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ABSTRACT 

Cystic fibrosis (CF) is an inherited disorder caused by biallelic mutations of the cystic fibrosis 

transmembrane conductance regulator gene (CFTR). Converging lines of evidence suggest that 

CF carriers with only one defective CFTR copy are at increased risk for CF-related conditions 

and pulmonary infections, but the molecular mechanisms underpinning this effect remain 

unknown. Here, we performed transcriptomic profiling of peripheral blood mononuclear cells 

(PBMCs) of CF child-parent trios (proband, father, and mother) and healthy control PBMCs or 

THP-1 cells incubated with the plasma of these subjects. Transcriptomic analyses revealed 

suppression of cytokine-enriched immune-related genes (IL-1β, CXCL8, CREM) implicating 

lipopolysaccharide tolerance in innate immune cells (monocytes) of CF probands and their 

parents and in the control innate immune cells incubated with proband or parent plasma. These 

data suggest that not only a homozygous but also a heterozygous CFTR mutation can modulate 

the immune/inflammatory system. This conclusion is further supported by the findings of lower 

numbers of circulating monocytes in CF probands and their parents compared to healthy controls, 

the abundance of mononuclear phagocyte subsets (macrophages, monocytes, and activated 

dendritic cells) which correlated with Pseudomonas aeruginosa infection, lung disease severity, 

and CF progression in the probands. This study provides insight into demonstrated CFTR-related 

innate immune dysfunction in individuals with CF and carriers of a CFTR mutation that may 

serve as a target for personalized therapy.  
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Introduction 

Cystic fibrosis (CF) is a hereditary disorder caused by mutations in the cystic fibrosis 

transmembrane conductance regulator gene (CFTR). However, both intrinsic and extrinsic 

variables directly and/or indirectly associated with CFTR likely influence the course of CF, 

particularly the immune/inflammatory phenotype of CF lung disease (1). Many pathological 

hallmarks of CF such as chronic airway infection, persistent inflammation (2), and defective 

mucociliary clearance, are consequences of deficient or defective CFTR protein in airway 

epithelial cells. Over time, these cells fail to eradicate pulmonary pathogens, contributing to a  

mucosal immunodeficiency syndrome (3-5). In previous studies, plasma from individuals with 

CF compromised biological signaling and dysregulated mRNA and miRNA interactions in 

peripheral blood mononuclear cells (PBMCs), suggesting an impaired response in the circulating 

immune cells of CF patients (6-10). 

In support of this notion, innate immune cells, represented primarily by monocytes, macrophages 

and dendritic cells, which are initially recruited to combat bacterial pathogens, have been shown 

to be dysregulated in CF airways (10). Although the significance and molecular basis of this 

dysregulation remains unclear, mutations in CFTR can affect not only the innate immune 

function of airway epithelial cells, but also alter innate immunity that contributes to recurrent and 

progressive infection in CF (11) (12, 13). Our previous work showed that CF F508del/F508del 

(homozygous) murine macrophages have a defective response and reduced cytotoxic activity 

against the bacterial pathogen Pseuodomonas aeruginosa (Pa) (8) which is prevalent in CF 

patients (14, 15). While bacterial infections exploit these defects in macrophage function (16, 

17), treatment with the CFTR modulator, ivacaftor, improves macrophage-mediated cytotoxicity 

(18). Further, long noncoding (lncRNAs) have key roles in regulating the innate immune 
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response to Pa in CF, combining with other regulatory mechanisms to alter the expression of 

immune/inflammatory genes within monocytes and macrophages (19-22). However, the genes 

and regulatory pathways involved in this immune dysregulation in individuals with CF have not 

been well characterized. 

As CF is an autosomal recessive disorder with two defective CFTR copies, heterozygous carriers 

are typically considered healthy. However, CF carriers have an increased risk for a broad range 

of conditions affecting multiple organ systems, including asthma and airway infections (23, 24). 

Several studies reported familial clusters of pulmonary infections with nontuberculous 

mycobacteria, suggesting genetic risk factors, including CFTR mutations (25, 26). The 

observations that both CF carriers (CF parents) and CF patients are at higher risk of CF-related 

conditions than  people without CFTR mutations suggest that distinct CFTR-related mechanisms 

are at play in both heterozygous and homozygous individuals. For the first time, this study 

directly addresses potential mechanisms in heterozygous individuals that contribute to this 

susceptibility (27, 28). 

To understand the distinct molecular features and pathways contributing to known immune 

phenotypes in individuals with CF and in carriers, we assembled a cohort of parent-child trios 

(CF proband, father, and mother) and 20 unrelated healthy controls (HCs) without CFTR 

mutations (Table 1, Fig 1). We identified CFTR-related immune suppression in each trio 

subgroup through transcriptomic profiling using three cellular models: 1) a PBMC model of the 

impact of the CFTR mutation in immune cells; 2) a plasma model, where the donor PBMCs act 

as reporters of the immune microenvironment and compromised immune/inflammatory 

conditions in individuals with CF; and 3) a THP-1 cellular model that replicates the effects of 

this immune microenvironment on monocyte and macrophage function. Utilizing a previously 
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established cell composition deconvolution method (8), we observed gene suppression in innate 

immune cells from CFTR-mutated PBMCs and from healthy PBMCs incubated with CF plasma. 

We determined that the abundance of mononuclear phagocytes correlates with CF clinical 

characteristics. Plasma samples from individuals within the trios were used in ex vivo cultures of 

THP-1 monocytes and macrophages to further characterize the transcriptomic profiles unique to 

CF patients and the profiles shared by CF trios. Consistent with these findings, our gene set 

enrichment analyses indicated impaired responsiveness of CF PBMCs and monocytes to 

lipopolysaccharide (LPS), an integral component of the Pa cell envelope. This approach of 

blood-based profiling and association with CF disease state provides important clues in 

understanding the vulnerability of carriers of CFTR mutations. 

Results 

Profiling of PBMCs reveals significant downregulation of immune/inflammatory markers 

To identify blood-based gene predictors that are clinically useful, we collected PBMCs from CF 

probands (n=14), their mothers and fathers (n=14), and HCs (n=8) and measured transcriptional 

expression in these cells with a whole-transcriptome array (Figure 1; Table 1, PBMC Model; 

Methods). Differential expression analyses revealed that a substantial number of transcripts 

(2267 out of 135,750) were differentially expressed between CF probands and HCs (Figure 2A, 

left). More than half of the differentially expressed genes/transcripts (DEGs) encode proteins 

(n=1422, including 213 from the “coding” category and 991 from the “multiple complex” 

category, where “multiple complex” is defined as a transcript reported in multiple locus types 

(Figure 2A, left; Table S1). Among these DEGs, >70% of coding RNAs (including multiple 

complex) and >80% of lncRNAs were downregulated in CF proband PBMCs (Figure 2A, right). 
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We identified DEGs that showed large fold changes in expression in proband PBMCs relative to 

HC PBMCs (Figure 2B). Among these genes were key cytokines (e.g., IL-1β), chemokines (e.g., 

CXCL8), nuclear receptors (e.g., NR4A3), and modulators of immune signaling pathways (e.g., 

CREM) (Figure 2C). We identified fewer upregulated protein-coding genes than downregulated 

genes in the proband PBMCs, including proteins that interact with TNF receptor-associated 

factor (TRAF3IP3) and post-transcriptional regulators (zinc finger domain-containing protein 

ZC3H4) (Figure 2C). Most of the top-ranking pathways enriched in the DEG list were cytokine-

related signaling pathways (29); each was downregulated in CF proband PBMCs compared with 

HC PBMCs (ratio of upregulated and downregulated gene numbers < 1) (Figure 2D). Thus, the 

observed imbalance between up- and downregulated transcript profiles in PBMCs of CF 

probands versus PBMCs of HCs provides further evidence of immune/inflammatory 

dysregulation in CF. 

