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Abstract: Better understanding of the spatiotemporal structure of the COVID-19 epidemic in the 
USA may help inform more effective prevention and control strategies. By analyzing daily 15 
COVID-19 case data in the United States, Mexico and Canada, we found four continental-scale 
epidemic wave patterns, including travelling waves, that spanned multiple state and even 
international boundaries. These major epidemic patterns co-varied strongly with continental-
scale seasonal temperature change patterns. Geo-contiguous states shared similar timing and 
amplitude of epidemic wave patterns irrespective of similarities or differences in state 20 
government political party affiliations. These analyses provide evidence that seasonal factors, 
probably weather changes, have exerted major effects on local COVID-19 incidence rates. 
Seasonal wave patterns observed during the first year of the epidemic may become repeated in 
the subsequent years.  
 25 

One Sentence Summary: The COVID-19 epidemic in the United States has consisted of four 
continental-scale spatiotemporal waves of case incidence that have spanned multiple states and 
even international boundaries. 
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Since the first case of COVID-19 was reported in Wuhan, China in December 2019, an ongoing 
global pandemic of COVID-19 has led to 180 million cases and 3.9 million deaths (1).  In the 
United States, the national epidemic incidence has waxed and waned four times, with varying 
intensity in different regions of the country (2).  Possible causes for changing case rates include 
changes in social distancing, mask wearing, and other epidemic control polices; emergence of 5 
viral variants; changes in the weather; introduction of vaccines; and other factors.   
 
Spatiotemporal analysis of COVID-19 can provide improved understanding of patterns and 
drivers of the COVID-19 epidemic in a given geographic region. By comparing epidemic 
patterns across the country, it is possible to identify clusters of locations that share similar 10 
patterns. For example, Kang et al showed the spread of COVID-19 from the Hubei province 
where the first outbreak occurred in China to neighboring provinces (3). Another study in Brazil 
traced the trajectories of the geographic center of the epidemic over time to understand the 
spread of COVID-19 in the country (4). For the US, Zhu D et al used a network modeling to 
examine the spatial shifting patterns of COVID-19 from February to August in 2020 (5). As 15 
more than a full year of data are available now, the spatiotemporal patterns of COVID-19 can 
reveal the association between geographical properties and the spatiotemporal patterns of 
COVID-19. Furthermore, spatiotemporal pattern can be better understood, if the pattern is 
compared with the neighboring countries such as Canada and Mexico in case of the USA. 
 20 

 
Results 
The case and mortality rate curves in the US, Mexico and Canada reveal four dominant waves 
over the period from 03/01/2020 to 05/03/2021 (Fig. 1). These waves are also discernable in 
most states and provinces in these countries (Supplementary Fig. S1 and Fig. S2). The first wave 25 
of epidemic began in late March 2020, the second wave around mid-June 2020, the third wave 
started in the beginning of September 2020 and peaked with the largest amplitude compared to 
other waves during the coldest months of a year in December 2020 and January 2021. The fourth 
wave occurred in spring in late March and early April in 2021, around the same timing of the 
first wave in 2020. Since the timing and amplitude of mortality rate waves were highly correlated 30 
with those of case rate wave (Supplementary Fig. S3), in this analysis we primarily used case 
rates to better capture regions with smaller populations.   
 
Fig. 2, Movie 1, and Movie 2 were constructed to allow visualization of the spatiotemporal 
patterns of Covid-19 in the USA and how the patterns in the USA related to those in Canada and 35 
Mexico. To describe this analytic approach, we purposely borrow the term “synoptic” from 
“synoptic meteorology” to emphasize the scale of the epidemic analysis.  Synoptic meteorology 
is routinely used to describe the analysis of weather patterns at continental level at scales of 1000 
kilometers across or more.  
 40 
Wave 1 (1 March to 31 May 2020 = days 61 to 152) started in New England and Eastern Canada, 
with subsequent scattered intensity in the northern half of North America. Wave 2 (1 June 2020 
to 30 August 2020 = days 153 to 244) displayed a travelling wave pattern. It first appeared in 
Mexico, crested northward to the southern and western USA states, then reversing in intensity 
surge and ebbing back southward. Wave 2 first appeared in the USA in Arizona, then moved 45 
northward along the West Coast and eastward into Florida and other Gulf Coast states. Wave 3 
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(1 September 2020 to 28 February 2021 = days 245 to 425) emerged as a travelling wave from 
the Dakotas, flowing outward in a radial pattern to essentially all North America. The ebb of 
Wave 3 followed along the same general spatial pattern as its flow, again starting in the Dakota 
region, and ebbing outward in a radial pattern across the whole continent. Wave 4 (1 March 2021 
to at least 4 May 2021 = days 426 to 489+) emerged from the tail end of Wave 3 in New England 5 
and rose quickly across all of Canada and some northern USA states.  
 
