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Traditional contact tracing for COVID-19 tests the direct contacts of those who test positive even if the contacts do not show any symptom.
But, by the time an infected individual is tested, the infection starting from the person may have infected a chain of individuals. Hence,
why should the testing stop at direct contacts, and not test secondary, tertiary contacts or even contacts further down? One deterrent in
testing long chains of individuals right away may be that it substantially increases the testing load, or does it? We investigate the costs
and benefits of such multi-hop contact tracing for different number of hops. Considering a large number of contact topologies, spanning
synthetic networks of divergent characteristics and those constructed from recorded interactions, we show that the cost-benefit tradeoff
can be characterized in terms of a single measurable attribute, the initial epidemic growth rate. Once this growth rate crosses a threshold,
multi-hop contact tracing substantially reduces the outbreak size compared to traditional contact tracing. Multi-hop even incurs a lower cost
compared to the traditional contact tracing for a large range of values of the growth rate. The cost-benefit tradeoffs and the choice of the
number of hops can be classified into three phases, with sharp transitions between them, depending on the value of the growth rate. The
need for choosing a larger number of hops becomes greater as the growth rate increases or the environment becomes less conducive toward
containing the disease.

To slow down the spread of COVID-19, public health authorities like the US Center for Disease Control and Prevention
(CDC) recommended testing those who have in the recent past been in physical proximity with an individual who has tested
positive, even when the contacts do not exhibit any symptom (1). This preemptive action, commonly known as contact tracing,
is deployed because given how contagious the disease is, a patient is likely to have passed the virus to their contacts, and the
infected contacts have the potential to infect others even before they show symptoms (2). Discovering and quarantining those
infected contacts will stop them from spreading the disease much earlier than a strategy in which only symptomatic individuals
who seek medical help are tested. Slowing down the spread by contact tracing comes at the cost of an increase in the testing
load, yet, the cost-benefit tradeoff for contact tracing is understood to be substantially favorable, in a situation where many
countries have experienced economic downturn and lockdown for a long time.

A question that naturally arises is if cost-benefit tradeoffs may be enhanced through natural generalizations of the core
concept of contact tracing - this is what we seek to answer in this paper. In the time that elapses between when an individual,
I, is infected until I is tested, the disease spreads from I through a chain of several hops - I infects those I is in contact with,
those whom I infects can infect their contacts, the infected contacts can infect their contacts, and so on. A recent study
suggests that, due to the high speed of transmission, the epidemic may continue to grow even if all contacts are quarantined
with some delay (3).

Fewer people are likely to be infected by testing and quarantining not only direct contacts of an individual who tests positive,
but contacts of the contacts and so on (Figure 1b). Such multi-hop tracing and testing will enable identification and quarantine
of the individuals further down the chain who have been exposed, earlier than if we had tested only the direct contacts of those
who have tested positive and then reach down the chain iteratively. To see why multi-hop contact tracing may be effective note
that an infectious disease spreads through growth of clusters of infected individuals around one or more origins, e.g., during the
spread of COVID-19 large clusters were observed in meat-packing plants in seven countries, and an e-commerce distribution
warehouse in South Korea (4). Contact tracing also form clusters of tested individuals that grow from and around one or
more individuals who initially test positive (Figure 1a). In this sense, contact tracing emulates the spread of the disease. If
the testing cluster grows faster than the infection cluster and also substantially overlaps with the latter, the outbreak will
be contained. And by virtue of its design, multi-hop contact tracing grows the testing cluster faster than traditional contact
tracing. Multi-hop tracing strategies have been sporadically deployed in practice with considerable success. For example, in
Vietnam, public health authority sometimes reached out to tertiary contacts, and found and tested as many as 200 contacts for
each case (5); many of those who were traced and quarantined during the first 100 days of the pandemic were in fact secondary
contacts of those who tested positive (6). Vietnam reported only a total of 1, 465 PCR-confirmed cases and 35 deaths by the
end of 2020 (7). Nonetheless, this concept has not been comprehensively and systemically investigated - this is the void this
paper seeks to fill in.

The following questions arise in context of multi-hop tracing: 1) Under what circumstances can traditional contact tracing
not significantly reduce the outbreak size? In these cases, do aggressive preemptive tracing schemes under multi-hop reduce
the outbreak size significantly? 2) Do such schemes necessarily increase the overall number of tests and quarantines? The
answer is not a priori clear as reduction in overall infection spread through such a strategy may eventually reduce the number
of tests required, as illustrated in Figure 1b. 3) If multi-hop tracing turns out to be beneficial, how many hops provide the best
cost-benefit tradeoff? Does a saturation phenomenon in which the benefit increases only marginally by increasing the number
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Fig. 1. (a) Left network: This figure is a partial network based on epidemiological investigation information by the Korea Centers for Disease Control and Prevention (KCDC)
and local governments (8). It illustrates how infection spread from two dance instructors (source cases; red circle), both of whom attended a workshop on Feb 15, 2020, in
South Korea. Subsequently they separately taught dance classes indoor and spread to the attendees who spread to their contacts. The blue shaded area represents the
instructors and the attendees in each dance class, and close contacts (gray dashed line edges) among them in the class. The gray solid lines represent the contact during which
the disease is transmitted. The dashed red line between the two instructors indicate that they were in contact (because they simultaneously attended the workshop). Right
network: Suppose an index case indicated by the blue square is identified by the health authority. When multi-hop (e.g., 3 hop) contact tracing is done, the tested nodes also
form a cluster. Thus, intuitively, the growth of the tested cluster emulates the growth of the infected cluster, this emulation helps in containment. (b) We use a different example
to Illustrate and compare 1-hop contact tracing (i.e., testing only the direct contacts of those who test positive) and 3-hop contact tracing (i.e., testing the direct, secondary and
tertiary contacts of those who test positive). The time at which a health authority tests the patient-0 (red) was after the infection has propagated 2 hops. By t + 3 time units, both
testing policies test 4 individuals (black) other than the patient-0; the 3-hop policy tests and quarantines the positive ones in a shorter time, while 1-hop tests and quarantines
them progressively and therefore over longer times. Accordingly, only 3 individuals are infected under the 3-hop policy, while 10 individuals are infected under the 1-hop policy.
(c) The real-world initial epidemic growth rates from 258 political units range from 0 to 0.31, with a median of 0.12 (interquartile range 0.08 - 0.17). Each quartile is filled with a
different color. (d) Virus transmission model illustration. The Compartmental model consists of the following compartments: Susceptible (S), Presymptomatic-Latent (Ip-L),
Presymptomatic (Ip), Symptomatic (Is), Ready-to-Test (RT ), Asymptomatic-Latent (Ia-L), Asymptomatic (Ia), Recovered (R), and Dead (D).

of hops beyond a certain point arise? If so, what is the saturation point? 4) How do these answers depend on the attributes of
the tests, the time at which contact tracing is deployed, and the behavioral dynamics, that is, the extent of public compliance
of public health directives? We proceed to answer these questions in this paper.

We formalize the aggressive preemptive tracing and testing scheme as k-hop contact tracing, where k is the depth of the
contact chain that is traced. For example, k = 0 does not trace contacts and tests only those who show symptoms and seek
medical help, k = 1 is the traditional contact tracing that tests the direct contacts of an individual who tests positive, k = 2
additionally tests the contacts of the contacts, k = 3 tests yet another hop of contacts, and so on. We call the multiple
generations of contacts to COVID-19 cases (i.e., k-hop contact tracing for k ≥ 2) multi-hop contact tracing.