CF probands and parents share similar transcriptomic features in PBMCs 

To determine the transcriptomic signatures which were unique to and shared among the 

subgroups within our CF proband-parent trios, we performed transcriptomic profiling using both 

the PBMC and  plasma models consisting of healthy donor PBMCs cultured with plasma from 

the CF probands or either parent (Figure 1; Table 1). The CF proband-associated transcriptomic 

profiles from the PBMC and plasma models shared common DEGs (Figure 2E; Figure S1; Table 

S2) and functional pathways (Figure 2E; Table S3), suggesting that compared with HCs, the CF 

probands exhibit extensive alterations leading to abnormal immune cell composition (Figures 4 

and 5), as well as cytokine and chemokine profiles (Figure 2D).  
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Principal component analysis (PCA) of transcriptomic profiles from the plasma model (n=92 in 4 

subgroups; Table 1) revealed overlap among the CF proband and parent subgroups within the CF 

trios, and which clustered separately from the HCs (Figure 3A; Figure S2A, left). In contrast, 

PCA of transcriptomic profiles from the PBMC model (n=36 in 3 groups) indicated no 

separation between the HC and CF trios subgroup clusters, although the HC cluster was not as 

broadly distributed as the proband and mother clusters (Figure 3A; Figure S2A, right). There was 

substantial overlap in the DEGs from CF probands versus HCs and from CF parents versus HCs 

in both the PBMC model (n=1737) and the plasma model (n=826) (Figure 3B). Interestingly, no 

significant DEGs were detected when comparing CF probands with parents in either model. In 

the PBMC model, we identified DEGs shared among CF probands and CF mothers (trios-shared 

genes; n=1737) and DEGs unique to CF probands (proband-unique genes; n=530), but no DEGs 

unique to CF mothers (Figure 3B; Tables S4-5).  

We next performed hierarchical clustering predicting homogeneous groups among trio subjects. 

Notably, only the dendrogram generated using mother/proband-shared genes from the PBMC 

model (n=1737) organized subjects into groups in accordance with their family structures (Figure 

3C, upper). This familial grouping was observed less consistently in the clustering dendrogram 

developed using proband-unique genes in the PBMC model (Figure 3D, upper) or trios-shared 

genes in the plasma model (Figure S2B). Overall, these results suggest that the mother/proband-

shared genes in the PBMC model capture the relative homogeneity of gene expression across CF 

trios subjects. 

The resulting heatmaps revealed near-identical expression patterns of trios-shared genes across 

the CF trios (mothers and probands vs. HCs; Figure 3C, lower). In contrast, we observed less 

similarity between mothers and probands in the proband-unique genes (Figure 3D, lower). We 
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therefore asked whether the trios-shared genes displayed a consistent direction and magnitude of 

expression in the trios relative to HCs. The correlation between the expression levels of shared 

genes in CF probands and their mothers was significant (p<0.0001) and showed a strong, linear 

relationship (upregulated: R2=0.927, downregulated: R2=0.852) (Figure 3E, left).  The 

correlation of the expression of proband-unique genes remained significant (p<0.0001) but 

showed a weaker linear relationship (upregulated: R2=0.81, downregulated: R2=0.56) (Figure 3E, 

right). Together, these transcriptomic profiling results indicate that parents and CF probands 

share highly similar expression patterns in the PBMC and plasma models.  

CF probands and parents share unique immune cell compositions  

We previously developed a cell composition deconvolution method to estimate immune cell-type 

composition from gene expression data (8). Using this method, we found that myeloid cell 

subsets were less abundant while lymphoid cell subpopulations were more abundant in THP-1 

cells incubated with CF proband plasma versus HC plasma (8). Here, we employed a similar 

deconvolution method (Methods, Figure S3-4) to infer the immune cell compositions of CF 

probands and their parents in our plasma model with donor PBMCs. We estimated a significantly 

higher abundance of 4 out of 5 lymphoid cell subsets (total T cells, CD4+ T cells, B cells, and 

natural killer cells) and a significantly lower abundance of all 5 myeloid cell subsets (monocytes, 

macrophages, activated monocytes, activated macrophages, and dendritic cells [DCs]) in cells 

incubated with CF proband plasma than in cells incubated with HC plasma (Figure 4A; Figure 

S5A). These differences were also observed when comparing results obtained with the plasma of 

CF parents compared to HC plasma. 
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The immune cells in the plasma model were harvested from a single donor (identical genomic 

background), whereas the immune cells in the PBMC model were harvested from the CF 

subjects and HCs (yielding greater genomic heterogeneity; Table 1). We hypothesized that 

mutations in CFTR might lead to a phenotype that disrupts immune-cell composition in CF 

PBMCs. Indeed, higher and lower cell numbers, respectively, were estimated in the lymphoid 

and myeloid cell subsets of PBMCs from CF probands versus HCs, but these differences were 

not significant (Figure 4B; Figure S5B). Monocytes and macrophages were significantly less 

abundant in CF parents (p<0.05) than in HCs (Figure 4B), but no significant difference was seen 

in CF probands versus HCs. These findings were confirmed via flow cytometry: both total 

circulating monocytes (CD14+) and classical monocytes (CD14+CD16−) were less abundant in 

CF probands than in HCs (Figure S5D). These results suggest that immune cell composition 

differs between CF trios and HCs, potentially identifying involvement of the monocyte-

macrophage lineage in CF-related immunodeficiency. 

Phagocytic cell abundance is associated with CF disease severity and progression 

Mutations in CFTR are divided into 6 classes (I-VI) according to aspects of CFTR biogenesis, 

metabolism, and function (30). The clinical severity and progression of CF can be predicted by 

categorical attributes such as CFTR class, pancreatic sufficiency status, Pa infection status, and 

numerical measures such as sweat-chloride level and forced expiratory volume in one second 

(FEV1) (30-33). To associate our findings on immune-cell composition in CF with clinical 

parameters, we assigned CF probands into subgroups based on the categorical attributes listed 

above and related the cell-abundance scores to each subgroup. For both the PBMC and plasma 

models, significantly fewer monocytes and macrophages were seen in the severe CF subgroups 

(class I/II/III and pancreatic insufficient [PI]) than in the mild/moderate subgroups (class IV and 
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pancreatic sufficient [PS]) or HCs (Figure 5A-D). Pa infection was negatively associated with 

monocyte abundance in the plasma model (Figure 5E) but not in the PBMC model (data not 

shown). Moreover, in the PBMC model the abundance of mononuclear-phagocyte subsets 

(macrophages, monocytes, and activated DCs) was negatively correlated (p<0.05) with sweat-

chloride levels and FEV1 values (Figure 5F-G). Collectively, these analyses indicate that the 

immune dysregulation associated with CFTR mutations likely results from the loss of innate 

immune cells and that the deficiency of mononuclear phagocytic cells, in particular, is closely 

linked to Pa infection, clinical severity, and the progression of lung function impairment in CF. 

CF trios plasma triggers a robust response in THP-1 monocytes but not macrophages 

The monocyte cell line THP-1 has been used extensively to study monocyte and macrophage 

functions, mechanisms, and signaling pathways (34). Given the identification of monocytes and 

macrophages in the analyses reported above, we turned our attention to a model in which we 

cultured CF proband plasma with THP-1 cells in the presence or absence of phorbol 12-myristate 

13-acetate (PMA) to differentiate these cells into macrophages (Figure 1; Table 1). 

Transcriptomic profiling identified >4,800 DEGs (out of 135,750 transcripts analyzed) in THP-1 

monocytic cells cultured with plasma from CF probands or HCs, but only 199 DEGs from THP-

1 macrophage-differentiated cells cultured in the same manner (Figure 6A). DEGs from the 

THP-1 monocytes were consistently associated with a significant higher fold change than DEGs 

from the THP-1 macrophages (Figure 6B-C). In contrast to the results described above, in which 

most DEGs in CF proband cells were downregulated in PBMCs (Figure 2B-C), similar numbers 

of DEGs were both up- and downregulated in the THP-1 monocytes and macrophages (Figure 

6B-C; Table S1-2). Pathway analysis of DEGs from the THP-1 model (both monocytes and 

macrophages) identified enrichment in immunoregulatory pathways such as transcription factors, 
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cytokines, and receptors (Figure 6D; Table S3). Very few genes or pathway signatures were 

shared between the THP-1 model and the plasma model (Figure 6E) or the PBMC model (data 

not shown), however, consistent with the THP-1 model being a unique model specifically 

representing monocytes (34). In cell-growth assays of undifferentiated THP-1 cultures, plasma 

from CF probands with Pa infection significantly inhibited the proliferation of these monocytes 

(Figure 6F). Thus, plasma from CF probands appears to act as a modulator in an 

immunoregulatory capacity, inducing a broad and strong activation of THP-1 monocytes that is 

much more robust than that detected in THP-1 macrophages. 