To reveal a more detailed synoptic mapping of COVID-19 epidemic in the USA, we created a 
second movie (Movie 2) of county-level case rate data. This movie displays the z-scores from a 
hot-spot analysis using a modified Getis-Ord Gi* statistics (6).  The red colors indicate counties 10 
and their neighbors being above the national average and the blue colors represent counties that 
are below this average.  In addition, the modified Gi* allows the hotspot analysis to be conducted 
through time as well as spatially (7). For example, close observation of Wave 3 shows the 
gradual county by county movement of the epidemic from west to east from Iowa through 
Illinois, Indiana, Ohio, and Pennsylvania to New York and New England over the period 15 15 
October through 15 December 2020.  
 
Next, we quantitated the wave movement patterns that were apparent visually in the movies (Fig. 
2). This figure presents a summary of the synoptic mapping of the geospatial patterns for all the 
waves. By representing the case time series for each state as log-linear model with multiple 20 
change points, we were able to estimate the peak day of all four waves in each state 
(Supplementary Fig. S4). Estimation of the differences in peak days between pairs of states 
serves as a measure of the timing, in days, of the state-to-state movement of a wave between 
those states. In addition, comparing the amplitude of the estimated peaks for each wave provides 
a measure of case severity.  Because not all states were involved in all four waves, for waves 1,2, 25 
and 4, we focused on the timing patterns among only the 20 most affected states (the twenty with 
the highest case rates) for that wave. 
 
In wave 1, Louisiana shows an early peak (day 97).  New York and Michigan peaks (day 99) 
were followed by other states contiguous to New York (days 103-108). Then, Georgia peaked 30 
(day 101) and the north central states peaked (days 109-125). Wave 1 lasted about one month.  
 
In wave 2, Utah and Arizona peaked early (days 189-190). Although, the figure shows Arkansas 
and South Carolina peaking earlier (days 181 and 186, respectively), examining the change point 
fits carefully (Fig. S4), reveals that the case rate rose quickly in these two states, but the curves 35 
actually peaked after day 200 in wave 2.  Then, the southern shoreline states (FL, TX and LA) 
peaked (days 194-202), followed by other shoreline states and the adjacent southern inland states 
(GA, AL, TN, OK and MS, days 202-207). Collectively the epidemic in these highly affected 
southeastern states in wave 2 formed a northward travelling wave of peak intensity that lasted 
about a month. In the far west, Idaho, California, and Nevada (days 199-203) also showed 40 
increased wave 2 intensity. 
 
Wave 3 affected all the USA states. North Dakota, South Dakota, and Montana peaked first on 
days 316-318. The wave 3 epidemic peaked next in nearby north central states (WI, WY, IL, IA, 
MI, NE and MN; days 320-326), and proceeded to move radially outward through successive 45 
tiers of states. For example, the wave 3 peak epidemic day of states along north to south transect 
through states in the center of the country (MT, WY, CO and NM) had successively later peak 
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days of 316, 322, 328 and 331.  The crest of the travelling wave was followed by an ebb wave, 
again from north to south.  
 
We only had partial data on Wave 4 at the time of writing this manuscript. Thus, the peak days 
for wave 4 are less stable (Fig. S4).  Wave 4 overlapped with the final stages of wave 3. As in 5 
wave 1, wave 4 first peaked in the northeastern states followed by north central states, then, other 
states scattered across the country.  
 
