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Abstract 

Background Depression is a disabling and highly prevalent condition where genetic and 

epigenetic differences, such as DNA methylation (DNAm), contribute to prediction of disease 

liability.  

Method We investigated the association between polygenic risk scores (PRS) for depression 

and DNAm by conducting a methylome-wide association study (MWAS) in Generation 

Scotland (N=8,898, mean age=49.8 years) with replication in the Lothian Birth Cohorts of 

1921 and 1936 and adults in Avon Longitudinal Study of Parents and Children (ALSPAC) 

(Ncombined=2,049, mean age=79.1, 69.6 and 47.2 years, respectively). We also conducted a 

replication MWAS in the ALSPAC children (N=423, mean age=17.1 years).  

Result Wide-spread associations were found between PRS constructed using genetic risk 

variants for depression and DNAm in cytosine- guanine dinucleotide (CpG) probes that 

localised to genes involved in immune responses and neural development (NCpG=599, 

pBonferroni<0.05, p<6.5×10-8). The effect sizes for the significant associations were highly 

correlated between the discovery and replication samples in adults (r=0.83) and in 

adolescents (r=0.76). Additional analysis on the methylome-wide associations was 

conducted for each lead genetic risk variant. Over 40% of the independent genetic risk 

variants showed associations with CpG probe DNAm located in both the same (cis) and distal 

probes (trans) to the genetic loci (pBonferroni<0.045). Subsequent Mendelian randomisation 

analysis showed that DNAm and depression are mutually causal (pFDR<0.039), and there is a 

greater number of causal effects found from DNAm to depression (DNAm to depression: pFDR 

ranged from 0.045 to 2.06×10
-120

; depression to DNAm: pFDR ranged from 0.046 to 2.1×10
-23

).  

Conclusion Polygenic risk scores for depression, especially those constructed from genome-

wide significant genetic risk variants, showed epigenome-wide methylation association 

differences in the methylome associated with immune responses and brain development. 

We also found evidence from Mendelian randomisation evidence that DNAm may be causal 

to depression, as well as a causal consequence of depression. 
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Introduction 

Depression is a highly prevalent condition and a leading cause of global disability1, for which 

the underlying biological mechanisms are unclear. Genetic factors account for a substantial 

proportion of differences in liability to depression, which has a twin-based heritability of 

approximately 37% and with common genetic variants capturing around 6-10% of 

phenotypic variance2,3. Recent genome-wide association studies (GWAS) have identified 

specific genetic risk variants for depression that implicate regional brain alterations4,5. 

Polygenic risk scores (PRS) derived from the results of GWAS studies, have been widely used 

to estimate additive genetic risk6. PRS provides a means to identify traits that share their 

genetic architecture with depression, which may help to prioritise factors of biological and 

mechanistic relevance for the disorder
7
.  

DNA methylation (DNAm) at cytosine- guanine dinucleotides (CpG) sites is one of the most 

studied epigenetic markers and there is growing evidence of its role in understanding 

depression8. DNAm risk scores have been developed from the results of DNA methylome-

wide association studies (MWAS)8. These can be used to predict prevalent depression in 

independent samples, and chronic depression that requires long-term treatment9. DNAm is 

influenced by both genetic and environmental factors 
8,10

 and, in blood tissue, it has a mean 

heritability of 19% across the epigenome
11

 with ~7% of its variance captured by common 

genetic variants12. For the highly heritable DNA methylation probes, genetic effects are 

consistent across tissues13 and developmental stages12. Genetic risk variants for diseases, 

such as schizophrenia, have been found enriched in DNA methylation variation14–16. 

Associations between genetic risk and epigenetic changes can enrich our understanding of 

the functional composition of genetic risk loci, and thus inform the mechanisms that lead to 

the onset of depression
17,18

. However, systematic examination of the molecular genetic 

associations between genetic risk of depression and DNAm has not, to the best of our 

knowledge, been conducted. 

In the present study, we aim to investigate the association between PRS for depression and 

genome-wide DNA methylation. Methylome-wide association studies (MWAS) were 

conducted on four cohorts: Generation Scotland: Scottish Family Health Study (GS, discovery 

sample, N=8,898), the Lothian Birth Cohort (LBC1921), the Lothian Birth Cohort 1936 

(LBC1936), Avon Longitudinal Study of Parents and Children (ALSPAC) adults (adult 

replication sample, combined N=2,049) and ALSPAC children for replication (adolescent 

replication sample, N=423). Mendelian randomisation was used to test for causal 

associations between DNAm and depression using data from the Genetics of DNA 

Methylation Consortium (GoDMC) (N=25,561) and GS. 
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Methods 

Sample descriptions 

GS  

Generation Scotland (GS) is a family-based population cohort with over 24,000 

participants19,20 set-up to identify the causes of common complex disorders, such as 

depression. DNA methylation data and genetic data were both collected, processed and 

quality-checked for 8,898 people (mean age=49.8 years, SD of age=13.7 years, 40.90% were 

men) in two sets. Sample sizes for set 1 and set 2 were 4757 (mean age=48.5 years, SD of 

age=14.0 years, 38.5% were men) and 4141 (mean age=51.4 years, SD of age=13.2 years, 

43.66% were men), respectively. Written informed consent was obtained for all participants. 

The study was approved by the NHS Tayside Research Ethics committee (05/s1401/89). 