We quantify the costs and benefit of contact tracing over a course of 6 months (180 days) starting from the day after contact
tracing is initiated, and compare the results for multi-hop contact tracing with 1-hop contact tracing. The benefit is defined as
the percentage of reduction in the number of infections over the period compared to when no contact tracing was performed.
The costs are comprised of 1) the number of tests and 2) total sum of days of quarantine for the entire population over the
period.

However, the nature of the cost-benefit tradeoff for multi-hop contact tracing depends on various attributes. Behavioral
dynamics undermine the efficacy of contact tracing. Individuals do not always cooperate with public-health authorities by 1)
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Table 1. Contact Networks

Notation Types of Networks
Population

N

Average Degree
〈k〉

Diameter
d

Average Path Length
l

Average Clustering Coefficient
〈C〉

WS1 Watts-Strogatz network w/ p = 0.01 100, 000 4.00 95 39.3 0.472
WS2 Watts-Strogatz network w/ p = 0.1 100, 000 4.00 22 12.4 0.275
WS3 Watts-Strogatz network w/ p = 1 100, 000 4.00 17 8.42 0.0000413
WS4 Watts-Strogatz network w/ p = 0.01 100, 000 8.00 32 16.6 0.606
WS5 Watts-Strogatz network w/ p = 0.1 100, 000 8.00 11 7.50 0.349
WS6 Watts-Strogatz network w/ p = 1 100, 000 8.00 10 5.77 0.0000804
SF Scale-free network 100, 000 4.00 10 5.88 0.000651

DATA1 Data-driven network w/ r = 1 69, 441 8.49 17 8.81 0.627
DATA2 Data-driven network w/ r = 3 69, 441 8.49 15 7.45 0.589
DATA3 Data-driven network w/ r = 5 69, 441 8.49 15 6.97 0.553

Notes. p is the rewiring probability of Watts-Strogatz networks, and r is the mixing parameter in data-driven network. The average degree is the average number of edges per node. The distance
between a pair of nodes is the length of the shortest path between them. The diameter is the maximum value of this distance over all pairs of nodes. The average path length is the average of this
distance over all pairs of nodes; only the lengths of the existing paths are considered and averaged. Clustering coefficient of a node i, Ci , is defined as the ratio between the actual number of links
between the neighbors of i and the maximum possible number of links between the neighbors of i (9). This is high if there exists a large number of edges in the neighborhood of i. The average clustering
coefficient, 〈C〉, is the average of Ci over all nodes i. The average degree, average path length, and average clustering coefficient are rounded to three significant figures.

disclosing their contacts 2) quarantining when exposed to those who test positive. The tests suffer from false negatives and
false positives. If an individual tests negative falsely, his k-hop contacts will not be traced and tested (unless those contacts
are within k-hop of another individual who tests positive). This undermines the ability of the tracing strategy to contain the
outbreak. False positives may increase cost by setting off a chain of unnecessary tracing and testing. Tests can have different
turnaround times, high turnaround times delay tracing the contacts of those infected. Contact tracing in its entirety may be
initiated by public health officials only after the infection level in the target populace crosses a certain threshold. All these
attributes are likely to affect the outcome of the tracing. These attributes depend on regional and cultural characteristics
and public health policies which are different in different ambiences. Given the inherent uncertainty of the settings and the
heterogeneity for different venues, we consider a range of values of the above attributes based on estimates available in the
literature.

Contact pattern among individuals and probability with which a contagious individual infects a susceptible individual in an
interaction uniquely determine initial epidemic growth rate that characterizes the intrinsic speed of virus spread within each
community in the absence of any public health intervention. Our simulations in a large number of large-scale contact networks
reveal that the nature of the cost-benefit tradeoff for multi-hop contact tracing can be characterized in terms of the growth rate,
and the nature remains largely stable to variation of the above-mentioned attributes in reasonable ranges. When the growth
rate is low, 1-hop contact tracing alone can sufficiently contain the virus, and multi-hop contact tracing does not provide
noticeable further benefit in terms of reduction in the outbreak size. Next, a sharp phase transition is exhibited once the
growth rate crosses a threshold value. Specifically, at intermediate growth rates, the benefit that 1-hop provides dramatically
decreases as compared to the low growth rate range, and multi-hop contact tracing offers substantial further benefit even at a
lower cost compared to 1-hop. At high growth rates, multi-hop contact tracing provides substantial further benefit but incurs
greater costs, as compared to 1-hop contact tracing. Next, as to the choice of the number of hops, in general, the need for
choosing a larger number of hops becomes greater as the growth rate increases or the environment becomes less conducive
toward containing the disease. The further benefit for adding another hop beyond 1-hop tends to diminish progressively in
almost every topology, the decrease becomes less pronounced for higher growth rates and in more challenging environments.
Thus, the saturation phenomenon is observed throughout, though the hop number at which this phenomenon is observed is
higher for higher growth rates and in more challenging environments. Specifically, based on the costs and benefits, it becomes
apparent that the choice for the number of hops may be confined to 1, 2, 3, 4 hops, with the need for considering 4-hop arising
largely for the high growth rate region (5 hops provides non-negligible further benefit only in very few instances).

Model Dynamics and Contact Tracing Process

We consider a discrete time stochastic evolution of COVID-19 in a population that initially consists of susceptible and a few
contagious individuals. We model the progression of the disease using a compartmental model (Figure 1d). The disease spreads
from the contagious individual (CI) to the susceptible individual (SI) through mutual interaction. In any given interaction
with a CI, an SI is infected with a probability β. This transmission probability depends on a range of factors such as whether
the individuals observe social distancing, wear protective equipment and varies from one venue to another. Considering
(10, 11), we consider a wide range of values for β, namely β ∈ [0.1, 0.3]. After a latency period (the presymptomatic-latent and
asymptomatic-latent are in this latency period), the newly infected individuals become contagious. Specifically, at the end of
the latency period, the individuals either become presymptomatic (the stage before exhibiting symptoms), or asymptomatic
(that is, they never show symptoms). Presymptomatics proceed to become symptomatics in the next stage. After a random
delay, symptomatics opt for seeking medical help and testing, and become ready-to-test. Presymptomatics, asymptomatics,
symptomatics all however are contagious. Refer to Methods for details on the systems we consider and the parameters we
choose.

Once the individual in question tests positive, the public health authority traces his k-hop contacts, over the last 14 days,
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and informs them at the end of the day that they may have been exposed under the assumption of implementation of digital
contact tracing. Such contact tracing may be accomplished through digital contact tracing (refer to SI Appendix for details on
digital contact tracing pertaining to multi-hop contact tracing). The authority asks them to self-quarantine for 14 days unless
they are already under quarantine or ever tested positive before. We assume that the traced individuals are scheduled for
testing in 3 days. The test results are available in 1 to 3 days. Individuals who test positive will not be tested again, but those
who test negative can be tested again if they are traced again from an individual who tested positive.