To further characterize the case rate dynamics both nationally and internationally, we compare 
the proximity between each state pair in both case rate trend similarity and geographical 10 
proximity in the USA, Canada and Mexico. We show that states that are geographically closer to 
each other are more likely to have similar patterns of COVID-19 epidemics, compared to those 
located farther apart (Fig. 3). Correlation between COVID-19 case rate distance and 
geographical distance for all pairs of states in US, Mexico, and Canada was 0.47 (p<0.001) 
(supplementary Fig. S5). The level of this correlation varied by the index state. For example, 15 
Fig. 3 shows the correlation between case-rate distance and geospatial distance where the index 
states were South Dakota in the US, Veracruz in Mexico, and Manitoba in Canada. These states 
present strong spatial relationships of case time series and geographical distance to the other 
states.  We also show the case-rate and geographical distance for California (USA) where the 
position in case series space does not respect the position in the geographical space. It is notable 20 
that Veracruz (Mexico) was closer to other Mexican states in case rate distance, followed by 
southern USA border states such as Louisiana, Texas, Florida. The pattern was similar for 
Manitoba in Canada which is closer to the northern USA border states such as Minnesota, South 
Dakota, and North Dakota compared to other states in the USA and Mexico.  
 25 
Next, we projected the similarity in case space into 2D and 3D space which revealed a pattern 
preserving major geographical relationships among states in the three countries (Fig. 4 and 
Movie 3). The USA border states in the north and south were contiguous to the Canadian and 
Mexican states, respectively (Fig. 4A). Mexican states formed their own cluster in case distance 
mapping space which overlapped with the southern states USA states such as Florida, Texas, 30 
Arizona, Louisiana, and South Carolina. Chihuahua was apart from the major Mexican cluster, 
and it showed proximity in case distance space to northern Midwest states such as North Dakota, 
South Dakota, and Iowa. Canadian states spread out in the case distance space and most states 
bordered with the northern states of USA such as Minnesota, New York, New Jersey, Vermont, 
Massachusetts, and Maine. The case distance projections for the USA states were similar to the 35 
geographical map of the United States, except for the pacific states (CA. OR, WA) (Fig. 4B). 
States that are congruent in geographical space tended to have similar patterns of COVID-19 
incidence rates in the US. Northeast USA states (NJ, NY, ME, MA, NH, MD, VT) and located in 
upper right corner of the case distance map, Southeast and Southwest states (TX, SC, GA, FL) 
clustered in the south, and Midwest states (ND, SD, WI, IA, IL) and Rocky Mountain states (CO, 40 
UT, WY, NV, ID, MO) are in northwest and mid-west in the space of case distance. However, 
certain groupings of states were displaced from their expected locations in case time series space. 
For this analysis, we used the map of the ten Regions of the USA Department of Health and 
Human Services. HHS Region 2 (NY and NJ) was modestly displaced northward; HHS Region 9 
(CA, AZ, and NV) was displaced substantially eastward to cluster with the southeastern states; 45 
and HHS Region 10 (ID, OR, WA) was also displaced eastward to cluster with the mid-western 
states. Because HHS Region 9 and Region 10 are both on the West Coast, their combined 
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displacements to the east in the case time series map can be approximated by “folding” the geo-
map along the axis of the Rocky Mountains.  
 
Given that neighboring states predictably have very similar epidemic trajectories, we 
hypothesized that neighboring states with different policy approaches might nonetheless have 5 
dissimilar epidemic amplitudes. Therefore, for every state, we measured the mean difference in 
wave amplitude between that given state and all of its neighboring states. Next, we identified 
neighboring state pairs where political control of the state was the same, or different, and 
compared the differences in epidemic amplitude between those pairs where political control was 
the same or different. Neighboring state pairings with Democratic/Democratic, 10 
Republican/Republican, and Split/Split political control were considered to have similar political 
control, whereas all other pairings were considered to have dissimilar political control. The 
average difference in peak case rates between dissimilar and similar pairs were 2.38 (p-value = 
0.025, not corrected for multiple observations), -0.553 (p-value = 0.39), -1.86 (p-value = 0.72) 
and 0.677 (p-value = 0.63) for waves 1,2,3 and 4, respectively.  Thus, we were unable to detect 15 
statistically significant systematic differences in epidemic intensity among geo-contiguous state 
pairs with politically similar versus politically dissimilar party leadership except for wave 1 
which was early in the epidemic. Regardless of political leadership, geo-contiguous states had 
similar timings and intensities of their COVID-19 epidemic waves.  
 20 
Given the apparent association of Wave 3 with the onset of winter, we explored the relationship 
between wave 3’s peak incidence day and the day when each state’s temperature reaches 15°C, 
10°C, 5°C and 0°C (Fig. 5).  The x-axis of this figure is the first day when the 7-day moving 
average of daily temperature reaches the specified threshold within +/- 1°C.  To represent 
temperature in populated areas, we weighted the average daily temperature in each squared 25 
kilometer by the proportion of the state’s population residing in that area. The y-axis represents 
the peak incidence day for wave 3 as measured by the change point analysis discussed above. 
The 95% credible intervals are also shown is light blue vertical lines. The diagonal line indicates 
that case incidences peak when temperature reaches the threshold.  Most of the states fall above 
the line indicating that the day of reaching the specific temperature threshold occurs prior to the 30 
wave 3 case peak inflection. The correlation coefficients were 0.62, 0.71, 0.77, and 0.73 for 
temperature thresholds of 15°C, 10°C, 5°C and 0°C, respectively.  Supplementary Fig. S6 shows 
the average temperature trend for each state and the selected day in which the 7-day moving 
average temperature trend reaches 10°C as an example to illustrate the trends.  
 35 
 