Next, we sought to determine whether the plasmas of CF probands and their parents evoke 

similar transcriptomic results in the THP-1 model. PCA of transcriptomic profiling data from 

both THP-1 monocyte and macrophage samples (n=21 in 7 groups) revealed that monocytes, but 

not macrophages, from CF trio subgroup clusters always overlapped, whereas the HC clusters 

remained distinct (Figure 7A). In the THP-1 monocytes and macrophages we identified trios-

shared genes (n=1227 and 108, respectively) and proband-unique genes (n=2066 and 91, 

respectively) (Figure 7B, Table S4-5), as we did in the PBMC model (Figure 3B).  As in the 

PBMC model, approximately one-fourth (1227 out of 4863) of the DEGs identified by 

comparing THP-1 monocytes incubated with CF proband plasma with those incubated with HC 

plasma were also differentially expressed in THP-1 monocytes incubated with CF parent plasma 

compared with those incubated with HC plasma (Figure 7B). Trios-shared genes and proband-

unique genes in the THP-1 monocyte model were similarly identified from the total DEGs and 

used to identify homogeneous groups of subjects through hierarchical clustering (Figure 7C-D). 

Our analyses confirmed that trios-shared genes reflected familial structures and the expression 

patterns shared between THP-1 monocytes incubated with CF proband or parent plasma. 
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Moreover, the expression of trios-shared genes showed a significant (p<0.0001) and moderately 

linear relationship (upregulated: R2=0.513, downregulated: R2=0.559) in THP-1 monocytes 

incubated with CF proband or parent plasma, whereas proband-unique genes showed weaker 

correlations in expression between THP-1 monocytes incubated with CF proband or parent 

plasma (upregulated: R2=0.168, downregulated: R2=0.145) (Figure 7D; Figure S6). When we 

profiled miRNAs using an independent microarray (Methods), we observed similar miRNA 

expression patterns across CF trio groups (Figure S7A) and miRNA profiling revealed no 

significant differences in the expression of genes or miRNAs between THP-1 monocytes 

incubated with CF proband or parent plasma (Figure S7B). Therefore, we conclude that plasma 

from CF  parents induces an immune response very similar to that induced by plasma from CF 

probands. 

Endotoxin tolerance is involved in the immune response shared by CF trios subgroups 

Given the similarities between results obtained with PBMCs and plasma from CF probands and 

parents, we sought to characterize the top-ranked upstream regulators and causal molecular 

networks in CF probands versus HCs (PBMC model) using Ingenuity Pathway Analysis (IPA) 

(Methods). Interestingly, we identified “lipopolysaccharide (LPS)” as the top-ranked upstream 

regulatory molecule and “LPS-associated signaling” as the top-ranked causal network inhibited 

in PBMCs with a CFTR mutation (Figure 8A; Table S6). Of note, LPS is an integral component 

of the Pa cell envelope (REF). To validate this finding using large collections of published 

studies, we identified two core sets of protein-coding genes in the DEGs from the PBMC and 

plasma models (n=140) and the THP-1 monocyte model (n=365) (Figure 8B; Figure S8A). Three 

input gene sets (Table S7) that included genes regulated in the same direction (up- or 

downregulated) were submitted for gene set enrichment analysis (GSEA) in the Molecular 
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Signatures Database (MSigDB) (35-38). Searches on input gene sets #1 and #2 returned 

significant matches that included gene sets previously defined from PBMCs, monocytes, or 

macrophages (Figure 8C; Figure S8B). Out of the top 10 gene sets that matched input gene set 

#1, 5 were associated with LPS or TLR4-interacting protein triggering receptor expressed on 

myeloid cells-1 (TREM1; Figure 8C). Similarly, input gene set #2 matched with LPS-stimulated 

gene sets (Figure S8B). 

We next compared the fold changes in the expression of the LPS- and TREM1-induced genes 

shared in our profiling result with one published dataset from the search result (GEO GSE9988, 

CF proband versus HCs, THP-1 cells) (39). A significant but modest correlation was observed 

between genes identified in our experiment and the annotated LPS-induced genes (R=0.41, 

p<0.01) but not the TREM1-induced genes (R=0.001, p=0.88) (Figure 8D; Figure S8C). 

Together, these results suggest that monocytes from CF probands and carriers are less responsive 

to LPS, implying development of an LPS-tolerant state. 

Discussion 

Recent work in our laboratory and others suggests a state of immune dysfunction in CF (4, 8), 

but it remains unclear whether this dysfunction arises from a primary intrinsic abnormality in 

immune cells themselves or is a byproduct of the infection microenvironment created by the 

CFTR defect. Abnormalities of CFTR function impair host defense, mucociliary clearance, and 

microbicidal activity in airways; dysfunctional immune cells contribute to the impaired response 

to infection(4). Consequently, most CF patients suffer intermittent infections with Pseudomonas 

aeruginosa (Pa) that progress to chronic infection(40). We previously demonstrated that CF 

patients exhibit changes in inflammation-related transcripts that correlate with disease status(6, 
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41), and we(8, 9) and others(18) identified monocyte and macrophage functions that were 

impaired in CF; these functions were not corrected by CFTR modulators. 

In the present study, using 3 cellular models (Figure 1; Table 1) we capture the impact of the 

intrinsic deficiency (CFTR mutation) on circulating immune cells as well as the impact of the 

unhealthy immune microenvironment and compromised inflammatory milieu on circulating 

immune cells, particularly monocytes and macrophages, in CF probands and carriers.  Our 

genomic and transcriptomic analyses identified DEGs that are associated with decreased activity 

in CF PBMCs. Our analyses also revealed changes in the abundance of mononuclear phagocytes 

(monocytes, macrophages, and DCs) associated with CF severity, Pa infection status, and 

disease progression. In addition, our THP-1 model demonstrated that monocytes—rather than 

monocyte-derived macrophages—respond dramatically to CF proband or carrier plasma. Gene-

set enrichment analyses identified downregulation of LPS signaling in all cellular models, 

suggesting a loss of reactivity to LPS in CF PBMCs and monocytes. 

Most existing CF profiling studies (42-46) have concentrated on CF airways and lungs, but CF 

immune dysfunction is likely extra-pulmonic, involving systemic alteration of immune function 

allowing for persistence of  chronic infection (4, 11, 47). Consistent with this hypothesis, the 

immune-related transcriptomic profiles identified here (Figure 2A-2D) suggest that the innate 

immunodeficiency in CF is apparent outside of the chronically infected environment of the lung, 

a deficiency also seen in CF carriers.  

In all 3 cellular models, we uncovered no significant differences between the transcriptomic 

profiles or those induced by the plasma of CF carrier and probands (Figure 3B, 7B), although we 

did identify groups of DEGs that were shared and co-expressed in CF patients and carriers (trios-
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shared genes) versus HCs (Figure 3C, 3E, 7C). These results are not surprising given prior 

evidence suggesting that a genetic load of 50% wild-type CFTR is not sufficient for maintaining 

health (24, 27). CF carriers may constitute a haploinsufficient population that is at a higher risk 

than the non-carrier population for developing respiratory infections and other diseases 

commonly associated with CF (23, 25-27).  

PBMCs are a diverse mixture of highly specialized immune cell subsets that include myeloid and 

lymphoid cells (48). Under physiologic conditions in healthy subjects, CFTR protein is 

abundantly expressed in airway epithelial cells but expressed at lower levels in PBMCs (49). 

Nonetheless, CFTR is believed to carry out an irreplaceable function in myeloid cells (11, 18, 

50). Notably, Sun and colleagues identified a set of genes in PBMCs that predict clinical 

responsiveness to ivacaftor therapy; using IPA, they mapped these genes to cellular processes 

that regulate innate immunity and inflammation (51). It remains unclear, however, whether these 

transcriptomic alterations were a direct effect of CFTR modulation in PBMCs or instead 

reflected systemic effects due to correction of the pathological environment generated as a result 

of the CFTR defect. Employing processes used to identify genes associated with ivacaftor 

responsiveness (51), we found that unlike HC PBMCs and HC plasma-cultured counterparts, the 

innate immune pathway was downregulated in CFTR-mutated PBMCs and in CF plasma-

cultured healthy PBMCs and THP-1 monocytes (Figure 2D, 6D). 