We evaluate the multi-hop testing strategies through agent-driven simulation on diverse large-scale contact networks,
spanning a large number of networks of a classical synthetic variety with N = 100, 000 individuals and empirical social contact
networks. In the contact networks, the nodes represent the individuals and the edges their contacts; the degrees of the nodes
represent the number of contacts of the corresponding individuals. Growth of an epidemic depends on structural attributes of
the contact networks, such as 1) average path lengths between nodes 2) clustering coefficient 3) degree distribution. We consider
two broad classes of synthetic networks, which captures different ranges of the above attributes: 1) Watts-Strogatz networks 2)
Scale-free networks. By varying a parameter, referred to as the rewiring probability, of the Watts-Strogatz networks from 0 to
1, one can realize 1) average path lengths that range from linear to logarithmic functions of the number of nodes 2) clustering
coefficients from high to vanishingly small (9). Studies based on real data suggest that contact networks among individuals
exhibit short (i.e., logarithmic) average path length and high clustering coefficients (commonly referred to as the small-world
property) (12, 13). When clustering coefficient is high, most of the contacts happen between individuals in given phases or
clusters; when clustering coefficient is low, most contacts happen between randomly selected individuals. Both extremes and
values in between can be captured by choosing the value of the rewiring probability (9). The special case of the Watts-Strogatz
model in which the average path length is logarithmic and the clustering coefficient is low corresponds to a variant of the
Erdős Rényi random networks; we consider this variant as well. Scale-free networks exhibit heterogeneous degree distributions,
i.e., the degree distribution has a high variance and only a polynomially decaying tail (‘fat-tailed’ distribution). The degree
distribution in Watts-Strogatz models have exponentially decaying tails for usual choices of parameters. The implication of this
difference is that scale-free networks invariably have some individuals with very high degree, while the probability of the same
happening in Watts-Strogatz models is low.

Additionally, we consider a social contact network obtained from data recorded from social and professional interaction
patterns that have been realized in practice. This data-set records interactions among 69, 441 individuals residing in 75 villages
in the state of Karnataka in India (14). In this data-set, each village consists of 354 - 1775 individuals in this data-set. The
limitation of this data-set is that it contains information only on social interactions between individuals within each village.
However, in reality, individuals living in different villages do come in contact, and pandemic spreads from one village to another
through these contacts. Also, the cost-benefit trade-off for multi-hop contact tracing is best evaluated on large population sizes,
otherwise the length of the contact chains will be limited by the size of the target populace. We therefore rewire r% of edges to
introduce interactions between individuals of different villages, where r is a parameter.

By considering all of these diverse networks complementing each other in fundamental characteristics, we are able to assess
the cost-benefit tradeoffs of multi-hop contact tracing and testing strategies for widely varying contact patterns. See Table 1
and Methods for details on all the synthetic and data-driven networks we consider.

We consider an attribute called initial epidemic growth rate, or more simply the growth rate, that characterizes the intrinsic
speed of virus spread in each network. This attribute depends on the network structure and the transmission probability β. Let
Nt and N0 respectively be the cumulative number of infected individuals at times t and t0 in a target region, where t0 represents
the start and [t0, t] an initial period of the epidemic growth. Now, similar to (15), we define the growth rate in the target region
as (lnNt − lnN0)/(t− t0). We choose this expression (particularly the logarithmic functions) because the growth of infections
during the initial period has been widely observed to be exponential for different epidemics including the COVID-19 pandemic.
We consider an initial period because the growth of the epidemic in this period typically happens before any public health
intervention, such as contact tracing, preemptive quarantining, lockdown etc. and therefore represents the innate speed of the
spread of the virus in the network, and depends only on the network structure and β. Using the data available in (16), we
calculated this quantity for COVID-19 for different political units (country/region or province/state/dependency). We limited
the analysis to political units that recorded at least 40 cases within the early stages of spread of COVID-19 (i.e., within first
three months up to April 20, 2020) of the pandemic. There are 142 such countries/regions and 116 province/state/dependencies
(Figure 1c). For each such political unit we considered t0 to be the time at which 40 cases are recorded in the unit, we consider
that local community transmissions begin at t0; we consider t to be 3 weeks (21 days) from t0. We found that the growth rates
in all these political units range from 0 to 0.31, with a median of 0.12 (Figure 1c). The range of β that we consider provides
initial epidemic growth rates, in the diverse contact networks we consider, in a range that subsumes the realistic range [0, 0.31].

We consider various attributes that affect the efficacy of contact tracing, involving variations of false negative rates, false
positive rates, test result turnaround times, starting times of contact tracing, and level of cooperation with contact tracing and
testing. We first set a default scenario and then consider a variety of environments departing from the choices in the default
scenario based on estimates available in the literature. We first consider attributes of the testing equipment and logistics.
Test results may be inaccurate, suffering from false-negatives and false-positives. A review (17) of 34 studies based on 12, 057
confirmed patients showed that false-negative rates ranged from 1.8 to 58%, with a median of 11%. We thus set the median
11% false-negative rate as default, but consider both the lowest and highest end-points of the reported range, though note that
58% is unrealistically high for the test-result to be meaningful. As for false positives, studies assessing a total of 119 South
Korean laboratories (18, 19) and 52 Austrian laboratories (20) did not report false positive results, and a study evaluating 365
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(a) Benefit (b) Relative Benefit/Costs

Fig. 2. (a) Benefit each policy provides, from 1-hop to 3-hop contact tracing under the default setting. This represents the percentage of reduction in the number of infections
when k-hop contact tracing was performed compared to when no contact tracing was performed. (b) Relative benefit and relative costs for 3-hop contact tracing under the
default setting. These respectively represent the incremental benefits and costs 3-hop contact tracing provides/incurs as compared to 1-hop contact tracing. The gray, red,
and blue shaded regions respectively represent phase A, B, and C under the default setting. For both (a) and (b), each point represents one of a combination of contact
pattern and transmission probability. For example, WS1 · 0.1 represents that the contact pattern corresponds to WS1 network (among the networks listed in Table 1) and
the transmission probability is 0.1. Regardless of types of contact tracing scheme, the contact pattern and the transmission probability uniquely determine the growth rate
(x-axis) that characterizes the intrinsic speed of virus spread in the absence of any public health intervention. The filled and open circles correspond to synthetic networks and
data-driven networks, respectively.

laboratories in 36 countries reported a false positive rate of 0.7% (21). We set the 0% false-positive rate as default, but also
consider 0.7% rate. Next, note that there is usually a delay between when a test is conducted and its result is obtained, this
delay is known as the turnaround time. According to CDC (22), the turnaround times for 1) most nucleic acid amplification
tests (NAATs), such as RT-PCR, vary between 1-3 days, 2) point-of-care tests are 15-45 minutes. We set default value of the
turnaround time as 1 day, but also consider 3 days.