Discussion 
We used daily COVID-19 case data to visualize, detect, and analyze spatiotemporal patterns of 
the epidemic at a continental scale in North America. This “synoptic epidemic mapping” 
approach allowed us to detect considerable spatiotemporal structure of the four COVID-19 40 
epidemic waves. By creating a full continental map of the normalized daily local intensity scores 
for all states and provinces for every day, and by displaying these 489 daily maps (1 January 
2020 = day 1) in sequence, we created movies that revealed continent-wide changes in intensity 
at the state-level for North America (Movie 1) and at the county-level for the USA (Movie 2).  
 45 
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Both movies reveal the dynamic nature of the waves across state and national boundaries. 
Overall, wave 1 was the smallest and least structured of the four waves, starting in New England 
and Eastern Canada. Especially for epidemic movements within wave 1, it may be difficult to 
disentangle the effects of new introductions versus other factors more associated with increased 
transmission of an already established local epidemic.  It has been speculated that New York and 5 
New Jersey were the first states to be severely affected because of their high population density 
and relative proximity to Europe through air travel (8). Note that early in wave 1, a brief ectopic 
focus of local intensity appeared in Louisiana and then neighboring Mississippi, possibly related 
to Mardi Gras on 25 February 2020.  Wave 2 was more structured starting from the southern US 
states and traveling northward. Interestingly, the COVID-19 normalized local intensity appeared 10 
to increase sharply in several Mexican states in the days preceding its start in the USA. Wave 3 
displayed the strongest spatial pattern of the four waves starting in the Dakotas, radially 
spreading to the entire North American continent, and then receding in similar fashion. Wave 4 
emerged from tail end of Wave 3 in New England and rose quickly across all of Canada and 
some northern USA states. Given that the COVID-19 epidemic emerged in the USA only 15 
slightly more than one year ago, there is insufficient time series data to determine if the wave 
pattern observed during the first year will be repeated in future years. It is interesting nonetheless 
to note that the North American wave 4, one year later, appears to roughly spatially congruent 
with epidemic wave 1 along the USA / Canada border.  
 20 
Calculating the pairwise differences in the daily reported COVID-19 time series cases for all 
states (and provinces) in the USA, Mexico and Canada allowed us to create and visualize maps 
of the distances among these regions in COVID-19 case time series space and compare those 
maps to conventional geo-maps.  The state-to-state distance relationships in the COVID-19 case 
time series map were broadly congruent with their distance relationships in geo-space, even 25 
across international boundaries and datasets. Geo-contiguous state pairs were far more likely to 
show similar case time series patterns than geo-distant state pairs. 
 
We performed one preliminary analysis of the effect of political party control of state legislatures 
and governorships on the amplitude of the COVID-19 epidemic. In the USA, state level 30 
epidemic control policies are strongly associated with the political party affiliation of the state 
government leadership. For example, Democratic-led states typically have more stringent 
policies for mask wearing and social distancing compared to Republican-led states (9). Our 
analysis effectively asked whether “red state / blue state” neighbor pairings were more likely to 
have dissimilar epidemic amplitudes than “red state / red state” or “blue state / blue state” 35 
pairings. For waves 2, 3, and 4, we could not find any association between neighbors’ state 
political differences and neighbors’ state epidemic amplitudes. Only for wave 1, early in the 
epidemic, we found a borderline significant association (uncorrected for multiple observations) 
of political difference and epidemic intensity difference. This preliminary analysis does not 
exclude the possibility that national and/or state policies could have lowered epidemic 40 
amplitudes across all pairings. We believe that this approach, of choosing neighboring controls, 
will prove useful in future COVID-19 policy analyses.  
 