Lothian Birth Cohorts (LBC) 1921 and 1936   

Participants from LBC 1921 and LBC 1936
21,22

 were born in 1921 and 1936. Almost all lived in 

the Edinburgh and surrounding Lothian area when recruited. They are a mostly healthy, 

community-dwelling sample of men and women. The sample used in the current analysis 

included 1,330 participants from both cohorts combined with genetic and DNA methylation 

data (LBC 1921: mean age=79.1 years, SD of age=0.6, 39.7% were men; LBC 1936: mean 

age=69.6 years, SD of age=0.8, 50.6% were men; all participants were unrelated). Written 

informed consent was obtained from all participants. Ethics permission for LBC1921 was 

obtained from the Lothian Research Ethics Committee (LREC/1998/4/183). Ethics permission 

for LBC1936 was obtained from the Multi-Centre Research Ethics Committee for Scotland 

(MREC/01/0/56) and the Lothian Research Ethics Committee (LREC/2003/2/29)23,24. 

Avon Longitudinal Study of Parents and Children (ALSPAC) 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is an ongoing longitudinal 

population-based study that recruited pregnant women residing in Avon (South-West of 

England) with expected delivery dates between 1st April 1991 and 31st December 1992
25,26

. 

The cohort consists of 13,761 mothers and their partners, and their 14,901 children, now 

young adults27. The study website contains details of all the data that is available through a 

fully searchable data dictionary and variable search tool 

( http://www.bristol.ac.uk/alspac/researchers/our-data/ ). Ethical approval for the study 

was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics 

Committees. A subsample of 719 unrelated mothers with DNA methylation (DNAm) data 

(mean age=47.2 years, SD of age=4.6) were included in the replication study
28

. 

Supplementary analyses were also conducted on a younger subsample with DNAm 

consisting of 423 young people (mean age=17.1 years, SD of age=1.1 and 41% were boys). 

Details of the selection of participants for these subsamples are in the study by Relton et al28. 

Consent for biological samples has been collected in accordance with the Human Tissue Act 

(2004).  

 

Genotyping and imputation 

Detailed information on the quality control and genotyping methods for GS19, LBC1921, 
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LBC193629 and ALSPAC30 have been previously published and is described briefly below. 

Analyses were conducted on European participants. 

GS  

Each sample was genotyped using the IlluminaHumanOmniExpressExome-8v1.0 BeadChip 

(48.8%) or Illumina HumanOmniExpressExome-8 v1.2 BeadChip (51.2%) with Infinum 

chemistry31. Quality control included removing participants with genotyping call rate<98%, 

SNP removal of those with a minor allele frequency (MAF)<1%, call rate<98%, Hardy-

Weinberg equilibrium (HWE) p-value<5×10-6. Imputation was performed using the Sanger 

Imputation server with the Haplotype Reference Consortium reference panel (HRC.r1-1). 

SNPs with INFO score<0.8 were removed from analysis.  

LBC1921 and LBC1936    

Genotyping was performed using the Illumina610-Quadv1 chip (Illumina, Inc., San Diego, CA, 

USA). Participants were excluded with a call rate<95%. SNPs were removed if MAP<5%, call 

rate<98%, HWE p-value<0.001. Imputation and quality control based on INFO score were the 

same as GS.  

ALSPAC 

Genotyping arrays used were the Illumina Human660W-quad chip for mothers and Illumina 

HumanHap550-quad chip for children. SNPs with missingness>0.05, HWE p-value<1×10-6, 

MAF<0.01 were excluded. The above quality control steps were conducted on the entire 

genotyped sample. Imputation and quality control based on INFO score were consistent with 

similar procedures used in GS.  

 

Polygenic profiling 

Polygenic risk scores (PRS) of depression were calculated using PRSice-2
32

 for GS, LBC1921, 

LBC1936 and ALSPAC separately, using the summary statistics of a genome-wide meta-

analysis of depression by Howard et al.
33 excluding individuals from GS previously included in 

that GWAS meta-analysis. Nine p-value cut-offs were used for thresholding SNPs in the 

summary statistics (pT): 1, 0.5, 0.1, 0.05, 0.01, 1×10-3, 1×10-4, 1×10-5 and 5×10-8 for clumping 

and thresholding. Each set of SNPs was used to generate a depression-PRS in GS. A separate 

PRS was generated using the lead genetic risk variants or their closest proxies (in LD r
2
>0.1) 

reported in the GWAS by Howard et al.
33

 for supplementary analysis. Details of the PRS 

profiling procedures can be found elsewhere33 (also see Supplementary Information and 

Supplementary Table 1-2).  

Subsequently, using the lead risk variants reported by Howard et al
33

, we tested for 

individual SNP-CpG associations in GS. Lead risk variants were selected by extracting the 

most significant proxy SNPs (p<5×10-8) in linkage disequilibrium (LD R2>0.01) with the lead 

variants reported in the Howard et al. study4. A total of 96 SNPs were available and thus 

selected as leading risk variants for further analysis. 

 

DNA methylation data 
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GS  

Genome-wide DNA methylation data was obtained from whole blood samples using the 

Illumina Infinium Methylation EPIC array 

(https://emea.support.illumina.com/array/array_kits/infinium-methylationepic-beadchip-

kit.html). Data processing was performed separately for each set. Quality control (QC) and 

normalisation were conducted using R packages ‘ShinyMethyl’ (version 1.28.0)
34

, 

‘watermelon’ (version 1.36.0)35 and ‘meffil’ (version 1.1.1)36. Details of the protocol are 

described elsewhere37. In summary, quality control procedures removed probes if there was 

an outlying log median methylated signal intensity against unmethylated signal for each 

array, or a bead count<3 in ≥5 % of the total probe sample, or a detection p-value>0.05 for 

set 1 and p-value>0.01 for set 2 in ≥0.5% of the total sample in each respective set. Cross-

hybridising probes that map to genetic variants at MAF>0.05 and polymorphic probes were 

removed38. Samples were excluded if sex prediction from methylation data was inconsistent 

with self-reported data, or a detection p-value >0.05 for set 1 and p-value>0.01 for set 2 

found in >1% of the overall probes for each set respectively. The data was then normalised 

using the ‘dasen’ method from the ‘waterRmelon’ R package (version 1.36.0). 