Public health authorities in different political units may decide to start contact tracing when the infection level in the target
populace crosses a certain threshold. We consider that contact tracing is initiated when the first individual tests positive as
the default option. This is in accordance with the observations of the leading practitioners of contact tracing programs who
recognize that contact tracing should start as soon as the first case is diagnosed. Once the outbreak spreads, the logistical
challenges associated with contact tracing multiply because of the sheer volume of the contacts that need to be traced (23). Also,
the only countries to have successfully contained the outbreak through contact tracing (i.e., before pharmaceutical preventives
became available), namely South Korea, Japan, Vietnam, started the process early (5). We also consider significantly delayed
initiations, e.g., a year from when the outbreak is recorded. Using the data available in (16, 24), we calculated the percentage
of cumulative confirmed cases in different political units (186 countries and 137 states/provinces/dependencies) at the end of a
year from the date the datasets were recorded (Jan 21, 2021). The median of the percentages is 1.1% and maximum is 12.6%.
Accordingly, we also consider scenarios in which contact tracing is initiated when the percentage of cumulative infections
reaches 1.1%, 12.6%, and also the extreme value of 40%. Finally, we assume full cooperation from the target populace as the
default setting, i.e., every individual tests and quarantines as instructed by his local public health authority and reveals his
contacts to them. But, we also consider scenarios in which cooperativity is less universal, and describe the forms and levels of
non-cooperativity in the next section.

Results

We quantify the costs and benefit of contact tracing over a course of 6 months (180 days) starting from the day after contact
tracing is initiated. The total number of infections, the total number of tests, and the total sum of days of quarantine for the
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(a) False Negative (FN) (b) False Positive (FP) (c) Turnaround Time

Fig. 3. Classifications of the phases for variations of (a) false negative rate, (b) false positive rate, and (c) test result turnaround time. Vertical dashed lines represent boundaries
between phases under the default setting, i.e., false negative rate is 11%, false positive rate is 0%, and test result turnaround time is 1 day. The circles with grey, red, and blue
respectively represent the contact pattern and transmission probability combinations in phases A, B, and C respectively. Note that as false negative rate increases, we find
some red circles at the left of the left vertical dashed lines, and some blue circles at the left of the right vertical dashed lines. Thus, the boundaries between the phases tend to
slightly shift to the left as false negative rate increases. We observe the same phenomenon as the false positive rate and turnaround times increase as compared to the default
setting. This phenomenon is more pronounced at the extreme value of 58% false negative rate. Otherwise, the classifications of the phases are robust to variations of false
negative rates, false positive rates, and test result turnaround times in a realistic range. Points and bars indicate the mean and 5th-95th percentiles.

entire population over the period are averaged over 150 simulation runs, excluding those in which fewer than 40 individuals are
infected within the first 3 months (90 days). By comparing the mean values of these results for different number of hops, we
evaluate cost-benefit tradeoffs of multi-hop contact tracing scheme.

We first define key cost-benefit metrics that are utilized throughout the evaluations. Recall that the benefit is defined as
the percentage of reduction in the number of infections over the period of study compared to when no contact tracing was
performed. There are two different kinds of costs: 1) tests and 2) quarantine. Testing cost is defined as the total number of
tests over the period of consideration. We calculate the quarantine cost as the number of individuals quarantined on each
day summed over all days in the period under consideration. This equals the number of days each individual is quarantined
added over all individuals. We define relative benefit and relative costs to quantify the incremental benefits and costs multi-hop
contact tracing provides/incurs as compared to 1-hop contact tracing. The relative benefit for k-hop, k > 1, is defined as the
difference between the benefits provided by k-hop and 1-hop, i.e., benefit for k-hop - benefit for 1-hop. The relative costs for
k-hop, k > 1, is defined as the ratio of cost difference between multi-hop and 1-hop to cost for 1-hop contact tracing, i.e.,
cost for k-hop−cost for 1-hop

cost for 1-hop × 100, which represents how much more or less cost is required compared to 1-hop contact tracing.
We first focus on the benefits and costs for multi-hop contact tracing over single hop (i.e., traditional) contact tracing. We

show that the cost-benefit tradeoffs for multi-hop contact tracing can be classified into three phases, each corresponding to
a different range of the growth rates; as the growth rate transitions into different ranges, sharp phase transitions are often
observed. The range of growth rate we consider is [0, 0.31], the range in which those of the large number of political units
we examined lie (Table S2 in SI Appendix). The classifications of the phases turn out to be robust to variations of false
negative rates, false positive rates, test result turnaround times, and even some form of non-cooperation such as when the
non-cooperative individuals resume their activities from the date of the negative results discounting the possibility of false
negatives. On the other hand, the classifications are significantly affected by long delays in starting contact tracing, and more
debilitating forms of non-cooperation in which non-cooperative individuals neither disclose their contacts nor comply with
public health guidelines on quarantining and testing. We subsequently study the choice of hops for multi-hop contact tracing,
considering the cost-benefit tradeoffs and show that the choice can again be classified into the three phases, and classification
follows the same partition as that for comparison between multi-hop and single hop. Also, the tradeoffs favor the choice of a
higher number of hops as the initial growth rate increases and the testing venues become more challenging. Thus, various
behavioral facets of multi-hop contact tracing are determined by a single measurable attribute, the growth rate, for diverse
contact pattern networks and wide range of testing, public health policy and cooperativity parameters.

Single-hop vs Multi-hop Contact Tracing - A cost-benefit perspective.
Default Setting. We first evaluate the cost-benefit tradeoffs of multi-hop contact tracing under the default scenario for the
synthetic networks. Figure 2a represents different networks and parameter combinations as points on a graph with growth rate
as the horizontal axis and benefit as the vertical axis. This figure shows that despite the collective impact of various factors
(types of contact networks, mean number of contacts per individuals, and transmission probability), the magnitude of the
benefits provided by contact tracing can be characterized in terms of the growth rates. For the combinations in which the
growth rate is low, 1-hop contact tracing alone can sufficiently contain the virus, and 2-hop and 3-hop contact tracing does
not provide noticeable further benefit in terms of reduction in the outbreak size. Specifically, when growth rate is less than
or equal to 0.105, 1-hop contact tracing reduces the outbreak size by 85.0 - 99.9% (median 97.8%), and the relative benefit
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Fig. 4. Classifications of the phases for variations of starting points of contact tracing. Vertical dashed lines represent boundaries between phases under the default setting, i.e.,
contact tracing is initiated when the first individual tests positive. We follow the same color code as in Figure 3. When the starting point is at 1.1%, we find some red circles at
the left of the left vertical dashed lines, and some blue circles at the left of the right vertical dashed lines. This phenomenon is more pronounced as contact tracing is delayed.
Points and bars indicate the mean and 5th-95th percentiles.

provided by increasing the number of hops beyond 1-hop is less than 4.3%. Next, a sharp phase transition is exhibited once
the growth rate crosses a threshold value. Specifically, the benefit that 1-hop provides dramatically decreases, and multi-hop
contact tracing offers substantial relative benefit. When the growth rate exceeds 0.105, the benefit provided by 1-hop is 5.6 -
74.5% with 28.1% as median; increasing the number of hops to 3 provides a relative benefit of 25.5 - 94.2% with 67.7% as
median. This suggests that, as the virus spreads faster, traditional contact tracing becomes less than adequate. This is because
in the time that elapses between when an individual becomes infectious and I is quarantined through 1-hop contact tracing,
the disease spreads from I through a chain of several hops, i.e., the contacts I infects infect their contacts and so on. Thus, the
testing cluster (Figure 1a) grows slower than the infection cluster (Figure 1a shows an example testing and infection cluster for
example). In this case, as shown in Figure 1b, preemptively tracing and quarantining multi-hop contacts can help tracing
catch up with the speed of virus spread faster than 1-hop contact tracing; that is, the testing cluster may grow faster than the
infection cluster and the epidemic may be contained.

