surprisingly, we had to modify our first choice of sub-

stantive model (i.e. the propensity score model used in the imputation) due to computa-

tional/numerical problems by collapsing two levels of one of the substantive model co-

variates and two levels of one of the auxiliary covariate (1). 

This slightly modified propensity score model was the substantive model in the SMC-

FCS multiple imputation and regression models were set up for all partially observed 

covariates: For example, for imputing the continuous covariate “Age”, the logarithmic 

transformation of Age, “log Age”, was modeled with covariates from the substantive 

model entering as predictor variables: “Socioeconomic status”, “PTSD” (as restricted 

cubic spline) and auxiliary regressors: “Highest education”, “Number of children”, 

“Systolic blood pressure” (as restricted cubic spline), and “Marital status”. The Age 

variable was then passively imputed from “log Age” by exponentiating. All partially ob-

served auxiliary variables were also imputed. The “predictor matrix” in Supplemental 

Table 1 gives details on models for all partly observed variables.
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We set the number of imputations to 10 which is well beyond what is often considered 

sufficient (25). The convergence plots showed that a sampling interval between imputa-

tions, i.e. iterations, of 20 was sufficient; to err on the safe side, we chose 40 iterations. 

Following recommendations of Carpenter and Bithell (14) we produced 999 bootstrap 

estimates to compute the 95-percentile confidence interval. For practical reasons, three 

different computers were used to run the final analysis. The time to run 250 bootstrap 

estimates was from two to 10 hours depending on the system.

The analysis showed an increased prevalence amounting to 8.76 percentage points (95-

percentile confidence interval [-1.39; 18.62 percentage points] with little variation in the

sensitivity analysis. We refer to the accompanying paper for discussions of the results 

(1).

Discussion
In this paper we describe the statistical methodological considerations for combining 

propensity score-weighting and multiple imputation of missing data. We discuss the as-

sumptions behind both propensity score-weighted estimation and multiple imputation.

In our approach, the substantive model of interest and covariates to include in the 

propensity score model was explicit. It has been suggested that machine learning or 

“black box” algorithms may provide reasonable propensity score-weights (4,26,27), 

however, at the cost of control over the substantive model which is paramount in fulfill-

ing one of the assumptions of multiple imputation: a correctly specified substantive 

model of interest. And as Bartlett et al. notes “We do not consider the requirement to 
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specify a substantive model at the imputation stage to be a shortcoming…” (11). We 

truncated extreme weights as advocated by several (4,16,28), acknowledging that the 

decrease in variance comes at the cost of possibly introducing bias. Stabilized weights is

another approach to decrease the variance but comes at a similar cost (29); a recent pa-

per (28) found that when estimating the hazard rate by propensity score-weighted Cox 

regression the choice between ordinary propensity score-weighting (in this case using 

weights to produce the “average treatment effect”) or its stabilized version made no dif-

ference on the confidence interval coverage and that bootstrap gave the least biased 

variance estimates with best confidence interval coverage. 

The SMC-FCS algorithm (11) allows defining the substantive model of interest and im-

putation models for each partially observed variable and takes care of combining these 

in the multiple univariate imputations. This may increase the possibility to define a cor-

rectly specified multiple imputation model. While model misspecification is considered 

the overarching source to bias in propensity score modeling (4,30) recent studies sug-

gest that misspecification of the multiple imputation model may not be detrimental in 

obtaining valid percentile confidence interval when applying a methodology as pro-

posed in this paper (31). We have based our propensity score model on the available ev-

idence and subject matter knowledge, however, recognize the possibility of some re-

maining bias, for example from residual confounding and from the collapsing of two 

levels of one of the substantive model variables. Seaman and White (32) showed that 

the “within” procedure as proposed by Qu and Lipkovich (33) gives unbiased point esti-

mates assuming ignorable missingness mechanism and that including a “missing-value 
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indicator variable” in the data set may reduce bias when the missingness mechanism is 

not ignorable, however, increase bias when the it is ignorable. We subjected every vari-

able to careful examination and are satisfied that the “everywhere-MAR” assumption is 

not violated, however, we acknowledge that this is subject to discussion and cannot be 

guaranteed. We used bootstrap to produce a 95-percentile confidence interval taking 

into account uncertainty introduced by modeling in both the propensity score and multi-

ple imputation step. Alternatively, the “Rubin’s rule” are used in several studies and are 

the traditional choice when doing multiple imputation (without propensity score model-

ing). Qu and Lipkovich (33) noted that “Rubin’s rule” does not account for the uncer-

tainty introduced in the propensity score estimation and, thus, is not valid in theory 

while others note that it may produce valid estimates in practice (32). There is no clear 

evidence on what step to bootstrap when combining propensity score-weighting and 

multiple imputation (34). In our approach, we bootstrapped the entire “within” proce-

dure to produce a confidence interval that accounts for all uncertainty introduced by 

modeling. This procedure is similar to that applied to a simple simulated data set with 

ignorable missingness mechanism by Penning de Vries and Groenwold (18). Schomaker

and Heumann (34) suggest that bootstrapping after multiply imputing the data sets may 

produce similar results at lower computational expense, however, a later study (31) 

found that this may increase bias compared with bootstrapping the entire procedure. 