Monocytes typically account for 10–20% of total PBMCs found in blood (48), and these 

circulating monocytes are highly phagocytic (52, 53). Several powerful in silico approaches have 

been established to monitor changes in immune cell composition, using transcriptomic profiles to 

reveal distinct functionalities in cell subsets (54, 55). Our observations that monocytes and 

macrophages are significantly less abundant in CF trios subgroups than in HCs (Figure 4B) are 
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consistent with the findings of our previous study (ref 8) as well as a recent report that the 

intrinsic molecular mechanisms controlling leukocyte recruitment and migration are severely 

impaired in CF monocytes (56). Taken together, these results support the notion that CFTR 

mutations lead to immune dysfunction and an immune deficiency. Notably, ivacaftor treatment 

does not change the abundance of PBMCs or the composition of immune subsets (monocytes, T 

cells, or B cells) (57). Further, these findings suggest that the cumulative abnormality in CF 

innate immunity is primarily caused by the fluid microenvironment resulting from the 

consequences of defective CFTR function. Since the intrinsic CFTR mutation disrupts monocyte 

recruitment and migration and cytokine levels and cell-to-cell interactions play major roles in 

this regulation (58), it follows that CFTR modulator therapy would not effectively reverse these 

consequences (59). 

Given that individuals with CF commonly experience lung disease progression caused by 

chronic Pa colonization (14, 15), it is not surprising that Pa infection was associated with 

monocyte/macrophage abundance (Figure 5E), as observed in our previous study (ref 8). We also 

found evidence of negative associations between monocyte/macrophage abundance and CF 

disease severity (Figure 5A-D, 5F-G). Interestingly, these associations were not equally 

represented in the plasma and PBMC models: changes in monocyte/macrophage abundance were 

more strongly associated with CFTR mutation class (Figure 5A) and pancreatic status (Figure 

5B) in the plasma model but more strongly associated with sweat chloride and FEV1 levels in the 

PBMC model (Figure 5F-G). These findings add to a growing body of evidence that the 

abundance of circulating monocytes can predict disease severity and progression as seen in 

chronic obstructive pulmonary disease (60) (61) (62) and idiopathic pulmonary fibrosis (63). 
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In our quest to identify the genes and pathways that underlie impaired innate immunity in CF, we 

uncovered a set of gene signatures (input gene set #1) that was shared by CF trios subgroups 

relative to HCs and downregulated in both PBMC and plasma models (Figure 8B). The gene 

signatures identified in the PBMC model (Figure 3C) better represent the features shared by CF 

trios than signatures identified from THP-1 cells (Figure 7C) because the correlation of the 

transcriptomic profiles between CF probands and carriers was much stronger in PBMCs (Figure 

3E) than in THP-1 cells (Figure 7E). Further, GSEA revealed that these signature genes highly 

overlapped with LPS- and TREM1-induced genes, although these genes were regulated in 

opposite directions (Figure 8C-D). The significance of LPS or TREM1 as upstream regulators 

was supported by an independent IPA performed on data from the PBMC model (Figure 8A) and 

previous analyses of the plasma model (6, 8). As an activating receptor expressed on monocytes, 

TREM1 interacts and synergizes with the LPS/TLR4 receptor complex to trigger a respiratory 

burst, phagocytosis, and cytokine release in the innate immune system (39, 64, 65). However, CF 

monocytes are locked in an endotoxin-tolerant state (66) that is at least partly due to robust 

downregulation of TREM1 (67), and research has suggested a soluble endotoxin present in the 

bloodstream of individuals with CF may cause endotoxin tolerance in circulating monocytes 

(68). Consistent with these reports, we detected lower expression of LPS- and TREM1-induced 

genes (Figure 8C), suggesting that CF PBMCs are less responsive to LPS and have acquired an 

“LPS-tolerant state”. However, the presence of soluble endotoxin has not yet been independently 

verified, and the downregulation of TREM1 in CF patients has recently been challenged (69). 

How long does the tolerance to LPS last and is it reversible, given that CF patients can develop 

chronic Pa infection (70)?  Better understanding of longitudinal exposure to LPS in CF patients 

may yield important mechanistic insights into the causes and consequences of LPS tolerance. 
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Although supportive of the concept of immune dysfunction and immunodeficiency, the present 

study includes a number of limitations. First, many differentially expressed lncRNAs were 

identified (Figure 2A, 6A) in both the PBMC and THP-1 models, but the clinical significance of 

these lncRNAs remains unclear, partly due to a lack of detailed information about their 

biological functions. Given that a significant number of lncRNAs has been implicated in LPS 

tolerance (71, 72), it remains unknown how their function enables long-lasting suppression of the 

LPS- and TREM1-induced pathways. Future research that includes longitudinal data, is needed 

to highlight lncRNAs with therapeutic potential for CF. Second, due to the small sample size in 

the PBMC model (Table 1) and the heterogeneity of human subjects, transcriptomic profiling 

failed to reveal transcripts that were significantly differentially expressed (Figure 3B, 7B) or 

were differentially spliced (data not shown) between a child with CF and either of their -parents. 

Third, no adjustment for multiple-hypothesis testing was performed in our correlation analysis 

between cell abundance and indicators of disease severity and progression (sweat chloride and 

FEV1 levels; Figure 5G). While a Bonferroni correction could have reduced the chance of a type 

I error, this approach was judged to be overly conservative because it hypothesizes that all 

variables (composition of immune cell subsets) are independent. 

While homozygous mutations in CFTR cause CF, several studies suggest that heterozygous 

CFTR mutations have functional consequences (23). Our study has revealed similarity in the 

effects of CFTR mutation on innate immune cell populations in CF probands and carriers. CF 

carriers have an increased risk of developing airway obstruction (23, 73), neutrophil 

abnormalities, and ineffectual macrophage apoptosis (74). This study adds to the growing 

literature suggesting that the effects of heterozygous CFTR mutations on circulating monocytes 

could increase the prevalence of infection leading to chronic bronchitis and more severe lung 
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disease (8, 75). The LPS-tolerant phenotype detected in this study may help explain the 

susceptibility present in carriers of homozygous and heterozygous CFTR mutations. Increased 

understanding of the role of novel lncRNAs and how they mediate signaling will provide clues 

for improved targeted therapies as research is beginning to confirm the role of lncRNAs as 

master regulators of gene expression. 

Methods 

Study subjects and data collection 

A total of 164 CF-trios subjects (CF probands, mothers, and fathers) from 100 CF families and 

20 unrelated healthy control (HC) subjects were recruited from the Children’s Hospital of 

Wisconsin (CHW 07/72, GC 390, CTSI 847, CHW 01-15), Ann & Robert H. Lurie Children’s 

Hospital of Chicago (2015-400), and National Jewish Health (NJH HS-3648) as this study 

(Figure 1) was approved by the Institutional Review Boards in each institution after scientific 

and ethical review. The Biomedical Research Alliance of New York (BRANY) is the 

Institutional Review Board providing oversight at National Jewish Health. HC subjects were free 

of known infection at the time of sample collection. Additional disease-free HC samples (n=11) 

were obtained commercially (Cellular Technology Limited, Cleveland, OH). Informed consent 

was obtained from subjects or their parents or legal guardians. As described in our prior studies 

(6, 8), CF proband subjects were diagnosed based on pilocarpine iontophoresis (CF Foundation 

guidelines) (76), symptoms, pancreatic status, CFTR mutation class, family history of CF, and 

information about the phenotypes of CFTR mutations (74, 77-79) (details in Supplementary 

Methods).  

General demographic information, including age, sex, and genotype, was collected through 

standardized questionnaires. Pancreatic sufficiency status was defined based on levels of fecal 
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pancreatic elastase, with a threshold of 200 μg/g for sufficiency (74). Pa-infection data was 

collected during standard screening for microbiological flora, in which the infection was reported 

as one positive microbiological growth from nasopharyngeal, sputum, or bronchoalveolar lavage 

specimens within 6 months of study enrollment. FEV1 data were collected during clinical lung 

function measurements performed at baseline according to ATS-ERS Task Force guidelines (80). 

Sweat chloride value was collected based on the sweat tests performed closest to the date of 

serum sample collection.  