We observe that 3-hop contact tracing can reduce the outbreak by 84.6 - 99.5% even for high growth rates. Hence, we
now quantify the costs and benefit of 3-hop contact tracing in comparison with 1-hop contact tracing. Figure 2b reveals that
the relative benefit and relative cost for 3-hop contact tracing follow three phases. We classify the instances in which the
relative benefit ≤ 20% as phase A. These correspond to low (i.e., ≤ 0.105 in this case) growth rates (gray shaded region). The
relative benefit increases substantially when the growth rate exceeds a threshold value (0.105 in this case). Refer to the first
row of Figure 2b. We now investigate the relative costs for 3-hop contact tracing (the second and third rows of Figure 2b). At
intermediate growth rates (red shaded region, between 0.105 and 0.247 in this case), the relative costs are negative, which
means that 3-hop needs fewer total tests and fewer total sum of days of quarantine for the entire population as compared to
1-hop, despite the fact that 3-hop reduces the outbreak size significantly as compared to 1-hop. At high growth rates (blue
shaded region, higher than 0.247 in this case), 3-hop still provides a significant relative benefit, but requires greater costs
compared to 1-hop tracing. We classify the former as phase B (relative benefit > 20% & relative costs ≤ 0%), the latter as
phase C (relative benefit > 20% & relative costs > 0%). Multi-hop contact tracing may incur higher costs than 1-hop contact
tracing because it traces up to more hops even from the same number of confirmed cases. However, this can more rapidly
mitigate the spread of virus as compared to 1-hop contact tracing through faster identification and quarantine of multi-hop
contacts of infected individuals, thus fewer individuals need tests with passage of time. In phase B, the latter phenomenon
dominates, in phase C the former.

Finally, the relative cost of tests and quarantine for 3-hop contact tracing is not only negative, but substantially so for
most of phase B. Except for the two instances of the highest growth rates in phase B, the relative cost of tests is lower than
−90.3%. From the two highest growth rates, the magnitudes of the relative costs begin to increase significantly and this
increase continues into phase C. In these two instances the relative costs of tests are −36.2% and −5.8% respectively. In phase
C, the relative cost of tests and quarantine are also substantially higher than 0. The relative cost of tests is for example 29.9 -
185.9% (median 91.7%). The relative costs of quarantine are similar to those for tests throughout.

We classify phases A, B, and C using the same criteria as in the default setting, for different values of attributes, involving
variations of false negative rates, false positive rates, turnaround times, starting times of contact tracing, and cooperativity.
The ranges of growth rates corresponding to the phases are about the same for different values of attributes (involving false
negative rates, false positive rates, turnaround times, and some forms of non-cooperations) in a realistic range. But, as the
environments become more challenging, the growth rate corresponding to the boundaries between phases tend to slightly shift
to the left from the boundaries for the default setting. For different attributes in the subsequent paragraphs we explicitly point
out wherever the boundaries between the different phases differ or if the classification exhibits any other difference, otherwise
we only state that the tradeoffs are similar to the default setting. We describe the results on cost-benefit analysis for a variety

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 3, 2021. ; https://doi.org/10.1101/2021.06.29.21259723doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.29.21259723
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) Cooperativity (Scenario 1) (b) Cooperativity (Scenario 2)

Fig. 5. Classifications of the phases for variations of level of cooperation with contact tracing and testing. Vertical dashed lines represent boundaries between phases under the
default setting, i.e., full cooperation from the entire population (100% cooperativity). For scenario 1, as cooperativity decreases, the boundaries between the phases slightly
move to the left. For scenario 2, as cooperativity decreases, the cost-benefit tradeoff is significantly altered. Specifically, most cases that belong to phases B and C under 100%
cooperativity belong to phase A under 50% cooperativity.

of environments in Table S3 in SI Appendix.
We now consider a data-driven network under the same default setting. For different values of the parameter r, the growth

rates for the networks are distributed in the second half of the intermediate range and in the high range. Figure 2a shows that
in this case the benefits provided by each policy, from 1-hop to 3-hop contact tracing, behave similarly to those observed at the
same growth rates in the diverse synthetic networks. Moreover, the relative benefit and relative costs also behave similarly
to those observed at the same growth rates in synthetic networks (Figure 2b). Thus, the tradeoffs are similar to the default
setting of the synthetic networks.

We now revert to synthetic networks and consider parameter values other than those in the default setting.
Properties of Tests. We now explore the impact of the test, both false negative and false positive, on cost-benefit tradeoff. Note
that false negatives prevent tracing the contacts from the individuals who test negative but are infected in reality. This can
reduce the benefits of contact tracing. This also may reduce costs as fewer individuals need be quarantined and tested, but on
the other hand may also increase costs as larger outbreaks may eventually require higher number of tests and quarantines. We
assess the impact of these two opposing factors. The tradeoffs are similar to the default setting except at the extreme value of
58% false negative rate (Figure 3a); in this case the growth rates corresponding to the boundaries between phases shift to the
left. Some instances towards the upper end in phases A and B at the default choice of 11% respectively exhibit cost-benefit
tradeoffs characterized by phases B and C at the extreme value of 58%.

False positives do not reduce the benefit of the contact tracing strategies, but may incur higher costs particularly for greater
values of the growth rate. Nonetheless, Figure 3b shows that the tradeoffs are similar to the default setting.
Test Result Turnaround Time. Longer test result turnaround time causes delays in contact tracing. Nonetheless, Figure 3c shows
that for 3 days turnaround time the boundaries between phases slightly shift to the left.
Starting Point of Contact Tracing. We now assess how the cost-benefit tradeoff is affected if public health authorities do not initiate
contact tracing right at the onset of the epidemic. We allow the virus to spread on contact networks without any intervention,
and start contact tracing when the cumulative infection percentage crosses a designated threshold (1.1%, 12.6%, 40%). We
calculate averages over 150 simulation runs in which this threshold is crossed within one year, and consider only the networks
and parameter values for which this threshold is crossed for at least 1 simulation run among the first 150 runs. Figure 4 shows
that the growth rates corresponding to the boundaries between phases for the 1.1% starting point shift to the left from those
(vertical dashed lines) for the default choice. For 12.6% and 40%, even if relative benefit is still significant, greater costs are
required to achieve the benefit. In particular, for the extreme value of 40%, relative benefits are mostly above 20%, while
relative costs are mostly above 0%, so all but a few cases fall into phase C.
Level of Cooperation with Contact Tracing and Testing. The extent of cooperation of individuals with public health guidance plays
an important role in preventing the spread of the virus. Non-cooperation can arise in different forms: individuals not revealing
their contacts, not testing nor self-quarantining. Based on the default setting, we explore two different scenarios of limited
cooperation:

• Scenario 1: Non-cooperative individuals resume their activities from the date of the negative results discounting the
possibility of false negatives, and do not share their contacts during the period of advised quarantine.