The raw intensities were then transformed into M-values by log-transforming the 

proportional methylation intensity39. The M-values were corrected using a linear-mixed 

model, controlling for relatedness using the GCTA-estimated genetic relationship matrix40 

for set 1. This step was omitted for set 2 as all participants were unrelated within the set and 

to set 1. The residualised M-values for over 750,000 autosomal CpG probes were then used 

for further analysis. 

LBC1921 and LBC1936    

Genome-wide DNA methylation data was obtained from blood sample using the  

HumanMethylation450K array (https://emea.illumina.com/content/dam/illumina-

marketing/documents/products/datasheets/datasheet_humanmethylation450.pdf)41,42. 

Quality control and normalisation were performed using the ‘minfi’ R package (version 

1.38.0)
41

. Probes with low call rate (<95%), outlying M-values (>3 SD from mean) or 

identified as cross-hybridising and polymorphic were removed43. Participants with 

insufficient cell count information were excluded from analysis. 

All participants in LBC1921 and LBC1936 with methylation data were unrelated. M-value 

transformation were conducted consistently with the GS sample. Data for over 450,000 CpG 

probes were retained for further analysis. 

ALSPAC 

Illumina Infinium HumanMethylation450 Beadchip arrays were used for measuring genome-

wide DNA methylation data from peripheral blood sample. The R package ‘meffil’ (version 

1.1.1) was used for pre-processing, quality control and normalisation as previously 

reported44. Further removal of probes was conducted based on background detection 

(p>0.05) and if they reached beyond the 3 times inter-quantile range from 25% and 75% or 

identified as cross-hybridising or polymorphic
43

. Related (IBD>0.1) participants were not 

included in the analyses30. 

M-value transformation was conducted and over 468,000 CpG probes remained for analysis. 
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Statistical models for methylome-wide association analysis (MWAS) 

A discovery MWAS was initially conducted in GS. Two separate analyses were conducted on 

sets 1 and 2, and the final summary statistics were obtained by meta-analysing the two sets 

of results using METAL (version released in 2011)45. We used the default analysis scheme 

without genomic control correction (genomic inflation factors reported in the 

Supplementary Information). P-values for the meta-analysis were obtained from a fixed-

effect inverse-variance model. A replication analysis on adults was then conducted on the 

total sample from LBC1921, LBC1936 and ALSPAC adults. Replication MWAS was first 

conducted separately for each cohort and then meta-analysed using the same parameters 

for the discovery analysis. Finally, an additional replication MWAS was conducted on ALSPAC 

children. All analyses were conducted using R (version 3.5.1) under Linux environment. 

Linear regression was used to test the associations between depression-PRS and for each 

CpG using the R package ‘limma’
46

 (version 3.48.0) for GS, LBC1921 and LBC1936. The ‘lmFit’ 

function was first implemented to test the association for each CpG. The inference statistics 

of each linear model was then adjusted using the ‘eBayes’ function, by which an empirical 

Bayes method was used to adjust for gene-wise variance using a shrinkage factor. 

Moderated t-statistics and p-values were produced by this step. In ALSPAC, the analyses 

were conducted using the ‘meffil’ (version 1.1.1) R package, using the ‘sva’ option
44

. 

Self-reported smoking status, smoking pack years, DNAm-estimated white-blood cell 

proportions (CD8+T, CD4+T, natural killer cells, B cells and granulocytes)37, batch, the first 20 

principal component derived from the M-values, age and sex were included as covariates for 

the discovery methylome-wide association analysis (see Supplementary Information and 

Supplementary Table 3 for details). Where possible, the same covariates were used in the 

replication analyses, although only smoking status (and not pack years) were available in LBC 

1921, LBC 1936 and ALSPAC. Details for all the covariates included in the replication analysis 

can be found in the Supplementary Information. MWAS were conducted for the nine 

depression-PRS scores separately. P-values were Bonferroni-corrected (p-value threshold = 

6.5×10
-8

 for EPIC array used in GS, 1.1×10
-7

 for 450k array used for replication analysis in 

LBC1921, LBC1936 and ALSPAC adults, and 1.1×10-7 for replication in ALSPAC children). 

Standardised regression coefficients are reported as effect sizes. For the significant CpG 

probes, gene symbol annotation and UCSC classification of CpG Island positions were 

acquired from the ‘UCSC_RefGene_Name’ and ‘Relation_to_Island’ columns, respectively, 

from the annotation object generated by the 

‘IlluminaHumanMethylationEPICanno.ilm10b4.hg19’ R package (version 3.13)
47

.  

Individual SNP-CpG DNAm association tests were also performed, using the same covariates 

and p-value corrections as used in the PRS association analyses. 

 

Gene ontology analysis 

Gene ontology analysis was conducted on the MWAS results from GS using the ‘gometh’ 

function in R package missMethyl48. Default settings were used, which include correction for 

the number of probes per gene. CpGs that showed significant association with depression-

PRS at pT<5×10
-8

 in the discovery analysis were selected as CpGs of interest, ‘EPIC’ was 
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chosen for array type and all CpGs included in the analysis were used as the background list. 

FDR-correction was applied for all analyses. 

 

Colocalisation analysis 

We used Howard et al.’s (2019) MDD GWAS
4
 for MDD-associated SNPs and GoDMC 

summary statistics for mQTL analysis with PGC studies and GS study removed, which 

resulted in 32 remaining studies imputed to the 1000 Genome reference panel13. We used 

the package “gwasglue” (version 0.0.0.9000, https://mrcieu.github.io/gwasglue/) to extract 

SNPs that were +/- 1Mb of each of the 102 genome-wide significant, lead SNPs identified in 

Howard et al. (2019) and then extracted the same SNPs within those regions from the 

GoDMC mQTL analysis. We used the coloc.abf function with default parameters in the “coloc” 

package in R (version 5.1.0)
49

 to perform colocalisation analysis for each SNP association. 