Sample collection and cellular models 

Human PBMCs or plasma samples from CF-trios subjects and age-matched, unrelated HCs were 

aseptically collected in acid citrate dextrose solution A or K+ EDTA anti-coagulant for the 

(Figure 1) the 3 cellular models for molecular profiling (Table 1). For the PBMC model, PBMCs 

(buffy coat) were collected from whole blood by Ficoll Paque (GE healthcare, Chicago, IL) 

density centrifugation. The PBMCs were then stored frozen in a cryoprotective medium 

containing 10% dimethyl sulfoxide (DMSO) and 90% fetal bovine serum (FBS). Cryopreserved 

PBMCs were thawed quickly before RNA isolation or live-cell recovery. The procedure used to 

develop the plasma model has been described in our prior studies (6, 8, 9). Briefly, healthy 

human PBMCs (UPN727; Cellular Technology Limited, Cleveland, OH) were co-cultured with 

the plasma collected from the enrolled subjects for 9 hours prior to sample collection for 

transcriptomic analyses. The THP-1 cell line was a gift from Dr. Peter H. Sporn (originally 

obtained from ATCC) and was maintained in RPMI 1640 medium supplemented with 10% FBS 

and 2 mmol/L L-glutamine. THP-1 monocytes were differentiated into macrophages by adding 

200 nM PMA (Sigma-Aldrich, St. Louis, MO) to the media for 48 hours. The media was then 
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removed and  THP-1 monocytes or macrophages  were co-cultured for 9 hours with plasma 

(without PMA) collected from the enrolled subjects. 

Table 1 shows the numbers of CF trios and HC subjects used to develop the 3 cellular models. In 

addition to molecular profiling, cell samples from both the PBMC and THP-1 models were 

examined by cell-growth assays or fluorescence-activated cell sorting (Figure 1; Supplementary 

Methods). For cell-growth assays, THP-1 monocytes with no PMA treatment were cultured in 

media supplemented with FBS (n=3) and plasma from HC subjects (n=5) or CF probands that 

tested positive for Pa (n=13), positive for Sa (Staphylococcus aureus; n=22), positive for both 

(n=9), or negative for both (n=20).  

Molecular profiling and data processing 

Total RNA was isolated using Trizol (Invitrogen, Waltham, MA) and the purity and 

concentration were verified using a NanoDrop ND-1000 instrument (Thermo Fisher Scientific, 

Waltham, MA). The integrity of the RNA was assessed by a 2100 Bioanalyzer gel image 

analysis system (Agilent, Santa Clara, CA). At least 300 ng mRNA per sample was submitted for 

library construction, in which each purified RNA sample was transcribed to double-stranded 

cDNA, followed by cRNA synthesis and biotin-labeling. The labeled samples were then 

hybridized onto three arrays (Table 1): GeneChip Human Genome U133 Plus 2.0 array (Thermo 

Fisher Scientific, >54,000 probes and >38,500 genes), Human Clariom D array (Thermo Fisher 

Scientific, >6,765,500 probes, >542,500 transcripts, and >134,700 genes), and GeneChip 

miRNA 3.0 array (Thermo Fisher Scientific, 1105 human miRNAs), as reported previously (6, 

7). The profiling data from these arrays were normalized in the robust multi-array average 

(RMA) procedure, and then processed using Transcriptome Analysis Console (Thermo Fisher 

Scientific, version 4.0) following the manufacturer’s instructions.  
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Immune cell profiling 

Immune-cell profiling, or cell-composition analysis, was performed using a signature matrix 

optimized for human PBMC deconvolution, as reported in our prior study (8). Briefly, > 20 

candidate marker genes for 10 cell subsets in PBMCs were selected from a previously described 

matrix based on their expression patterns across immune-cell subsets (82). The pairwise 

similarity statistic of all cell subsets (Figure S3-4) was computed between all pairs of the 

candidate marker genes within the normalized gene expression data from the PBMC model. 

Using the criteria (average Pearson correlation factor >0.50, p < 0.01), a number of selected 

marker genes were identified as our final marker genes (8). The raw cell-composition score was 

calculated as the sum of the simple averages of the marker genes’ log2 expression, which allows 

comparison of cell composition across subject groups and subgroups. 

Statistics 

Bioinformatics and statistical analyses were performed and visualized using R version 3.6.1, 

Python version 3.7.9, Transcriptome Analysis Console (Thermo Fisher Scientific, version 4.0), 

Prism 7 (GraphPad, La Jolla, CA), IPA (Qiagen, Redwood City), and GSEA databases 

(Molecular Signatures Database, MSigDB version 7.2). Relative microarray gene-expression 

levels were compared between groups using an empirical Bayes method (ANOVA analysis 

followed by eBayes analysis) to share information across genes and generated an improved 

estimate for the variance. Coding genes and transcripts that displayed at least two-fold difference 

in gene expression between comparison groups (false discovery rate [FDR]< 0.05) were 

considered significantly differentially expressed and carried forward in the analysis. FDR 

adjustment was performed following Benjamini-Hochberg FDR-controlling procedure (83).  

Differentially expressed RNAs were illustrated as a volcano plot. Hierarchical clustering was 
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performed to show the gene expression patterns and similarities among samples. PCA was 

performed to cluster subjects based on the differentially expressed transcripts. GSEA analysis 

was carried out by searching the established MSigDB gene-set collections (C1, C2, C7, C8) and 

utilizing the top 10 gene sets that matched with our input gene sets. 

Associations between cell composition scores and clinical features were evaluated using Pearson 

correlation, R (correlation coefficient) and R2 (square of the correlation coefficient) (Figure 5).  

P-values in this analysis were not adjusted for multiple comparisons. Immune-profile scores 

were compared between groups and subgroups; independent t-tests were used when comparing 

CF trio samples with HCs, and paired t-tests were used when comparing between CF trio 

samples, assuming a normal distribution and equal variances. To compare the cell growth rates 

between groups, Dunn's multiple comparison correction for nonparametric, post hoc testing was 

performed following the Kruskal-Wallis test. A p-value <0.05 was considered statistically 

significant. 

Study approval 

This study was approved by the Institutional Review Boards (CHW 07/72, GC 390, CTSI 847, 

CHW 01-15 Children’s Hospital of Wisconsin, 2015-400 Ann & Robert H. Lurie Children’s 

Hospital of Chicago, NJH HS-3648 National Jewish Health), (Figure 1). The Biomedical 

Research Alliance of New York (BRANY) IRB is the current IRB providing oversight for this 

study at National Jewish Health. Written informed consent was received for each study 

participant. For all enrollees aged <18 years, a parent completed and signed the informed 

consent. 
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Figure Legends 

Figure 1. Schematic of main study procedures. 

Figure 2. Immune-associated genes and pathways are significantly downregulated in CF 

PBMCs compared with HCs. (A) Transcripts differentially expressed between CF probands 

(n=14) and HCs (n=8) in the PBMC model, divided into categories according to locus type. We 

identified differentially expressed transcripts that displayed more than a two-fold change in 

expression level and an FDR-adjusted p < 0.05. (B-C) Volcano plots of total differentially 

expressed transcripts and differentially expressed transcripts in the “coding” and “multiple 

complex” categories. (D) Bubble plot of the top 10 significant pathways in WikiPathways, 

ranked by the number of genes in the pathway. For the plasma model: CF probands (n=24), HCs 

(n=20). (E) Venn diagrams showing the numbers and overlaps of unique genes (upper) and top 

20 pathways (lower) for CF probands versus HCs in the PBMC and plasma models. 

Figure 3. CF carriers and probands share highly similar transcriptomic profiles in PBMCs. 

(A) PCA of data from the PBMC (left; probands, n=14; parents/carriers, n=14; HCs, n=8) and 

plasma models (right; probands, n=24; parents/carriers, n=48; HCs, n=20). (B) Venn diagrams of 

the numbers and overlap of DEGs from the PBMC and plasma models; comparisons are as 

indicated. Trios-shared genes and proband-unique genes are highlighted in blue and red, 

respectively. (C-D) Top, hierarchical clustering of study subjects; bottom, heatmap of the 

expression of trios-shared genes and proband-unique genes in the PBMC model. (E) Comparison 

of the fold change (log2) of expression of trios-shared genes (left) and proband-unique genes 

(right) in probands versus mothers relative to HCs in the PBMC model. The p and R2 (square of 

the correlation coefficient) values were calculated using a Pearson correlation analysis. The line 
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depicts the results of a linear regression analysis. P, proband; M, mother; F, father; FC, fold 

change. 