• Scenario 2: Non-cooperative individuals do not get tested nor quarantine upon notification of exposure. They get tested
and quarantine only if they develop symptoms and that too after a delay from symptom onset. They do not disclose
their contacts either before or after getting tested.
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Figure 5a show that in Scenario 1, even when 50% of individuals do not cooperate, the cost-benefit tradeoff remains similar
to when everyone fully cooperates (default setting). However, in Scenario 2, the cost-benefit tradeoff is significantly altered as
fewer individuals cooperate, because refusal to test and reveal contacts limit tracing and the contact network as known to
tracers becomes fragmented and sparse. Accordingly, in most cases that belong to phases B and C under 100% cooperativity,
the relative benefit decreases and becomes below 20% under 50% cooperativity. Thus, they belong to phase A.

Comparison Across Different Number of Hops - A cost-benefit perspective.
Our numerical computations reveal some broad trends, with regard to the choice of the number of hops, recurring across
various scenarios. We first define two additional concepts. The further benefit of hop k is defined as additional benefit provided
by increasing hops by one, i.e., difference between benefits of k-hop and (k− 1)-hop. The further cost of hop k is defined as the
additional relative cost incurred by increasing hops by one, i.e., difference between relative costs of k-hop and (k − 1)-hop.
While criteria for choosing the number of hops may be subjective, for ease of exposition, we rule out higher number of hops if
they do not result in 10% or greater further benefits. Recall that we chose a 20% difference in relative benefit for 3 hops as the
criteria for classifying instances of topologies and parameters into phase A vs phases B, C. The criteria for choice of hops is
applied on a different quantity, further benefit of higher number of hops. Different values for the two markers, 10%, 20%, have
been used because the goal for the demarcations are different: 1) a higher difference 20% is used to demarcate the instances
in which multi-hop substantially lowers the outbreak size as compared to 1-hop (phases B, C) 2) higher hops are ruled out
when they provide only marginal further benefit, that is, lower than 10%. Among the rest of the hops, we posit that the choice
would be made based on additional costs incurred by each hop over the previous. Recall that, for the default setting, phases A,
B, and C respectively correspond to growth rates of 0 - 0.105, 0.105 - 0.247, and 0.247 - 0.31. We refer to these fixed ranges
as low, intermediate and high throughout the paper. We present broad trends observed in each region for a wide range of
parameter choices, based on the criteria mentioned above:

• In the low growth rate range, 1-hop contact tracing alone frequently reduces the outbreak size by over 90%, and further
benefit on increasing the number of hops beyond 1-hop is usually lower than 10%. Thus, 1-hop is the natural choice by
our criteria. We observe deviation from this trend in different degrees when 1) false negative rates are excessively high 2)
turnaround times are long 3) there is long delay in starting the contact tracing after the onset of the pandemic and 4)
when the delay in starting contact tracing is unrealistically long and cooperativity (Scenario 2) is low. Mostly, wherever
the further benefits are higher for multi-hop contact tracing, 1) 3 or higher number of hops attain lower than 10% further
benefit, and may therefore be ruled out by our criteria 2) 2-hop suffices in reducing the outbreak size; and also attains
lower cost as compared to 1-hop in almost every case.

• In the intermediate growth rate range, the benefit that 1-hop provides dramatically decrease as compared to the low
growth rate range (sharp phase transition once a threshold value is crossed), and 2-hop offers substantial further benefit,
even at a lower cost compared to 1-hop. Increasing the number of hops beyond 3-hop provide lower than 10% further
benefit, except for scenarios in which cooperativity is low and false negative rates are excessively high (for delays in
starting point, the further benefit of 4 hops exceeds 10% only slightly). Thus, except for challenging environments, the
choice can be limited to 2 or 3 hops in this range per our criteria. Between 2 and 3 hops, the further benefit provided by
3 hops exceeds 10% only in a few instances towards the higher end of the intermediate growth rate range. Thus, per our
criteria, 2 hop constitutes a natural choice in most of the intermediate growth rate range. We observe divergence from
this trend as the environments become more challenging, such as, excessively high false negative rates, long delay in
starting the contact tracing (in these cases the additional benefits provided by 3 hops exceed 10% in several instances
throughout the intermediate growth rate range), and low cooperativity. Also, in general, the trends in the higher end of
the intermediate growth rate range resemble those in the high growth rate region, for some extreme scenarios the trends
throughout the intermediate growth rate range are similar to those in the high growth rate region. Finally, wherever
the further benefits attained by 3-hop exceeds 10%, the choice between 2 and 3 hop would be determined based on the
additional cost incurred by 3 hop over 2 hop.

• In the high growth range, further benefit of 2-hop and 3-hop mostly exceed 10%, those of 4-hop also exceed 10% in
several instances, those of 5-hop exceed 10% in very few instances. Usually, each hop fetches greater cost than the
previous hop. This constitutes an important distinction with intermediate growth rate range. In the intermediate growth
rate range 2-hop usually incurs lower cost than 1-hop except for very challenging environments and the few (two, to
be specific) highest growth rates in the range, and in several of these 3-hop incurs lower cost than 2-hop. In the high
growth rate range, additional benefits provided by 4 and 5-hop increase as the environments become more challenging,
such as, increase in false negative rates and turnaround times and decrease in cooperativity (Scenario 1). The choice
on the number of hops need to be made depending on the magnitude of the additional benefits and affordability of the
additional costs incurred when hop count is increased (this is also the phenomenon observed in extreme scenarios and in
growth rates at the higher end of the intermediate growth rate range).

Thus, overall 5-hop can be ruled out except in very few instances, and the choice is confined to 1, 2, 3, 4 hops, with the need for
considering 4-hop arising largely for the high growth rate region. Next, in general, the need for choosing a larger number of
hops becomes greater as the growth rate increases or the environment becomes less conducive towards containing the disease.
But, at the same time the further benefit for adding another hop beyond 1-hop tends to diminish progressively in almost every
topology, just that, the decrease becomes less pronounced for higher growth rates and in more challenging environments.
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Default setting. We now describe the simulation results in the default setting in greater detail. The further benefit incurred by
adding another hop beyond 1-hop tends to diminish progressively. In a range of low growth rates, 1-hop contact tracing reduces
the outbreak size by 85.0 - 99.9% (median 97.8%), and the further benefit provided by increasing the number of hops beyond
1-hop is less than 4.3%.

When the growth rate exceeds a certain threshold, we observe a sharp decrease in the benefit that 1-hop provides. Specifically,
in a range of intermediate growth rates, the benefit provided by 1-hop is 5.6 - 74.5% with 30.3% as median. In all but two
instances in this region, 2-hop adequately contain the outbreak (further benefit beyond what 1 hop provides is 25.5 - 93.9%,
median 63.0%); increasing the number of hops beyond 2-hop provides only 2.4% or lower further benefit. The costs for 2-hop
are even lower than those for 1-hop (further costs for 2-hop are negative). In the remaining two instances, which correspond to
the highest growth rates in the intermediate growth rate range, 2-hop offers further benefit of 51.6% and 59.9% and incurs
higher costs than 1-hop, simultaneously 3-hop also provides further benefit of 16.0% and 16.9% with less costs than both 1
and 2-hop (further cost of tests and quarantine for 3-hop is respectively −57.8, −32.9 and −58.0, −33.2). Also, increasing
the number of hops beyond 3-hop provides only at most 1.8% further benefit in these instances. Thus, 3-hop emerges as the
natural choice in these instances. Thus, in the intermediate growth rate range, 2-hop constitutes the natural choice, except for
two instances at the high end of this range, for which 3-hop constitutes the natural choice.