The method tests for five mutually exclusive scenarios in a genetic region: H0: there exist no 

causal variants for either trait; H1: there exists a causal variant for trait one only; H2: there 

exists a causal variant for trait two only; H3: there exist two distinct causal variants, one for 

each trait; and H4: there exists a single causal variant common to both traits. 

 

Mendelian randomisation (MR) 

Three MR methods, inverse-weighted median (IVW), weighted median (WM) and MR Egger, 

were used to test for causal effects between DNA methylation and depression using the 

‘TwoSampleMR’ R package (version 0.5.6)
50,51

.  

GWAS summary statistics for DNAm were from GoDMC and GS. mQTL summary statistics 

from GoDMC included 32 cohorts with 25,561 participants from European ancestry13. The 

summary statistics were computed using a two-phased design. First, every study performs a 

full analysis of all candidate mQTL associations, returning only associations at a threshold of 

p<1×10-5. All candidate mQTL associations at p<1×10-5 are combined to create a unique 

‘candidate list’ of mQTL associations. The candidate list (n=120,212,413) is then sent back to 

all cohorts, and the association estimates are obtained for every mQTL association on the 

candidate list. Candidate mQTL associations were meta-analysed using fixed-effect inverse-

variance method. Details of the database can be found elsewhere
13

. mQTL summary 

statistics from GS (N=~10,000) included a full set of all SNPs with no p-value thresholding. 

Summary mQTL statistics from GS were generated using the OmicS-data-based Complex 

Trait Analysis package (https://cnsgenomics.com/software/osca/#eQTL/mQTLAnalysis)52. 

Covariates were consistent with the MWAS for depression-PRS discovery analysis. Further 

details of the mQTL analysis can be found in the Supplementary Information. 

Summary statistics for depression GWAS by Howard et al.
33 were used. A total of 807,553 

unrelated, European participants were included in the analysis. Details for the study can be 

found elsewhere33. 

GoDMC, GS and depression GWAS samples were mutually exclusive. Individual cohorts that 

overlapped with the Howard et al. depression GWAS and GS were removed from the 

GoDMC mQTL meta-analysis. Depression GWAS summary statistics from Howard et al (2019) 

were calculated excluding GS participants33. See Supplementary Information for details. 
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First, we used mQTL summary statistics from GoDMC to identify causal effects from DNA 

methylation to depression. Second, we used full mQTL summary statistics from GS to 

replicate the findings and to test the causal effect to DNA methylation and depression bi-

directionally. Finally, in contrast to the univariable MR analyses (that is, each risk-outcome 

pair tested separately), a multi-variable MR analysis was conducted to test for direct causal 

associations from DNAm at multiple CpGs to MDD, using the mQTL data from GS. Using this 

method, all CpG probes where there was evidence of a potential causal effect on depression 

were entered into the two-sample MR analysis simultaneously, in order to prioritise SNPs 

that showed the strongest independent casual associations with MDD.  

Exposures were selected from CpG probes found significantly associated with depression-

PRS generated using the p-threshold = 5x10
-8

. As the MHC region contains a large number of 

highly correlated probes, we selected the four independent probes after pruning (r<0.1 for 

at least two nearest probes, pruning window = 3M base pairs). The probes were further 

removed from analyses if they did not present in the GoDMC/GS mQTL data or had <5 

independent genetic instruments overlapping with the outcome summary statistics. In result, 

14 probes were selected for final analyses.  
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Results 

Discovery MWAS of depression-PRS in GS 

Methylome-wide association (MWAS) with depression-PRS at all p thresholds 

There were 599 CpG probes significantly associated with depression-PRS with p-threshold 

(pT) at 5×10-8 (p<6.5×10-8 to reach significance after Bonferroni correction). In contrast to 

many other studies that use polygenic risk profiling at different thresholds to predict 

depression53, both the number of significant associations and the effect sizes decreased as 

PRSs were calculated at increasingly lenient thresholds (Figure 1). For pT of 1×10-6, 1×10-4 

and 0.001, 414, 57 and 17 CpGs were associated with depression-PRS, respectively 

(Supplementary Figures 1). No significant associations were found for PRS using p-value 

thresholds greater than or equal to 0.01. Quantile-quantile plot and statistics for genomic 

inflation factors (ranged from 0.954 to 1.011) can be found in Supplementary Figure 2 and 

Supplementary Table 4. Results using the depression-PRS calculated using only genome-wide 

significant variants are presented below. 

 

DNAm association with depression-PRS at a GWAS p-value association threshold of 5×10
-8

 

The most significant associations of DNAm with depression-PRS were found in the major 

histocompatibility complex (MHC) region (25-35 Mb on Chromosome 6, Figure 2), with 

575/599 (96.0%) of significant associations within this region (pBonferroni ranged from 0.05 to 

1.37×10-111). The top ten probes that showed the greatest associations are listed in 

Supplementary Table 5 (all pBonferroni<2.78×10
-83

). The majority of probes were in Open Sea 

(47.9%) and CpG shores (28.2%), and they were particularly enriched in the CpG shores 

compared to non-significant CpGs (18% for non-significant CpGs, χ2=41.0, df=1, p=1.53×10-10, 

see Supplementary Table 6 and Supplementary Information). After pruning (r<0.1 for at least 

two nearest probes, window = 3Mb), four independent CpG probes were identified within 

the MHC region: cg03270340, cg14345882, cg10046620, cg08116408 (all pBonferroni<2.40×10-

58
). UCSC gene database annotation shows genes that are nearest to the probes are TRIM27, 

HIST1H2AI, TRIM40 and BTN3A2. See Table 1-2, Supplementary Table 5 and Supplementary 

Data 1. 