Our findings suggests that temporal variations in the epidemic intensity in a particular USA state 
are subject to forces acting well beyond state or national borders. Indeed, epidemic intensity at 45 
any given point in time can co-vary with the epidemic intensity in states a thousand miles away 
or more. This is especially true of states at the same latitude. For example, the case time series 
patterns for California and Arizona are very similar (r > .9) to those of Mississippi, Alabama, and 
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Georgia. These wide-acting forces span international borders as well as state borders. The wave 
patterns also cross boundaries between red states and blue states.  
 
The striking geospatial structure of the COVID-19 epidemic in the USA, dominated by shifting 
north south latitudinal gradients, strongly suggests a role for seasonal weather-related factors as 5 
major drivers of the epidemic.  Our preliminary finding revealing a strong relationship between 
air temperature and peak case incidence rates in wave 3 (correlation > 75%) supports such role.  
There has been agreement on the significant role of temperature in COVID-19 transmission (10). 
Like other respiratory viruses, COVID-19 transmission rate is affected by environmental factors 
such as temperature and humidity. On the other hand, there are mixed observations on the 10 
relationship between relative or absolute humidity and COVID-19 transmission (10). Changes in 
both viral stability and in human behaviors have been associated with changes in environmental 
factors (11, 12). Environmental conditions determine how long the virus persists in aerosols and 
on surface (13). Increases in indoor human to human contacts during the cold weather can 
increase viral transmission between infected and susceptible individuals (12). 15 
 
Although, latitude and altitude are known to be closely correlated with mean temperatures, the 
quantitative relationship between COVID-19 epidemic intensity and temperature is not a simple 
one. While wave 3 behaved as expected, with higher epidemic intensity emerging in the north 
and tracking southward as the winter season and cooler temperatures arrived, the earlier 20 
summertime wave 2 behaved exactly the opposite. Paradoxically, increased epidemic intensity in 
wave 2 first emerged in states in southern latitudes and with low altitudes, in the hottest states in 
the hottest time of the year. Studies identified the range of 5-15°C as a significant temperature 
zone for high incidence of COVID-19 cases (14-16). Outside this temperature range, COVID-
19’s temperature response becomes unclear (14, 16, 17).  Wave 2 also appears to have started in 25 
low altitude states in Mexico concurrently with the southern USA states. It appears likely that 
different seasonal-associated mechanisms may account for wave 2 and wave 3. This topic 
warrants further study.   
 
The causes of transitory waxing or waning of COVID-19 case incidence rates have been the 30 
subject of prior analyses. Some studies support the effect of social-distancing measures such as 
closing schools and stay-at-home orders and other non-pharmaceutical interventions such as 
mask wearing on reducing the growth rate of infections (18-22). No doubt these measures among 
other factors can affect the state-by-state intensity patterns too, including travel, population 
density and demographics, viral variants, vaccine coverage, and other important factors. A 35 
proper causal analysis for the COVID-19 waves should include all these factors, and their 
interactions. Our hope is that this spatiotemporal framework will contribute to such definitive 
analyses.  
 
Whatever the exact causal mechanism, it seems highly likely that wave 3 will occur again in the 40 
fall of 2021, given its strong correlation with temperature and seasonal pattern in 2020. It is also 
very possible that wave 2, given its strong continent-spanning spatiotemporal pattern, will occur 
again this summer in 2021. However, uncertainty about the possible mechanisms relating 
southern latitudes and low altitudes to the wave 2 surge lowers this expectation somewhat.  
Increased accumulation of immune persons in the population over the past year, through prior 45 
infections and through vaccination, will almost certainly dampen future epidemic waves in North 
America. However, as long as the population remains at immunity levels that are lower than 
those required for herd immunity, the seasonal forces that drove wave 2 and wave 3 could result 
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in measurable epidemic surges at the same times and same regions in 2021 as occurred in 2020. 
Similar spatiotemporal analyses of other large scale COVID-19 data sets could be done around 
the world, linking the local epidemic patterns to local weather patterns. Results of such 
comparable international analyses could extend and/or support possible new epidemic 
forecasting methods based on weather.  5 
 