In the high growth rate region, further benefits of 1-hop, 2-hop, 3-hop, 4-hop are 12.4-43%, median 23%, 34.8 - 56.5%,
median 42.2%, 2.5 - 32.6%, median 27%, 0.3 - 9.8%, median 4.6%, respectively. Thus, starting 2 hops, the further benefits are
progressively decreasing, but are considerable for up to 3 hops. Also, multi-hop contact tracing (up to 4 hops) incur greater
costs than that incurred by the previous hop in almost every case; further cost of tests and quarantine for 3-hop is respectively
up to 53.4 and 51.4, and further cost of tests and quarantine for 4-hop is respectively up to 100.9 and 95.7. By our criteria, the
choice should be between 2 and 3 hops, depending entirely on the affordability of the additional costs incurred by 3 hop in each
instance.

Thus, the natural choices that emerge are: 1) 1-hop throughout the low growth rate region 2) 2-hop throughout the
intermediate growth rate region except for 2 with the highest growth rates in which 3-hop constitutes the natural choice 3)
either 2 or 3 hops throughout the high growth rate region depending on the affordability of the additional costs incurred by 3
hops in each instance. Also, for each topology, starting from 2 hops, the further benefits constitute a non-increasing function of
the number of hops, thus the principle of diminishing return holds.

The broad trends also recur in the data-driven networks. Furthermore, the trends remain similar if we vary false negative
rates, cooperativity (Scenario 1), false positive rates, and turnaround times in a realistic range, departing from the choices
in the default scenario. Refer to SI Appendix for details on specific numbers and analysis, in which we present the further
benefits and costs up to 5 hops for different parameter combinations, classifying the results in three categories of growth rates,
low, intermediate, and high.

Discussion

Contact tracing has been deployed during the first year of the pandemic in many countries, but very few of those countries
have successfully contained the pandemic before the advent of pharmaceutical interventions. Vietnam is one of the few success
stories in successful containment of the outbreak, and it is also the only country to have incorporated multi-hop contact
tracing in its containment program. This observation motivates us to embark on an investigation of multi-hop contact tracing
considering a diverse set of large-scale contact networks, spanning synthetic networks of various families and design choices and
those obtained from real-world contact data. Our simulations reveal that multi-hop contact tracing has the potential to reduce
the outbreak to a much smaller size as compared to conventional contact tracing (i.e., single-hop contact tracing), even at
lower costs than the conventional contact tracing. We also show that the cost-benefit tradeoffs for multi-hop contact tracing
can be classified into three phases, with sharp transitions between the phases, and each phase corresponds to a different range
of the initial epidemic growth rates. When the growth rates are low, multi-hop becomes redundant as single-hop contains the
outbreak adequately. For higher growth rates, multi-hop substantially reduces the outbreak size, incurring 1) substantially
lower quarantining and testing costs as compared to single-hop in the intermediate growth rate region 2) considerable higher
costs in the high growth rate region. The cost-benefit tradeoffs lead to appropriate choices of the hop size in each region; as
growth rate increases or the testing ambience becomes more challenging, the cost-benefit tradeoffs propel us towards choosing
higher number of hops. We calculate the growth rates in a large number of political units from publicly available pandemic
data; our calculations show that these growth rates span all three ranges. In particular, therefore, multi-hop contact tracing
substantially reduces the outbreak size and lowers overall costs for a large number of realistic values of growth rates. The
classifications of the phases and the associated choice of the hop count turn out to be largely robust to variations of parameters
such as false negative rates, false positive rates, test result turnaround times, and even some forms of non-cooperations.

Multi-hop contact tracing has been subject to limited rigorous investigation thus far. To our knowledge, the only other
work to investigate this concept has been (25). Our work is complementary to (25) which used real-world social network data
of 468 individuals and considered tracing and quarantining (without testing) both primary and secondary contacts of those
who test positive. (25) found that quarantining secondary contacts decreases the cumulative infection count compared to
quarantining only the primary contacts, but also requires substantially higher number of quarantines. Next, they focused on
reducing the number of quarantines through 1) social distancing and 2) testing. When individuals are tested, those who test
negative are released from quarantine right after the results are obtained; this reduces the quarantine periods but increases the
outbreak. The authors acknowledge that it is unclear if their results would hold for networks with larger size. Results may
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become artifacts of network size for multi-hop contact tracing because the length of contact chains may be limited by network
size when the size is small. We investigate multi-hop contact tracing involving a combination of quarantining and testing for k
hops, where k can be 2, 3, 4, 5 etc. over large networks comprising of up to 100, 000 individuals, and consider a large number
of instances from both synthetic networks corresponding to various families and parameter choices and networks obtained
from contact data. We use tests to further trace contacts rather than to release those traced early from quarantining and
evaluate both testing and quarantining costs. As mentioned in the previous paragraph, we show that the cost-benefit tradeoffs
for different number of hops (1, 2, 3, 4, 5, . . .) can be very different depending on growth rate and venue of the tests, and the
tradeoffs for different test venues can be characterized by only one parameter vis a vis the network topology, that is the growth
rate. In particular the result (25) reports as to the comparison between 1 and 2 hops for “quarantine only” corresponds to what
we observe throughout the high growth rate range for our simulations. When social distancing is additionally incorporated, the
growth rate decreases; their finding in this case is consistent with the phenomenon we observe for the intermediate growth
rate range. Thus, our investigation positions their findings as parts of a broader trend. This is in addition to revealing the
phase-transition patterns for cost-benefit tradeoffs and identifying the hop choices for different ranges of growth rates, different
testing ambiences and a diverse class of larger networks.

We now discuss limitations of multi-hop contact tracing in the current context and how to circumvent the limitations in
order to prevent a future epidemic from becoming a pandemic. First, the benefits of contact tracing, both single hop and
multi-hop, considerably decrease if a non-negligible percentage of the society do not reveal their contacts, do not test, and do
not quarantine when asked to. Cooperation with health authorities varies across the world: while a high degree of cooperation
was witnessed in South Korea and Taiwan which had suffered from large scale epidemics in the last twenty years (26, 27),
cooperation was lower in Europe and US (28), both of which experienced a large scale epidemic about a century ago (the 1918
flu). Learning from the experience of this pandemic, public awareness campaigns need to be pursued to elicit cooperation with
health authorities. Multi-hop may provide an important advantage to ensure cooperation in that it can contain the outbreak
faster which may incentivize full cooperation for a short duration, whereas cooperation may wane due to pandemic-fatigue as
time progresses.