Our proposed methodology takes several hours to run on “standard” laptop computers 

and we experienced numerical problems with strata with relatively few observations. 

Going forward, we are eager to examine the sensitivity of our result to different method-
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ologies for example using other g-methods such as g-computation or other multiple im-

putation methods such as machine learning algorithms. The produced point estimate and

confidence interval could also be compared to alternative methods that lowers the com-

puting time such as “Rubin’s rules” or the recently proposed “von Hippel” method for 

using bootstrap in multiple imputation (though does not include propensity score model-

ing) (35).

In this article we have striven to make clear the many choices that we had to go through 

to produce the estimate of interest. It is our hope that others can make use of our experi-

ence in planning their research, creating the analysis plan and running their analysis.
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Tables

Table 1: Considerations and decision for building the propensity score model

Problem Theory Considerations Decision

What covariates 
should be included 
in the model?

Confounders and potential 
confounders must be included in
the propensity score model

Subject matter knowledge and 
thorough discussions in the 
group of authors were 
undertaken including drawing 
the assumed association in a 
directed acyclic graph. 

Data were collected on 
variables of interest 
including age, sex, mental 
health status, exposure to 
violence, socioeconomic 
status.

What complexity of 
the model to use in 
the analysis?

Increasing model complexity 
should be examined to chose 
the model that obtain covariate 
“balance” between exposure 
groups. This is generally 
assessed subjectively. There 
are some consensus that 
balance is obtained when the 
standardized absolute mean 
difference are < 0.10 for all 
covariates.

Three models of increasing 
complexity was defined a priori. 
A threshold of 0.10 was used to 
define balance of covariates 
between exposure groups. For 
each combination of model 
complexity the missing data was
imputed once and covariate 
balance was plotted. The least 
complex model with the least 
truncation that obtained balance
were chosen as the propensity 
score model in the analysis.

The propensity score model
with no interaction terms 
(i.e. the “simple” model). 
Because of numerical 
issues two levels of two 
categorical variables were 
collapsed.

How to handle  
extreme weights?

For example truncation, i.e. 
forcing extreme weights to a 
given threshold, shrinkage, i.e. 
“pushing” all weights towards 
the mean altering extreme 
weights relatively more than 
weights closer to the mean, or 
penalization, i.e. constraining 
the coefficients of the propensity
score model which will result in 
less extreme predicted chance 
of exposure and thus less 
extreme weights.

To lower the complexity of the 
methodology we focused on 
truncation. Sets of truncation 
percentiles at 0 & 100, 1 & 99, 
and 5 & 95 were examined for 
each of the three complexities 
of the model

Truncation at 1st and 99th 
percentiles.
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Table 2: Considerations and decision for building the multiple imputation model

Problem Theory Considerations Decision

Is the 
missingness 
mechanism 
ignorable?

For multiple imputation 
to produce unbiased 
estimates the 
missingness mechanism
must be ignorable. In a 
frequentist framework 
this means the data 
must be “everywhere-
missing-at-random”.

The “everywhere-missing-at-
random” assumption was assessed 
using exploratory plotting and 
subject matter knowledge for all 
partly observed covariates.

After careful consideration of all 
partly observed variables we 
deemed that the missingness 
mechanism was approximately 
ignorable.

What 
implementation 
of multiple 
imputation to 
use?

Many exist and are 
available in standard 
software. Commonly 
used are variations of 
“chained equation” 
algorithms.

The implementation should be 
available in some form as an R 
package and should allow for 
adaption and configuration to our 
specific use.

The chained-equation method 
“SMC-FCS” as implemented in the 
R package “smcfcs”.

What should be 
used as the 
substantive 
model in the 
multiple 
imputation?

The substantive model 
of interest must be 
correctly specified and 
in accordance with 
(congenial with) the 
model for the analysis of
interest. This is a crucial
step of multiple 
imputation where bias 
may be introduced.

The model for the estimate of 
interest was a simple univariate 
binomial regression with weights 
computed from the propensity score
model. The smcfcs package, 
however, requires the substantive 
model to be defined as a regression
model and does not allow a 
weighted model as the substantive 
model. The propensity score model 
to compute the weights contained 
the covariates deemed important to 
control for confounding. 