This analysis suggests that the pattern of waxing and waning is largely driven by external factors. 
However, the overall amplitude (intensity) of the epidemic can nonetheless vary across states 
with identical time series patterns. It is not yet possible to quantitate exactly what proportion of 
the temporal variance in epidemic intensity in each state can be attributed to extra- versus intra-10 
state factors. From these observations, we conclude that analyses to evaluate the effectiveness of 
state control policies should not be based solely on temporal changes of time series case reports 
within each state, because the pattern of waxing and waning temporal changes in that state is 
probably largely the result of forces that are external to that state. We propose that where 
possible, policy analyses should be done by comparing the pattern and amplitude of the case time 15 
series in a state to the pattern and amplitude of the case time series in neighboring states.  
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Fig. 1. The four waves of COVID-19 cases and mortality for US, Mexico, and Canada. Panel A 
shows case rates, and Panel B shows Mortality rates are per 100K. Blue, green, and red line 
indicates 7-day average of case or mortality rate per 100,000 in the US, Mexico, and Canada, 5 
respectively. The discontinuity in Mexico’s mortality curve is because the y-axis is limited to 
less than 1.5 per 100,000 which suppresses the spike in reported deaths around 12/01/2020. 
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Fig. 2. Synoptic Epidemic Model of Covid-19 in the USA: (A) shows a illustrates the overall 
synoptic model with numbers indicated waves 1 through 4, and arrows depicting the general 
chronological order of states involved in each wave. (B) shows the peak day for each wave by 
state from the Gaussian function fit (Supplementary Fig. S7) where darker colors represent 5 
earlier states in that wave, and (C) shows the states leading each wave.  
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Fig. 2B enlarged 
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Fig. 3. Correlation of case time series distance to geographical distance in four index states: (A) 
South Dakota, US; (B) Veracruz, Mexico; (C) Manitoba, Canada; and (D) California, US.  The 
linear fit, correlation coefficient (R) and the p-value of the fit are shown for each panel. [A 5 
description for the state and province abbreviations used are presented in the Supplementary 
Table S2]. 
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Fig. 3A enlarged 
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Fig. 3B enlarged 
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Fig. 3C enlarged 
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Fig. 3D enlarged 
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Fig. 4. Two-Dimensional projection of all US, Mexican, and Canadian states in the space of 
epidemic case distance. In (A), states and provinces in all three countries are mapped and the 
shaded region groups the states based on the country. In (B), states in the USA are mapped in the 5 
space of case rate distance. We grouped the states based on the HHS regions and compared the 
position in the space of case distance with the geographical location. [A description for the 
abbreviations used are presented in the Supplementary Table S2.] 
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Fig. 4A enlarged  
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Fig. 4B enlarged  
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Fig. 5. Association between average temperature and wave 3 inflection point. Each plot shows a 
specific temperature threshold.  The x-axis displays when the 7-day moving average temperature 
in each state reaches this threshold within +/-1°C, and the y-axis is wave 3’s peak incidence day 5 
estimated from the change point analysis. The 2-letter abbreviations represent the USA states. 
The light blue vertical lines are the 95% credible intervals for each state’s inflection point.  r is 
the correlation between temperature threshold day and the wave 3 inflection point, and n is the 
number of states that reach the threshold excluding Hawaii.   
  10 
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Movie captions:  

Movie 1. Animation of normalized local intensity of COVID-19 cases in the US, Canada and 
Mexico.  The color is scaled between 0 and 1 within state.  Zero indicating no cases in a state and 
1 indicates the maximum number of cases for that state during the observation period. 

Movie 2. Animation of geospatial hotspot of COVID-19 case rates. The Gi* statistics are 5 
standardized using pooled statistics over time. The various shades of red and blue indicate 
pooled standard deviations above and below the pooled mean, respectively, as shown in the 
legend.  

Movie 3. Animation of three-dimensional plot of all US, Canadian, and Mexican states in the 
space of case distance. 10 
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Materials and Methods 

Data sources: This analysis uses COVID-19 case rates for Canada, US and Mexico from the 
start of the pandemic until May 3rd 2021, the latest date available at the time of writing this 
manuscript.  We obtained daily cases and deaths data by state from data compiled by The New 
York Times and John Hopkins University (1). We used 2020 population for all US and Mexico 
states and Canadian provinces.  All rates are calculated per 100,000 people.  We excluded 
Hawaii and Alaska for analyses that involved studying the contiguous US.  

Case distance vs. geographical distance: In order to examine whether geographically close 
states tend to have similar patterns (rise and wane) of COVID-19, we first estimated correlation 
between geographical distance and case distance in every pair of states in the US, Mexico, and 
Canada except for Hawaii and Alaska. In each pair of states, we calculated the Pearson’s 
correlation of the 7-day average of case rate from March 1, 2020 to May 3, 2021. The case rate 
distance was defined to be subtracting the absolute value of correlation from 1. Hence, the case 
rate distance will capture similarity and difference in patterns of COVID-19 epidemics in terms 
of the timings of the 4 waves and not the severity. Geographical distance was calculated based 
on the distance between the centroid of two states.  