Supplementary MWAS were conducted on two additional depression-PRSs to investigate the 

associations found within the MHC region. Two additional PRSs were calculated using (1) the 

independent genetic risk variants reported in the depression GWAS by Howard et al. with a 

wider pruning window of 3M base pairs and retaining only one variant in the MHC region 

and (2) SNPs located outside of MHC region, respectively. Analysis (1) was conducted to 

identify if the associations found in the MHC region was due to the additive effect from a 

large number of genetic variants included in the MHC region.  Analysis (2) was conducted to 

find out if the associations found within the MHC region was contributed by genetic variants 

located trans to this region. The number of significant associations found within the MHC 

region for the PRS calculated using independent genetic risk variants reduced from 599 to 25, 

at the MDD-GWAS PRS p-value threshold of 5×10-8. No CpGs within the MHC region were 

found to be significantly associated with the PRS generated from variants mapping without 

the MHC region. See Supplementary Figure 3. 

Outside of the MHC region, 24 probes showed significant associations with depression-PRS 
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estimated across the genome at pT of 5×10-8 (pBonferroni ranged from 0.048 to 4.74×10-70). The 

top ten probes are listed in Supplementary Table 5. Genes mapping near to the top probes 

were associated with histone deacetylase, DNA binding and transcriptional processes (such 

as MAD1L1, TCF4, RERE and ZSCAN31), and neuronal plasticity and growth (for example, 

NEGR1). 

The effect sizes for the significant CpG probes showed high correlations between the two 

data sets (r=0.90), and direction for all significant associations was consistent between sets. 

For these significant probes, the distance to the nearest depression risk locus was 

significantly lower than those that were not significant (significant versus not significant: 

standardised Cohen’s d=0.920, p<1×10-32). There were 21.2% of all significant CpGs located 

outside of 1Mb boundaries of genetic risk loci for depression and outside of the region 

consisted of SNPs in LD (R
2
>0.1) with the genetic risk loci (see Supplementary Data 1). 

 

Replication depression-PRS MWAS in LBC1921, LBC1936 and ALSPAC 

MWAS of depression-PRS on pT of 5×10
-8

 on adult and adolescent samples (LBC1921, 

LBC1936 and ALSPAC)  

We looked at a subset of CpG probes that were significant in the discovery MWAS analysis 

and found that the standardised effect sizes were correlated between the discovery and 

replication meta-MWAS of LBC1921, LBC1936 and ALSPAC adults, with (Nprobe=507, r=0.83) 

or without the probes located in the MHC region (Nprobe=14, r=0.78). There were 98.1% 

associations found in the discovery MWAS remained in the same direction and 71.8% 

remained significant after Bonferroni-correction within the replication analysis. See Figure 3.  

Standardised effect sizes for the significant CpG probes found in the discovery MWAS were 

highly correlated with those in the MWAS on adolescents from ALSPAC (all CpG probes: 

Nprobe=506, r=0.76; no MHC region: Nprobe=14, r=0.79.  

 

MWAS for depression-PRS on all p thresholds on adult samples 

Meta-analysis of the methylome-wide association analysis of depression-PRS for replication 

cohorts (LBC1921, LBC1936 and ALSPAC adults) showed that, for depression-PRS of pT at 

5×10-8, 1×10-6, 1×10-4 and 0.001, the number of significant CpG probes were 265, 203, 59 

and 18, respectively. Similar to the discovery analysis, no significant associations were found 

for PRS of pT≥0.01.  

 

A full list of results for replication analysis can be found in Supplementary Data 1 and 

Supplementary Figures 4-7. 

 

Pathway enrichment analysis 

Gene ontology (GO) terms and KEGG pathways were assessed for the genes associated with 

depression-PRS of pT at 5×10
-8

. There were 119 enriched GO terms and 29 KEGG pathways 

significant after FDR correction (all pFDR<0.044). The majority of the significant GO terms 
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were associated with antigen processing and the immune response. Enriched KEGG 

pathways include antigen processing and immune disease, for example, allograft rejection, 

autoimmune thyroid disease and human T-cell leukemia virus 1 infection. The top ten GO 

terms and KEGG pathways are listed in Tables 1-2. 

A supplementary analysis without probes in the MHC region showed no significant GO terms 

or KEGG pathways after FDR correction. Top GO terms that were nominally significant 

include neural development and metabolic process, for example, phosphagen and 

phosphocreatine metabolic process, cerebellum and cerebellar cortex maturation and 

cerebellar Purkinje cell layer maturation (puncorrected ranged from 0.049 to 1.54×10-3). No 

nominally significant KEGG pathway was found (puncorrected>0.063).  

 

SNP–CpG mapping for the depression risk loci 

SNP-CpG probe associations were investigated by conducting MWAS for each of the 

independent genetic risk loci for depression. There were 6,009 CpG probes that showed 

significant associations with at least one leading genetic risk variant after Bonferroni 

correction.  

There were 94 of the 96 genetic risk variants tested showed significant cis association with 

CpGs within 1 Mb distance (see Figure 4). There were 88 genetic risk variants (91.6% of all 

variants tested) that showed trans associations outside of their 1Mb window and 82 variants 

(85.4% of all variants tested) that had trans associations with CpGs located on at least one 

different chromosome. 

Five genetic loci showed associations with methylation levels at CpGs located in more than 

half of the distal autosomal chromosomes (see Figure 4). Genes close to these genetic risk 

variants were involved in, for example, nucleic acid transcription activities, which includes 

nucleic acid binding (ZNF179 and ESR2), mitotic assembly (MAD1L1) and encoding proteins 

that colocalise with transcription factors (RERE). Regional association plots showing genes 

within 1Mb distance from the five genetic variants can be found in Supplementary Figure 8. 