The propensity score model was 
used as the “substantive model” in 
the multiple imputation.

What variables 
to include in the 
multiple 
imputation 
models?

The variables used in 
the “prediction models” 
for each of the partly 
observed variables 
should include strong 
predictors for the 
variable entering as the 
response.

The propensity score model 
includes all covariates that are 
considered important in describing 
the relationship between the 
exposure and the outcome of 
interest. However, this model does 
not contain the outcome of interest, 
which is paramount to include in the
multiple imputation models.

Variables that are strong predictors 
for a partly observed covariate but 
not part of the substantive model 
(i.e. the propensity score model) 
should be included as an auxiliary 
variable.

All variables in the propensity score
model (see above) was 
automatically added in the multiple 
imputation of each of the partly 
observed covariates using the 
SMC-FCS-procedure. Furthermore,
a “prediction model matrix” 
containing information on how to 
impute all partly observed variables 
were created (see the 
Supplemental Table 1 “predictor 
matrix”). The outcome of interest 
(the PTSD-score) was included in 
all “prediction models” for partly 
observed covariates but not 
necessarily in the “prediction 
models” for the auxiliary variables. 

How many 
iterations must 
be run between 
sampling?

Because of the chained-
equation algorithm 
successive iterations are
not independent. The 
distance between 
iterations must be 
decided so that 
independence, i.e. 
convergence, is 
approached.

Convergence was assessed by 
plotting the parameter estimates for
each iteration for each of the 
covariates in the propensity score 
model. When reaching a stable 
distribution of all variables 
independence was obtained.

The plots indicated that a distance 
of 20 iterations was sufficient, 
however, to err on the safe side, we
chose a distance of 40 iterations
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Abbreviations:  PTSD, post-traumatic stress disorder; SMC-FCS,  Substantive Model 

Compatible-Full Conditional Specification.

Table 3: Consideration and decision for combining multiple imputation and propensity 
score-weighting and obtaining valid confidence interval

Problem Theory Considerations Decision

Combining 
multiple 
imputation and 
propensity 
score-weighted 
analysis

What sequence of
multiple 
imputation and 
propensity score-
weighted analysis 
should be 
implemented?

The “within” procedure (impute 
the missing data, compute the 
propensity score-weights and 
the estimate of association, 
combine by taking the average 
to produce the estimate of 
association) has been proposed 
as less prone to introduce bias 
compared with the “across” 
procedure (impute the missing 
data, compute the propensity 
score, combine the propensity 
scores by taking the average, 
compute the estimate of 
association).

The “within” 
procedure was 
implemented.

Obtaining 
confidence 
interval

How to account 
for the uncertainty
introduced in both
the multiple 
imputation and 
propensity score 
estimation?

Rubin’s rules with modification 
to large-sample variance 
estimator or bootstrap has been 
proposed.

There are some 
theoretical evidence that
bootstrap produces valid
estimates of uncertainty 
in implementations such
as the one we propose, 
however, it has received
little attention in applied 
epidemiology.

Bootstrapping of 
the “within” 
procedure was 
decided upon.

Bootstrapping What type of 
bootstrap 
confidence 
interval and how 
many bootstraps 
to produce the 
confidence 
interval?

Several types of bootstrap 
confidence intervals have been 
proposed, among others the 
normal, percentile and BCa. For 
the prior a relatively low number 
of bootstraps are sufficient, 
however, it relies on the normal 
distribution of the estimates. The
latter requires a much larger 
number of repeats, often at least
1000 and are thus 
computationally intensive. 

The percentile type 
requires less repetitions 
than the BCa and 
relaxes the distributional
assumption of the 
normal bootstrap 
somewhat, however, 
may still be severely 
biased in a skewed 
distribution.

The percentile 
method with 999 
bootstrap samples 
was used. To 
assess the 
influence of the 
bootstrap 
confidence interval 
type on the 
interpretation of the 
result we produced 
four different 
confidence intervals
(normal, basic, 
percentile and 
BCa).

How many data 
sets should be 
imputed for each 
bootstrap?

Since we are using bootstrap to 
calculate the confidence interval 
the number of imputations for 
each missing data point can be 
kept to a minimum, some 
recommending as little as two.

We had a relatively high 
proportion of missing in 
several variables and for
several observations.

The number of 
imputations was 
chosen to 10.
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Figure legends
Figure 1: Flow-chart of proposed methodology to combine multiple imputation 

and propensity score weighting

*The bootstrap is repeated multiple times, for example 1000, to be able to estimate the 

95-percentile confidence interval.
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