We also studied whether the network mapping of case distance can restore the geographical 
network structure of the states. We mapped states (vertices or nodes) in the 3-dimensional space 
based on their case distance (edge). We used Kamada-Kawai layout algorithm (2) to optimize the 
layout of network in a 3-dimensional space given the distance in case rates.  

Normalized daily local intensity score: To further reveal the geospatial patterns of COVID-19, 
we normalized daily local intensity score by rescaling the number of cases in each state relative 
to the maximum number of cases observed in that state over the study period.  We produced an 
animation of these rescaled patterns to study the dynamics of changing local intensity in a state. 
To reduce the temporal noise, we used Locally Weighted Smoothing (LOESS).  In the county-
level analysis, we used the Getis-Ord Gi* statistic to show geospatial clustering of hot (high) and 
cold (low) spots of case rates. The Gi* statistic identifies these hot and cold spots on the basis of 
contiguous counties. The Gi* statistic is essentially a Z-score standardized by a mean and 
standard deviation of case rates in all the counties. Typically, the Gi* statistic can display 
geospatial information on one dimension such as mortality rates. To add additional dimensions 
and compare case rates over time, we re-standardized the Gi* statistics by using the pooled mean 
and standard deviations of the Gi* statistics over time (3). This re-standardization allowed us to 
produce a set of comparable maps over time in Movie 2. 

Change point analysis to measure day of peak incidence. We used multiple change point 
analysis to capture the inflection points of each wave.  We fit a Bayesian change point model to 
the log of 7-day moving average case rates for each state.  The change point model consisted of 
seven change points and eight segments.  To capture the sequential 4 wave patterns, we 
constrained the slopes of the four linear segments preceding each change point to be positive 
(ascending arm) and the slopes of the four segment following the change point to be negative 
(descending arm). To obtain the posterior distributions of the wave peaks, we used the package 
mcp in R (4).  Fig. S4 shows the results of the change point analysis. This figure shows 7 change 
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points. The odd change points 1, 3, 5 and 7 represent the peak days of waves 1 through 4, 
respectively, and their heights represent their amplitude. The 95% credible intervals were 
obtained from the posterior distribution of these change points. 
 
Population-weighted average temperature by state: We used Daymet Version 4 Monthly 
Latency Daily Surface Weather Data (5) to obtain minimum and maximum daily temperature 
data on a 1 squared kilometer grid.  We computed daily average temperature by taking midpoint 
temperature between the minimum and maximum daily temperatures.  To adjust the average 
temperature for the populated areas at the state level, we weighted the daily average temperature 
by the estimated proportion of the state population living in each squared kilometer in that state 
(6).  Then, we computed the average state temperature by summing these weighted temperature 
values across the squared kilometers in each state.  Finally, we computed the 7-day moving 
average to smooth the temperature trends. 
 