 

Colocalisation analysis 

We hypothesised that SNPs influencing MDD risk and those influencing DNAm would be 

shared. Colocalisation analysis, however, indicated that there was no strong evidence 

(PP4>0.8) for shared genetic factors between MDD loci and DNAm. The posterior probability 

for one region was supportive of a convincing co-localised association signal for both MDD 

and DNAm in that region (PP4=0.710). Within this region, three SNPs were indicated to have 

a posterior probability of being shared SNPs for the two traits > 0.1: rs73163796=66%, 

rs73163779=17%, and rs11710605=11%. All three loci colocalised with genetic variation 

influencing a smoking-associated CpG probe, cg1509941854. Supplementary Data 2 contains 

results for all 102 regions investigated in colocalisation analysis.  

 

Mendelian randomisation (MR)  
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Discovery MR: causal effect of DNA methylation on depression using GoDMC data 

Three probes showed significant causal effect on depression for all three MR methods with 

consistent direction of effects between methods: cg08344181 on chromosome3, 

cg17862947 on chromosome 1 and cg17841099 on chromosome 12 (absolute βIVW ranged 

from 0.042
 
to 0.103, pFDR ranged from 2.99×10

-47
to 3.60×10

-120
; absolute βMR-Egger ranged 

from 0.052 to 0.122, pFDR ranged from 0.045 to 1.23×10
-6

, pFDR for MR-Egger intercept ranged 

from 0.797 to 0.228; absolute βWM ranged from 0.047 to 0.107, pFDR ranged from 1.23×10-6 

to 2.54×10-76, pFDR for Q-statistics ranged from 0.917 to 0.038). 

Seven other probes: cg07519229, cg13813247, cg14159747, cg17925084, cg19624444, 

cg19800032 and cg23275840, showed significant causal effect using the IVW and WM 

methods (absolute βIVW ranged from 0.019 to 0.046, pFDR ranged from 4.2×10-3 to 1.10×10-8; 

βWM ranged from 0.018 to 0.048, pFDR ranged from 1.70×10-5 to 4.40×10-11, pFDR for Q-

statistics ranged from 0.917 to 3.7×10-28). Effect sizes were consistent for the above probes 

were consistent between the IVW and WM methods. No significant causal effect on 

depression was found using the MR-Egger method for these probes (absolute βMR-Egger 

ranged from 4.7×10
-7 

to 0.003, pFDR ranged from 0.739 to 0.127). However, the direction of 

effects remained the same with the IVW and weighted-median methods and the MR-Egger 

intercept tests showed no evidence of horizontal pleiotropy pFDR ranged from 0.797 to 0.163). 

Results are also shown in Figure 5 and Supplementary Figure 9 and Supplementary Table 7. 

 

Replication MR: causal effect of DNA methylation on depression using GS data 

All of the causal effects of DNA methylation to depression found in the discovery MR 

analysis showed consistent direction in the replication analysis and across all three MR 

methods. For all three MR methods, the effect sizes were highly correlated between 

discovery and replication analyses (r ranged from 0.855 to 0.934). Eight out of ten significant 

effects found in the discovery MR analysis were significant for all three MR methods in the 

replication analyses (absolute βIVW ranged from 0.081 to 1.022, pIVW-FDR ranged from 1.20×10-

7 to 4.21×10-119; absolute βWM ranged from 0.102 to 1.059, pWM-FDR ranged from 1.82×10-7 to 

2.38×10-58). The two other probes showed significant causal effect at two MR methods 

(cg14159747 significant for MR-Egger and WM and cg19800032 significant for IVW and WM, 

see statistics in Supplementary Table 3). MR-Egger intercepts were not significantly deviated 

from 0 for all replication MR (pFDR>0.68), and thus showed no evidence of horizontal 

pleiotropy. See Supplementary Table 8. 

 

Multi-variable MR: independent causal effect of DNA methylation on depression using GS 

data 

We next tested for causal associations between DNAm at multiple CpGs from the discovery 

analysis to MDD. The significant probes were entered into the two-sample MR analysis 

simultaneously, to identify the set of independent SNPs that showed the strongest and 

independent casual associations with MDD using the IVW method. Four probes showed 

causal effects when all CpGs were considered simultaneously. They included cg23275840 on 

chromosome 4, cg19624444 on chromosome 7, cg17925084 on chromosome 14 and 
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cg17862947 on chromosome 12 (absolute βIVW ranged from 0.077 to 1.023, pFDR ranged from 

0.040 to 1.97×10-6, see Supplementary Figure 10 and Supplementary Table 9). Genes 

annotated with these CpG probes are SLC39A1, CORIN, KLC1 and MAD1L1. These genes are 

involved in signalling receptor binding in the brain and hormonal regulation.  
 

MR: causal effects of depression liability on DNA methylation 

MR provided evidence of a causal effect of depression liability on DNA methylation for seven 

CpG probes. Other than the effect to cg09256413 was significant for all three MR methods, 

effects on other probes were significant for two MR methods (for significant causal effects: 

absolute βIVW ranged from 0.057 to 0.172, pIVW-FDR ranged from 6.95×10-3 to 1.48×10-5; 

absolute βWM ranged from 0.0237 to 0.058, pWM-FDR ranged from 0.046 to 8.24×10-3, and 

absolute βMR-Egger ranged from 0.251 to 6.376, pMR-Egger-FDR ranged from 0.024 to 2.05×10
-23

).  