Figure 4. Immune-cell composition differs between CF parent-child trios and HCs. Dot 

plots and box plots of the cell composition scores (Methods) of eight cell subsets in the (A) 

plasma model (probands, n=24; parents/carriers, n=48; HCs, n=20) and (B) PBMC model 

(probands, n=14; parents/carriers, n=14; HCs, n=8). Estimates of cell numbers in each cell subset 

were calculated for CF trios and HCs. The equality of variances was tested and confirmed by F-

test; the normal distribution in each sample group confirmed via Shapiro-Wilk normality test; the 

means of all comparison pairs were compared by unpaired independent t-test  ,*p <0.05, **p < 

0.01. 

Figure 5. Compositions of monocytes and macrophages in the plasma and PBMC models 

are correlated with CF disease severity and progression. Plasma model (A, B, E): probands, 

n=24; parents/carriers, n=48; HCs, n=20). PBMC model (C-D, F-G): probands, n=14; 

parents/carriers, n=14; HCs, n=8). (A-E) Dot plots and box plots of cell composition scores 

(Methods) of monocytes and macrophages in CF patient subjects grouped based on (A, C) their 

CFTR class, (B, D) pancreatic function, and (E) Pa infection status. Estimations of cell numbers 

in each cell subset were compared between subgroups of CF patients. (F-G) Correlation analysis 

of cell abundance with sweat chloride and percent predicted FEV1. The equality of variances was 

tested and confirmed by F-test; the normal distribution in each sample group was confirmed via 

Shapiro-Wilk normality test; the means of all comparison pairs were compared by unpaired 

independent t-test (equal variances and normal distribution assumed). The p and R (correlation 

coefficient) values were calculated using a Pearson correlation analysis (normal distribution 

assumed). *p <0.05, **p <0.01. Mono, monocytes; Macro, macrophages; Macro_ac, activated 
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macrophages; DC_ac, activated dendritic cells; PI, pancreatic insufficient; PS, pancreatic 

sufficient. 

Figure 6. Plasma-cultured monocytes, but not macrophages, show dramatic changes in 

gene expression. (A) Differentially expressed transcripts in CF probands versus HCs in the 

THP-1 model, divided into categories according to locus type. We identified differentially 

expressed transcripts that displayed more than a two-fold change in expression level and an 

FDR-adjusted p < 0.05. (B-C) Volcano plots of (B) all differentially expressed transcripts and 

the (C) differentially expressed transcripts in “coding” and “multiple complex” (MC) categories. 

(D) Bubble plot of top 10 significant pathways in WikiPathways ranked by number of regulated 

genes. (E) Venn diagrams showing the numbers and overlap of unique genes (upper) and top 20 

pathways (lower) for CF probands versus HCs in the indicated models. (F) Bar plot of THP-1 

cell numbers after 4 days of culture with CF plasma. Dunn’s multiple comparison for 

nonparametric, post hoc testing was performed following the Kruskal-Wallis test to compare the 

differences between HC and other groups. ***p < 0.001. Sa, Staphylococcus aureus; Both, Sa- 

and Pa-positive; Ng, Sa- and Pa-negative; FBS, fetal bovine serum. 

Figure 7. Transcriptomic profiles of CF carriers and probands are less correlated in the 

THP-1 monocyte model than the PBMC model. (A) PCA of THP-1 monocytes and 

macrophages incubated with study subject plasma based on similarities in transcriptomic 

profiling. (B) Venn diagrams showing the numbers and overlap of DEGs from THP-1 monocyte 

and macrophage models. Trios-shared genes and proband-unique genes are highlighted in blue 

and red, respectively. (C-D) Hierarchical clustering by trio subgroups and heatmap of gene 

expression of (C) trios-shared genes and (D) proband-unique genes from the THP-1 monocyte 

model. (E) Comparison of the fold change (log2) of expression of trios-shared genes (left) and 
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proband-unique genes (right) in probands versus mothers relative to HCs in the THP-1 monocyte 

model. The p-value and R2 (square of the correlation coefficient) were calculated using a Pearson 

correlation analysis. The line depicts the results of  a linear regression analysis. Mono, 

monocyte; Macro, macrophage; P, proband; M, mother; F, father; FC, fold change. 

Figure 8. Integrated pathway enrichment analysis suggests an LPS-tolerant state in CF 

trios. (A) Bubble plot of the top 5 significant upstream regulators and causal networks, ranked 

by p-value, from IPA using genetic profiles from the PBMC model. (B) Process of identification 

and selection to identify input gene set #1 for GSEA. First, the overlapping coding genes 

(n=157) from the PBMC and plasma models (CF proband versus HC) were identified. Then, we 

identified the trios-shared genes (n=140) in this initial gene set that were shared in comparisons 

of CF probands and parents versus HCs; the final input gene set #1 (n=138) consisted of the 

genes that were regulated in same directions in both the PBMC and plasma models. P, proband; 

M, mother; F, father. (C) Bubble plot of gene sets from GSEA matched with input gene set #1. 

The top 10 matched gene sets were ranked by q-value (FDR). (D) Left, Venn diagram of the 22 

overlapping genes from input gene set #1 and the annotated LPS-inducible gene set (GSE9988). 

Right, bar plot of fold change (log2) of the expression levels of genes in both input gene set #1 

and the annotated LPS-inducible gene set (CF or LPS versus HC). Fold-change values from 

input gene set #1 were reversed from negative to positive for ease of visualization. The p-value 

and R2 (square of the correlation coefficient) were calculated using Pearson correlation analysis.  
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Table 1. Demographics of study subjects used for molecular profiling. 

 

Models 1. PBMC 2. Plasma 3. THP-1 

Profiling types 
Transcriptomic 

Profiling 

mRNA 

Profiling 

Transcriptomic 

Profiling 

miRNA 

Profiling 

Total sample, n 36 92 21 24 

Trios family, n 14 24 3 3 

Probands  n=14 n=24 n=3* n=3* 

Age (y) 
10.95 

±1.83 

13.61 

±1.69 

7.94 

±1.19 

7.94 

±1.19 

Male sex (%) 71.43% 58.33% 66.67% 66.67% 

Genotype (dF508 

homo, hetero, %) 

21.43%, 

64.29% 

29.17%, 

70.83% 

100%, 

0% 

100%, 

0% 

Classes (I, II, III, 

IV, %) 

64.29%, 

21.43% 

0.07% 

0.07% 

41.67%, 

33.33%, 

16.67%, 

8.33% 

100% (II) 100% (II) 

Sweat Cl 

(mEq/L) 

106.42±4.40 

(n=12) 

98.47±5.40 

(n=23) 

107.37 

±7.34 

107.37 

±7.34 

PI/PS (PI, %) 85.71% 91.67% 100% 100% 

Pa+ at 6 months 28.57% 
42.8% 

(n=14) 
0% 0% 

FEV1 (% of 

predicted) 

100.50±3.62 

(n=12) 

96.46±4.76 

(n=13) 

97.67 

±4.84 

97.67 

±4.84 

Parents/carriers n=14 n=48 n=6# n=6 

Age (y) 
41.20 

±2.27 

43.01±1.98 

(n=28) 

38.87 

±1.30 

38.87 

±1.30 
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Male sex (%) 100% 50% 33% 50% 

HCs n=8 n=20 n=3 n=3 

Age (y) 25.00 26.66±1.74 25.00 25.00 

Numerical variables are presented as mean±SEM. Sweat Cl, result of chloride sweat test; PI/PS, pancreatic 

insufficiency/pancreatic sufficiency; FEV1, Forced expiratory volume in 1 second. 

*Two samples were collected per subject for monocyte and macrophage cultures unless otherwise indicated. 

#Father samples were only collected for incubation with monocytes. 
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Supplemental Figure Legends 

Figure S1. Coding RNAs are significantly downregulated in donor PBMCs cultured with 

CF plasma. (A) Differentially expressed mRNAs in CF probands versus HCs in the plasma 

model, divided into categories according to locus type. We identified differentially expressed 

transcripts that displayed more than a two-fold change in expression level and an FDR-adjusted p 

< 0.05. (B) Volcano plot of total differentially expressed mRNAs. 