Political party state government control:  We examined the relationship between the political 
control of states’ governments and the amplitude of each wave. We used the National 
Conference for State Legislature (NCSL) to define the state’s government control based on the 
legislature’s partisan composition and the political party of the state governor.  In 2020, there 
were 23 states controlled by the Republican party, 15 states controlled by the Democratic party, 
and 13 states where the state control were split.  Our hypothesis was the amplitude of a wave is 
similar for neighboring states with similar government control and different for states with 
different state control.  We examined 101 unique pairs of state neighbor, 51 of which had similar 
political controls and 60 had different controls.  We defined Republican-Republican, 
Democratic-Democratic and Split-Split controls between a pair as similar and everything else as 
different.  The outcome of interest was the difference in amplitude between the states in each 
pair. Because these differences were not normally distributed, we used the Wilcoxon signed-
ranked test to test for statistical significance. We assessed whether the rank mean of the 
amplitude difference was statistically significantly different between states with similar 
government control vs those that have dissimilar government controls. 
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Fig. S1. 
Covid-19 case incidence rates (per 100,000) by state in the US (blue), Mexico (green), and 
Canada (red). Incidence rates are smoothed by taking 7-day moving average.  
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Fig. S2. 
Covid-19 mortality rates (per 100,000) by state in the US (blue), Mexico (green), and Canada 
(red). Mortality rates are smoothed by taking 7-day moving average.  
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Fig. S3. 
Correlation of covid-19 cumulative incidence and mortality rate in the US. Across the 48 states 
in the US, we observed a positive correlation (r=0.6, p < 0.01) between cumulative incidence rate 
and cumulative mortality rate of covid-19 from March 1,2020 to May 10, 2021. This indicates 
that US states with higher cumulative case rate tend to have higher cumulative mortality rates 
from covid-19 epidemics. The slope of the fitted linear line showed the cumulative case rates that 
corresponds to 1 cumulative death rate, or the ratio of total number of cases to total deaths. In the 
US, 26 reported incidence of covid-19 corresponds to 1 death. Utah showed the highest case-to-
death ratio, compared to other states. Some northeastern states (VT, ME, NH), Pacific states 
(WA, OR), and midwestern states (SD, ND) showed higher ratio compared to the average. In 
Mexico, cumulative case rate was highly correlated with cumulative death rate (r = 0.83, p 
<0.01). The case to death ratio was lower than the ratio in the US, indicating higher risk of death 
given one covid-19 case. In the 10 states of Canada, cumulative case rate was positively 
correlated with cumulative mortality rate. The case to death ratio was higher than the other two 
countries.   
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Fig. S4.  
Results of the multiple change point analysis by state. The x-axis is the days since January 1st, 
2020, and the y-axis is the log of 7-day moving average of case rates per 100,000.  The gray lines 
are samples from the posterior fitted models, and the density plots at the bottom are the posterior 
densities of the seven change points. We used change points 1, 3, 5 and 7 to represent the days in 
which waves 1 through 4 peak, respectively. 
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Fig. S5. 
Correlation between the distance of covid-19 case rates and geographical distance for all possible 
pairs of US and Mexican states and Canadian provinces. The linear fit, correlation coefficient (R) 
and the p-value of the fit are shown. 
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Fig. S6. 
Measuring day when temperature reaches a threshold.  The x-axis is day counts since January 1st 
2020, and the y-axis is the mean temperature 7-day moving average.  Each figure represents a 
state which are organized roughly by their locations in the US geological map.  Data for the 
District of Columbia and Hawaii were not available.  The horizontal green line indicates the 
temperature threshold used in this example (10°C), and the vertical line indicates the day at 
which the state’s curve reaches that threshold within +/-1°C.   
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Table S1. 
List of state and province acronyms used in the analysis and figures. 

United States Mexico Canada 
State Abbr. State Abbr. Province Abbr 
Alabama AL Aguascalientes AGU Alberta CAB 
Arizona AZ Baja California BCN British Columbia CBC 
Arkansas AR Baja California Sur BCS Manitoba CMB 
California CA Campeche CAM New Brunswick CNB 
Colorado CO Chiapas CHP Nova Scotia CNS 
Connecticut CT Chihuahua CHH Ontario CON 
Delaware DE Ciudad de Mexico CMX Prince Edward Island CPE 
Florida FL Coahuila COA Quebec CQC 
Georgia GA Colima COL Saskatchewan CSK 
Idaho ID Durango DUR Yukon CYT 
Illinois IL Guanajuato GUA 
Indiana IN Guerrero GRO 
Iowa IA Hidalgo HID 
Kansas KS Jalisco JAL 
Kentucky KY Mexico MEX 
Louisiana LA Michoacan MIC 
Maine ME Morelos MOR 
Maryland MD Nayarit NAY 
Massachusetts MA Nuevo Leon NLE 
Michigan MI Oaxaca OAX 
Minnesota MN Puebla PUE 
Mississippi MS Queretaro QUE 
Missouri MO Quintana Roo ROO 
Montana MT San Luis Potosi SLP 
Nebraska NE Sinaloa SIN 
Nevada NV Sonora SON 
New Hampshire NH Tabasco TAB 
New Jersey NJ Tamaulipas TAM 
New Mexico NM Tlaxcala TLA 
New York NY Veracruz VER 
North Carolina NC Yucatan YUC 
North Dakota ND Zacatecas ZAC 
Ohio OH 
Oklahoma OK 
Oregon OR 
Pennsylvania PA 
Rhode Island RI 
South Carolina SC 
South Dakota SD 
Tennessee TN 
Texas TX 
Utah UT 
Vermont VT 
Virginia VA 
Washington WA 
West Virginia WV 
Wisconsin WI 
Wyoming WY 
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