Among all the CpG probes that showed significant causal effects from depression to DNA 

methylation, only cg17862947 on chromosome 12 showed significant bidirectional effects 

between depression and DNA methylation (βIVW=-0.093, pFDR=1.15×10
-4

; βWM=-0.008, 

pFDR=0.506; βMR-Egger=-0.813, pFDR=0.045). However, reversed-MR for this probe showed 

significant heterogeneity of instrumental effects (pFDR for Q statistics < 1×10-16). None of the 

other CpG probes showed consistently significant bi-directional effect with depression in the 

discovery and replication MR. See Figure 6, Supplementary Figure 11 and Supplementary 

Table 10. 
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Discussion 

Polygenic risk scores (PRS) for genetic risk variants of depression showed wide-spread 

associations with peripheral blood DNAm across the epigenome in Generation Scotland: 

Scottish Family Health Study Cohort (GS, N=8,898). The strongest DNAm associations 

showed highly consistent results in the replication analysis in adults (N=2,049, rβ = 0.83) and 

in adolescents (N=423, rβ = 0.76). Significant CpG probes are enriched in immunological 

processes in the human leukocyte antigen (HLA) system and neuronal maturation and 

development. Influence from the genetic risk of depression was both local (cis) and distal 

(trans). Five genetic risk loci showed wide-spread trans effect across half of the autosomal 

chromosomes. Finally, using Mendalian randomisation, we found evidence of a mutually 

causal effect of DNAm on liability to MDD at CpG probes associated with polygenic risk 

scores for depression.  

The probes associated with genetic risk variants for depression map to genes including 

TRIM27, BTN3A2 and HIST1H2AI. These HLA-related genes have been widely found 

associated with psychiatric conditions such as schizophrenia and bipolar disorder6. Other 

genes that located outside of the MHC region, such as BDNF, RERE and ZSCAN31, are 

associated with neuronal development and guidance of neuronal growth
55

, transcriptional 

processes
56,57

, as well as other risk factors for depression, for example, obesity, smoking and 

abnormal physical development58.  

A large proportion of identified CpG probes were localised in open sea areas and CpG island 

shores. Previous studies found that probes showed greater individual variations within the 

CpG island shores
59

, along with higher heritability and greater number of trans effect from 

SNPs13. Methylation at these classes of CpGs may be subject to genetic effects to a greater 

extent than those that map outside such regions. The genes related to the depression 

genetic risk variants in CpG island shores have previously been linked to DNA, RNA and 

chromatin binding60. Differentially methylation in these regions may reflect a regulatory role 

for genetic risk variants through influencing DNA methylation in regions adjacent to CpG 

islands
59

.  

Mendelian randomisation provided evidence for a causal effect of methylation levels at CpG 

probes associated with lead SNPs on depression. After controlling for functional pleiotropy 

shared between CpG probes, four probes showed an independent causal effect on 

depression. Genes annotated with these independent probes are associated with 

phenotypes such as lower total brain volume61, excessive C-reactive protein62, obesity63 and 

adverse lifestyle factors such as smoking64, which are implicated in both patients with 

depression and those who have been exposed to early environmental risks, such as 

childhood trauma65. These phenotypes have also been shown to have causal effects on 

depression in previous MR studies
4,5

.  

Although evidence was found for bidirectional causal effects between DNA methylation and 

depression, statistical evidence was stronger for the causal effect from DNA methylation to 

depression compared to the opposite direction, despite that more genetic variants were 

used for the reversed causal effect, and thus statistical power was greater (NSNP for DNAm to 

depression ranged from 5 to 18 and NSNP for depression to DNAm was 112). The highly 

consistent methylome-wide associations found across adults and adolescents may indicate 

that early genetic influence on DNAm result in a predominantly directional effect from 

DNAm to depression66.  
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The present paper utilises large samples with replication analyses yielding highly consistent 

results. One limitation for interpretating the current findings is that DNA methylation data 

was collected from blood samples, that may not reflect the most relevant cell types in 

depression. Nevertheless, studies have shown that the genetic drivers of DNAm have similar 

effects across multiple cell types13,67. The greater accessibility of DNAm from whole blood 

also has clear sample size and other methodological advantages compared to measures 

obtained from neural tissue post-mortem, and it is more likely that these measures could be 

used in future clinical applications. Future studies could further expand the scope by 

including other cell and tissue types. 

In the current study we demonstrate that genome-wide genetic risk variants for depression 

show wide-spread epigenome-wide DNAm associations both individually and when 

combined in a risk score. These changes implicate antigen processing and immune system 

responses and may provide clues to the underlying mechanisms of depression. 
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Figure 1. Number of CpG probes associated with polygenic risk scores (PRS) at nine different 

p-thresholds (pTs) for discovery analysis. X-axis represents the pTs used for generating PRS. 

Y-axis shows the number of probes significant associated with the given PRS. The four 

different lines represent four types of methods to define significance. 
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Figure 2. Manhattan plot for the discovery methylome-wide association study (MWAS) for PRS of pT at 5×10
-8 

in Generation Scotland (GS). Each dot 

represents a CpG probe. X-axis represents the relative position of the probes in the genome. Y-axis represents -log10-transformed p values. The red dashed 

line represents the significance threshold for Bonferroni correction. 
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Figure 3. Replication MWAS in Lothian Birth Cohort (LBC) 1921, LBC1936 and Avon 

Longitudinal Study of Parents and Children (ALSPAC) adults. (a) Manhattan plot for the 

replication MWAS for PRS of pT at 5×10
-8

. Each dot represents a CpG probe. X-axis 

represents the relative position of the probes in the genome. Y-axis represents -log10-

transformed p values. The red dashed line represents the significance threshold for 

Bonferroni correction. (b) Number of CpG probes significant associated with polygenic risk 

scores (PRS) at nine different pTs for replication analysis. X-axis represents the pTs used for 

generating PRS. Y-axis shows the number of probes significant associated with the given PRS. 