Figure S2. PCA and hierarchical clustering of data from PBMC and plasma models. (A) 3D 

PCA of clusters of study subjects in the PBMC (left, n=36) and plasma models (right, n=92). (B) 

Hierarchical clustering of study subjects using trios-shared genes from the plasma model. 

Figure S3. Pairwise similarity of predefined marker genes in 10 cell subsets from the 

PBMC model. Pairwise similarity was computed based on gene expression across all subjects. 

Figure S4. Pairwise similarity of predefined marker genes in 10 cell subsets from the 

plasma model. Pairwise similarity was computed based on transcriptomic expression across all 

subjects. 

Figure S5. Immune-cell composition associated with CF. (A-B) Cell composition scores of 

natural killer (NK) cells and activated DCs in (A) the plasma model and (B) the PBMC model. 

The equality of variances was tested and confirmed by F-test; the normal distribution in each 

sample group was tested and confirmed by Shapiro-Wilk normality test; the means of all 

comparison pairs were compared by unpaired independent t-test, assuming equal variances and a 

normal distribution. (C) Cell-composition scores of monocytes and macrophages in (left) the 

plasma model and (right) the PBMC model. The means of each group were compared using 

paired t-tests (two subgroups) or ANOVA (three groups), followed by Tukey’s multiple 
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comparison test. (D) Flow cytometry (left) of circulating total monocytes and classical 

monocytes in CF probands and HCs. Representative dot plots are shown on the right. Arrows 

represent gating strategy and process of selecting cell populations. Right, mean monocyte 

percentages of the 2 groups (HCs, n=3; CF, n=9). *p <0.05, **p < 0.01. 

Figure S6. Transcriptomic profiles of CF carriers and probands are moderately correlated 

in the THP-1 monocyte model. Comparison of the fold changes (log2) of the expression levels 

of trios-shared genes in (A) probands and fathers versus HCs and (B) mothers and fathers versus 

HCs in the THP-1 monocyte model. The p-value and R2 (square of the correlation coefficient) 

were calculated using a Pearson correlation analysis. The line depicts the results of a linear 

regression analysis. P, proband; M, mother; F, father; FC, fold change. 

Figure S7. miRNA profiling of THP-1 monocytes incubated with CF proband or carrier 

plasma identifies limited signatures. (A) PCA of miRNA profiles from THP-1 cells 

incubated with study subject plasma. (A) PCA of miRNA profiles from study subjects in the 

THP-1 model. (B) Venn diagrams showing the numbers and overlap of miRNA signatures from 

the THP-1 models. P, proband; M, mother; F, father. 

Figure S8. Pathway enrichment analysis supports an LPS-tolerant state in CF trios. (A) 

Process of identification and selection to identify input gene sets #2 and #3 for GSEA. (B) 

Bubble plot of gene sets from GSEA matched with input gene set #2. The top 10 matched gene 

sets were ranked by q-value (FDR). P, proband; M, mother; F, father. (C) Left, Venn diagram of 

the 21 overlapping genes from input gene set #2 and the annotated TREM1-inducible gene set 

(GSE9988). Right, bar plot of fold changes (log2) in expression of the genes present in CF trios 

versus HCs, or TREM-1 versus HCs. Fold-change values from input gene set #2 were reversed 
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from negative to positive for the convenience of visualization. The p-value and R2 (square of 

the correlation coefficient) were calculated using Pearson correlation analysis. 

Supplemental Tables 

Table S1. All DEG lists identified by comparing CF probands and HCs. 

• Table S1.1: DEG list from PBMC model (Human Clariom D Assay), n=2267 

• Table S1.2: DEG list from plasma model (GeneChip Human Genome U133 Plus 2.0 

Array), n=892 

• Table S1.3: DEG list from THP-1 monocyte model (Human Clariom D Assay), n=4863 

• Table S1.4: DEG list from THP-1 macrophage model (Human Clariom D Assay), n=199 

• Table S1.5: DEG list from THP-1 model (GeneChip miRNA 4.0 Array), n=2 and n=118 

for monocytes and macrophages, respectively 

Table S2. Unique coding DEG lists identified by comparing CF probands and HCs. 

• Table S2.1: Unique coding DEG list from PBMC model, n=1146 

• Table S2.2: Unique coding DEG list from plasma model, n=580 

• Table S2.3: Intersection of unique coding DEG lists from PBMC and plasma models, 

n=157 (related to Figure 2E) 

• Table S2.4: Unique coding DEG list from THP-1 monocyte model, n=1646 

• Table S2.5: Unique coding DEG list from THP-1 macrophage model, n=98 

• Table S2.6: Intersection of unique coding DEG list from THP-1 monocyte, THP-1 

macrophage and plasma models, n=3; intersection of THP-1 monocyte and THP-1 
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macrophage models, n=9; intersection of THP-1 monocyte and plasma models, n=15; 

THP-1 macrophage and plasma models, n=6 (related to Figure 6E) 

Table S3. Significant pathways identified in WikiPathways by comparing CF probands and 

HCs. 

• Table S3.1: Top 20 pathways from PBMC model ranked by total gene number 

• Table S3.2: Top 20 pathways from plasma model ranked by total gene number 

• Table S3.3: Intersection of the top 20 pathways of PBMC and plasma models n=11 

(related to Figure 2E) 

• Table S3.4: Top 20 pathways from THP-1 monocyte model ranked by total gene number 

• Table S3.5: Top 20 pathways from THP-1 macrophage model ranked by total gene 

number 

• Table S3.6: Intersection of the top 20 pathways from the THP-1 monocyte and 

macrophage models, n=2; THP-1 monocyte and plasma models, n=2; THP-1 macrophage 

and plasma models, n=4 (related to Figure 6E) 

Table S4. Lists of trios-shared genes. 

• Table S4.1: Trios-shared gene (DEG) list from PBMC model, n=1737 

• Table S4.2: Trios-shared gene (DEG) list from plasma model, n=826 

• Table S4.3: Trios-shared gene (DEG) list from THP-1 monocyte model, n=1227 

Table S5: Lists of proband-unique genes. 

• Table S5.1: Proband-unique gene (DEG) list from PBMC model, n=530 

• Table S5.2: Proband-unique gene (DEG) list from THP-1 monocyte model, n=2066 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 2, 2021. ; https://doi.org/10.1101/2021.06.30.21259182doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.30.21259182
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 

 

Table S6. Significant upstream regulators and causal networks identified by comparing CF 

probands and HCs (PBMC model) using Ingenuity Pathway Analysis. 

• Table S6.1: Top 5 upstream regulators ranked by p-value 

• Table S6.2: Top 5 causal networks ranked by p-value 

Table S7. Input and matched gene sets in the gene set enrichment analysis 

• Table S7.1: Genes in input gene set #1 (n=138, downregulated) 

• Table S7.2: Genes in input gene set #2 (n=163, upregulated) 

• Table S7.3: Genes in input gene set #3 (n=202, downregulated) 

• Table S7.4: Best-matched gene sets from MSigDB using input gene set #1 

• Table S7.5: Best-matched gene sets from MSigDB using input gene set #2 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 2, 2021. ; https://doi.org/10.1101/2021.06.30.21259182doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.30.21259182
http://creativecommons.org/licenses/by-nc-nd/4.0/


1 

 

Figures and Figure Legends 

 

 

Figure 1. Schematic of main study procedures.  