The four different lines represent four types of methods to define significance. (c) Scatter 

plot showing the correlation of standardised regression coefficients between the discovery 

(GS) and replication (LCB1921+LBC1936+ALSPAC adults) analysis. Each dot represents a CpG 

probe. Probes shown in the figure are those associated with depression-PRS of pT at 5×10
-8

 

in the discovery MWAS (in GS). Dots in green represent probes locate in the major 

histocompatibility complex (MHC) regions and those in red represent other probes that 

locate outside of the MHC region. 
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Figure 4. Heatmap showing the SNP-CpG mapping. Each row and column represent a CpG probe and depression risk locus, respectively. Those tests that are 

not significant after Bonferroni-correction are left blank. For those significant associations, a darker cell represents a higher -log10-transformed p-value. All 

CpG probes and depression risk loci were categorised based on which chromosome (CHR) they locate. Within each chromosome, probes and SNPs are 

aligned from left to right or from bottom to top based on their genomic position. 
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Figure 5. Mendelian randomisation (MR) analysis on DNA methylation and depression using data from the Genetics of DNA Methylation Consortium 

(GoDMC). (a) Discovery MR testing causal effect of DNA methylation to depression using GoDMC data. (b) Replication MR testing effect of DNA methylation 

using GS data to depression. (c) MR of reversed directionality testing the causal effect from depression to DNA methylation. X-axes represent p-values for 

MR analyses. Y-axes represent the individual tests conducted.  
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Table 1. Results for gene ontology (GO) analysis for the MWAS on PRS at pT 5×10
-8

. Analyses were conducted 

separately for including and excluding the MHC region. Top ten GO terms are listed in the table. BP=biological 

process, CC=cellular component and MF=molecular function. 

 

  
GO ID Ontology Term N DE PDE PFDR 

W
it
h
 M
H
C
 r
e
g
io
n
 

GO:0002428 BP 

antigen processing and presentation of peptide 

antigen via MHC class Ib 9 7 <1E-322 <1E-322 

GO:0002476 BP 

antigen processing and presentation of endogenous 

peptide antigen via MHC class Ib 8 7 <1E-322 <1E-322 

GO:0002483 BP 

antigen processing and presentation of endogenous 

peptide antigen 15 8 <1E-322 <1E-322 

GO:0019883 BP 

antigen processing and presentation of endogenous 

antigen 22 8 <1E-322 <1E-322 

GO:0019885 BP 

antigen processing and presentation of endogenous 

peptide antigen via MHC class I 15 8 <1E-322 <1E-322 

GO:0042613 CC MHC class II protein complex 14 8 <1E-322 <1E-322 

GO:0042611 CC MHC protein complex 23 14 1.66E-24 5.38E-21 

GO:0042605 MF peptide antigen binding 23 11 1.97E-17 5.61E-14 

GO:0071556 CC 

integral component of lumenal side of endoplasmic 

reticulum membrane 26 11 3.92E-17 8.91E-14 

GO:0098553 CC lumenal side of endoplasmic reticulum membrane 26 11 3.92E-17 8.91E-14 

W
it
h
o
u
t 
M
H
C
 r
e
g
io
n
 

GO:0072686 CC mitotic spindle 101 2 0.002 1 

GO:1902412 BP regulation of mitotic cytokinesis 6 1 0.002 1 

GO:0021691 BP cerebellar Purkinje cell layer maturation 2 1 0.002 1 

GO:0021590 BP cerebellum maturation 3 1 0.002 1 

GO:0021699 BP cerebellar cortex maturation 3 1 0.002 1 

GO:0045666 BP positive regulation of neuron differentiation 353 3 0.003 1 

GO:0021578 BP hindbrain maturation 6 1 0.004 1 

GO:0021626 BP central nervous system maturation 7 1 0.004 1 

GO:0001093 MF TFIIB-class transcription factor binding 3 1 0.004 1 

GO:0070369 CC beta-catenin-TCF7L2 complex 3 1 0.004 1 
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Table 2. Results for pathway analysis for the MWAS on PRS at pT 5×10
-8

. Analyses were conducted separately for 

including and excluding the MHC region. Top ten KEGG pathways are listed in the table. 

 

KEGG pathway ID Description N DE P PFDR 

W
it
h
 M
H
C
 r
e
g
io
n
 

path:hsa04940 Type I diabetes mellitus 41 13 6.03E-19 2.01E-16 

path:hsa05330 Allograft rejection 34 12 1.17E-18 2.01E-16 

path:hsa05332 Graft-versus-host disease 37 12 2.39E-18 2.74E-16 

path:hsa04612 Antigen processing and presentation 66 14 3.82E-18 3.29E-16 

path:hsa05320 Autoimmune thyroid disease 46 12 2.61E-17 1.79E-15 

path:hsa05416 Viral myocarditis 55 12 8.53E-15 4.38E-13 

path:hsa04145 Phagosome 140 15 8.91E-15 4.38E-13 

path:hsa05150 Staphylococcus aureus infection 82 10 6.89E-12 2.96E-10 

path:hsa05322 Systemic lupus erythematosus 112 11.5 8.87E-12 3.39E-10 

path:hsa04514 Cell adhesion molecules 136 13 2.21E-11 7.59E-10 

W
it
h
o
u
t 
M
H
C
 r
e
g
io
n
 

path:hsa04110 Cell cycle 121 1 0.067 1 

path:hsa04114 Oocyte meiosis 114 1 0.070 1 

path:hsa04514 Cell adhesion molecules 118 1 0.083 1 

path:hsa04914 Progesterone-mediated oocyte maturation 86 1 0.063 1 

path:hsa05166 Human T-cell leukemia virus 1 infection 190 1 0.130 1 

path:hsa05203 Viral carcinogenesis 152 1 0.106 1 

path:hsa00010 Glycolysis / Gluconeogenesis 64 0 1 1 

path:hsa00020 Citrate cycle (TCA cycle) 28 0 1 1 

path:hsa00030 Pentose phosphate pathway 25 0 1 1 

path:hsa00040 Pentose and glucuronate interconversions 32 0 1 1 
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