See Table 1 for quantitative information about subjects in each model. 
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Figure 2. Immune-associated genes and pathways are significantly downregulated in CF
PBMCs compared with HCs. (A) Transcripts differentially expressed between CF probands
(n=14) and HCs (n=8) in the PBMC model, divided into categories according to locus type. We
identified differentially expressed transcripts that displayed a more than two-fold change in
expression level and a false discovery rate-adjusted p < 0.05. (B-C) Volcano plots of total
differentially expressed transcripts and differentially expressed transcripts in the “coding” and
“multiple complex” categories. (D) Bubble plot of the top 10 significant pathways in
WikiPathways, ranked by the number of genes in the pathway, identified in the PBMC model
(left side) and the plasma model (right side). For the plasma model: CF probands (n=24), HCs
(n=20). (E) Venn diagrams showing the numbers and overlap of unique genes (upper) and top 20
pathways (lower) for CF probands versus HCs in the PBMC and plasma models. 
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Figure 3. CF carriers and probands share highly similar transcriptomic profiles in PBMCs.
(A) PCA of data from the PBMC (left, n=36) and plasma models (right, n=92). (B) Venn
diagrams of the numbers and overlap of DEGs from the PBMC and plasma models; comparisons
are as indicated. Trios-shared genes and proband-unique genes are highlighted in blue and red,
respectively. (C-D) Top, hierarchical clustering of study subjects; bottom, heatmap of the
expression of trios-shared genes and proband-unique genes in the PBMC model. (E) Correlation
scatter plots of the fold change (log2) of the two indicated comparisons of the expression of trios-
shared genes (left) and proband-unique genes (right) from the PBMC model. The p value and R2

squared (square of the correlation coefficient) were produced by a Pearson correlation analysis.
The linear regression line and its equation were generated from a simple linear regression
analysis. P, proband; M, mother; F, father; FC, fold change. 
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Figure 4. Immune-cell composition differs between CF parent-child trios and HCs. Dot
plots and box plots of the cell composition scores of eight cell subsets in the (A) plasma model
(probands, n=24; parents/carriers, n=48; HCs, n=20) and (B) PBMC model (probands, n=14;
parents/carriers, n=14; HCs, n=8). Estimates of cell numbers in each cell subset were calculated
for CF trios and HCs. The equality of variances was tested and confirmed by F-test and the
normal distribution in each sample group was confirmed via Shapiro-Wilk normality test; the
means of all comparison pairs were compared by unpaired independent t-test.*p <0.05, **p <
0.01. 
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Figure 5. Compositions of monocytes and macrophages are correlated with CF disease 
severity and progression. (A-E) Dot plots and box plots of cell composition scores (Methods) 
of monocytes and macrophages in CF patient subjects grouped based on (A, C) their CFTR class, 
(B, D) pancreatic function, and (E) Pa infection status. Estimations of cell numbers in each cell 
subsets were compared between subgroups of CF patients. (F-G) Correlation analysis of cell 
abundance with sweat chloride and percent predicted FEV1. Plasma model, (A, B, E); PBMC 
model (C-D, F-G). The equality of variances was tested and confirmed by F-test; the normal 
distribution in each sample group was tested and confirmed by Shapiro-Wilk normality test; the 
means of all comparison pairs were compared by unpaired independent t-test (equal variances 
and normal distribution assumed). The p value and R (correlation coefficient) were produced by 
a Pearson correlation analysis (normal distribution assumed). *p <0.05, **p < 0.01. Mono, 
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monocytes; Macro, macrophages; Macro_ac, activated macrophages; DC_ac, activated dendritic
cells. 

 

 

Figure 6. Plasma-cultured monocytes, but not macrophages, show dramatic changes in
gene expression. (A) Breakdown of differentially expressed transcripts (fold change < -2 or > 2,
false discovery rate p < 0.05, CF probands vs. HCs in the THP-1 monocyte and macrophage
models) in main categories according to locus type. (B-C) Volcano plots of (B) total
differentially expressed transcripts and the (C) differentially expressed transcripts in “coding”
and “multiple complex” (MC) categories. (D) Bubble plot of top 10 significant pathways in
WikiPathways ranked by number of regulated genes. (E) Venn diagrams of numbers and overlap
of unique genes (upper) and top 20 pathways (lower) for CF probands versus HCs in the
indicated models. (F) Bar plot of THP-1 cell numbers after 4 days of culture with CF plasma.

tic 

in 
 2, 
ge 
tal 
g” 
in 
ap 
he 

. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 2, 2021. ; https://doi.org/10.1101/2021.06.30.21259182doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.30.21259182
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

Dunn’s multiple comparison for nonparametric post hoc testing was performed following the
Kruskal-Wallis test to compare the differences between HC and other groups. ***p < 0.001. Pa,
Pseudomonas; Sa, Staphylococcus aureus; Ng, negative; FBS, fetal bovine serum. 

 
 
 
Figure 7. Transcriptomic profiles of CF carriers and probands are less correlated in the
THP-1 monocyte model than the PBMC model. (A) PCA of study subjects in THP-1
monocyte and macrophage models based on similarities in transcriptomic profiling. (B) Venn
diagrams of numbers and overlap of DEGs from THP-1 models. Trios-shared genes and
proband-unique genes are highlighted in blue and red, respectively. (C-D) Hierarchical
clustering of study subjects and heatmap of gene expression of (C) trios-shared genes and (D)
proband-unique genes from the THP-1 monocyte model. (E) Correlation scatter plots of fold
changes (log2) of the indicated comparisons of the expression of trios-shared genes (left) and
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proband-unique genes (right) in the THP-1 monocyte model. The p value and R2 squared (square
of the correlation coefficient) were produced by a Pearson correlation analysis. The linear
regression line and its equation were generated from a simple linear regression analysis. Mono,
monocyte; Macro, macrophage; P, proband; M, mother; F, father; FC, fold change. 

 

 

Figure 8. Integrated pathway enrichment analysis suggests an “LPS tolerant” state in CF
trios. (A) Bubble plot of the top 5 significant upstream regulators and causal networks, ranked
by p-value, from IPA using genetic profiles from the PBMC model (Methods). (B) Flow of
identification and selection to identify input gene set #1 for gene set enrichment analysis. Firstly,
the overlapping coding genes (n=157) from PBMC and plasma models (CF proband vs HC)
were identified; then the overlapping genes (n=140) from these genes with DEGs from
comparison of CF patients subjects versus HC were identified; the final input gene set (n=138)
were identified as the genes regulated in same directions in both PBMC and plasma models. P,
proband; M, mother; F, father. (C) Bubble plot of gene sets from gene set enrichment analysis
matched with input gene set #1. Top 10 matched gene sets were ranked by q-value (false
discovery rate). (D) Left, Venn diagram of the 22 overlapping genes from input gene set #1 and
the annotated LPS-inducible gene set (GSE9988). Right, bar plot of fold change (log2) of the
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expression levels of genes in both input gene set #1 and the annotated LPS-inducible gene set 
(CF or LPS versus HC). Fold-change values from input gene set #1 were reversed from negative 
to positive for the convenience of visualization. The p value and R2 (square of the correlation 
coefficient) were produced by Pearson correlation analysis. 
 

 

Table 1. Demographic information of study subjects used for molecular profiling  
 

Models 1. PBMC 2. Plasma 3. THP-1 

Profiling types 
Transcriptomic 

Profiling 
mRNA 

Profiling 
Transcriptomic 

Profiling 
miRNA 
Profiling 

Total sample, n 36 92 21 24 

Trios, n 14 24 3 3 

Probands  n=14 n=24 n=3* n=3* 

Age (y) 10.95 
±1.83 

13.61 
±1.69 

7.94 
±1.19 

7.94 
±1.19 

Male gender (%) 71.43% 58.33% 66.67% 66.67% 

Genotype (dF508 
homo, hetero, %) 

21.43%, 
64.29% 

29.17%, 
70.83% 

100%, 
0% 

100%, 
0% 

Classes (I, II, III, 
IV, %) 

64.29%, 
21.43% 
0.07% 
0.07% 

41.67%, 
33.33%, 
16.67%, 
8.33% 

100% (II) 100% (II) 

Sweat Cl 
(mEq/L) 

106.42±4.40 
(n=12) 

98.47±5.40 
(n=23) 

107.37 
±7.34 

107.37 
±7.34 

PI/PS (PI, %) 85.71% 91.67% 100% 100% 

Pa+ at 6 months 28.57% 
42.8% 
(n=14) 

0% 0% 

FEV1 (% of 
predicted) 

100.50±3.62 
(n=12) 

96.46±4.76 
(n=13) 

97.67 
±4.84 

97.67 
±4.84 

Parents/carriers n=14 n=48 n=6# n=6 

Age (y) 41.20 
±2.27 

43.01±1.98 
(n=28) 

38.87 
±1.30 

38.87 
±1.30 

Male gender (%) 100% 50% 33% 50% 

HCs n=8 n=20 n=3 n=3 

Age (y) 25.00 26.66±1.74 25.00 25.00 
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Mean±SE are provided for numerical variables. Sweat Cl, result of chloride sweat test; PI/PS, pancreatic 
insufficiency/pancreatic sufficiency; FEV1, Forced expiratory volume in 1 second. 
*Two samples were collected per subject for monocyte and macrophage cultures unless otherwise indicated. 
#Father samples were only collected for monocytes. 
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