Next, manual tracing of contacts is a labor intensive activity even for single-hop tracing. This over-load will likely be
exacerbated for multi-hop during the initial days of the tracing. This is because although in many instances testing and
quarantining (and therefore tracing) costs over time were lower for multi-hop as compared to single-hop, at the start, invariably
multi-hop needs to trace more than single-hop. Thus, multi-hop will be feasible only if the tracing is digital, but in democracies
the digitization is often critically reliant on the willingness of the populace to download the apps the health authorities use,
which has again varied from country to country for the COVID-19 outbreak. For example, in Singapore over 92% of the
population over 6 years of age had downloaded the governmental contact tracing app on their smartphone (29), but the fraction
has been lower in many other countries, particularly those in Europe and US. This is again where a public awareness campaign
starting now can be of great help for the next outbreak. Also, another possibility is to embed the tracing software in the
operating system of all smartphones (e.g., Apple and Google are exploring this option (30)) and have phone companies activate
those in a political unit as soon as the first case for an infectious virus with a considerable hospitalization and mortality rates
is detected. This will eliminate the need to download the apps separately but may also breach privacy of the consumers.
Again, the tradeoff may be palatable only for short durations and multi-hop has the potential for controlling outbreaks in
such durations. Since multi-hop may be able to contain outbreaks through targeted testing and quarantine, rather than
through universal lockdowns, its adverse impacts on livelihoods would be considerably less and in fact in many cases its overall
quarantine periods are lower than those for single-hop.

We now point to directions for future research. We have assumed that the traced k-hop contacts of an individual (say I)
who tests positive can start their quarantine within a day of I testing positive, though they test after some delay. But this is
not in general possible unless I downloads the contact tracing app either before or at least right after testing positive (31).
Next, depending on classifiers such as duration, environment (indoor or outdoor), usage of protective equipment, observance of
personal hygiene, different contacts may pass on infection with different probabilities. Assuming that such a probability is
identical for all contacts with same infectious categories, which is what we did, is equivalent to considering an average over all
contacts. Explicitly investigating the impact of 1) delays in starting quarantining and 2) non-uniform transmission probabilities
constitute directions for future research. Finally, during the early part of a new epidemic, or even a successfully mutated
version of an earlier epidemic, pharmaceutical interventions are not available and contact tracing and quarantining the infected
early on remains one of the few available mechanisms for containing the outbreak. Other epidemics may well emerge in future.
Thus, investigating multi-hop contact tracing for other infectious diseases constitutes an imperative direction for future research
towards building a knowledge-base for containing future epidemics before they become pandemics and repeat the enormous toll
that COVID-19 imposed. Our framework may provide a building block for such an investigation for other infectious diseases by
appropriately choosing the parameters and stages of the disease evolution.

Methods

Compartmental model of virus transmission. Compartmental models have been widely used in studies on virus spread (32, 33). We use
a discrete time compartmental disease model to model the progression of COVID-19 where the transition from each compartment to
the next happens after a random amount of time with a geometric distribution. Different stages of the disease are shown in Figure 1d.
The model consists of the following stages: Susceptible (S), Presymptomatic-Latent (Ip-L), Presymptomatic (Ip), Symptomatic (Is),
Ready-to-Test (RT ), Asymptomatic-Latent (Ia-L), Asymptomatic (Ia), Recovered (R), and Dead (D). Only symptomatic individuals
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show symptoms, while presymptomatic, symptomatic and asymptomatic individuals can infect others. When a susceptible individual
comes into contact with an infectious individual, the susceptible is infected with transmission probability β.

Once an individual is infected he becomes contagious after a geometrically distributed latency time, whose expectation depends on
whether he will develop symptoms at some point or otherwise. Following the nomenclature in compartmental models already utilized
for COVID-19, we assume that an infected individual becomes asymptomatic-latent (with probability pa) or presymptomatic-latent
(with probability 1 − pa) and those in this latency period have a negative test (the tests do not detect the presence of COVID-19).
The asymptomatic-latent (Ia-L) individuals never develop symptoms, do not infect others for a mean latency duration of 1/λ, and
subsequently become contagious, at which stage we call them asymptomatic or Ia for simplicity. An asymptomatic individual remains
contagious for a geometrically distributed random duration with mean 1/ra, after which the individual recovers. We now consider the
other compartment an individual enters after infection, the presymptomatic-latent compartment. A presymptomatic-latent individual, say
B, becomes contagious after a mean latency period of 1/λ, at which point we call B presymptomatic or Ip. B remains presymptomatic for
a geometrically distributed duration with mean 1/α; after this duration B develops symptoms and is called symptomatic. A symptomatic
individual B continues to infect contacts until B opts for testing (RT ). The duration for which a symptomatic individual infects others
is geometrically distributed with mean 1/w. Once this duration ends, the patient quarantines and does not infect others. The patient
ultimately dies (D) with probability pd, or recovers (R) with probability 1− pd, after a geometrically distributed duration whose mean is
1/rs. We do not consider that individuals can be reinfected. In all the networks, we consider that initially all but three individuals are
susceptible, among the three there is one presymptomatic, one symptomatic and one asymptomatic. Refer to Table S1 in SI Appendix for
the parameter values we choose.

Synthetic networks. We consider two classes of synthetic networks: 1) Watts-Strogatz networks (9) and 2) scale-free networks (34). Each
network we consider has N = 100, 000 nodes. The Watts-Strogatz networks have average degrees of 〈k〉 = 4, 8, that is, 200, 000, 400, 000
edges. They are generated following a variant of the original Watts-Strogatz model. Based on a ring of N nodes, each node is connected
to k nearest neighbors by undirected edges. Subsequently, each end point of each edge is rewired to a uniformly randomly chosen node
over the entire ring with rewiring probability of p, avoiding link duplication (i.e., multiple edges between the same pair of nodes) and
self-loops. The scale-free network topologies are generated by Barabási-Albert model where new nodes are added at each time step with m
links that connect to existing nodes with a probability that is proportional to the degree of the existing nodes (34); we set m = 2 to
generate the network. The resulting network consists of 199, 997 edges, thus average degree of a node is 〈k〉 = 3.99994.

Data-driven network. We use the publicly-available network data covering a wide range of interactions among individuals collected by
survey in each of 75 villages located in Karnataka, India (14). The surveys includes interaction information such as names of those who
visit the respondents’ homes, those with whom the respondents go to pray, etc. The network consist of a total of 69, 441 individuals
and 294, 945 interactions among them. However, the dataset only contains information on interactions between individuals within each
village. Since the population size of each village is relatively small population (354 to 1775 individuals for each village), we introduce
interaction between individuals in different villages through degree-preserving rewiring (35, 36). We first randomly select two villages and
select a random edge within each cluster, and then swap the two edges to reach across the pair of villages. The process is repeated until
the percentage of edges that are rewired among the total number of edges becomes r%, and r is called the mixing parameter (36). The
degree-preserving rewiring preserves the degree of all the nodes in the network regardless of the parameter r, but it changes the frequency
of inter-village interactions and network properties. We generated three different networks with the mixing parameters r = 1, 3, 5. As the
parameter r increases from 1 to 5, the diameter, average path length, and clustering coefficient monotonically decrease (refer to Table 1).
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Supplementary Information

Table S1. Values of disease parameters

Parameter Notation Value Reference & Description

Transmission probability β [0.1,0.3] Assumed various scenarios considering (1), (2)
Proportion of infections that are asymptomatic pa 0.4 (3),(4)
Mean latency period 1/λ 2 days Inferred from (5)
Mean duration in asymptomatic stage 1/ra 7 days Inferred from (6),(5)
Mean incubation period
(period between infection and symptom onset)

1/λ+ 1/α 5 days (7),(8)

Mean duration from symptom onset to testing 1/w 4 days Inferred from (9)
Mean duration of symptom onset to recovery/death 1/w + 1/rs 14 days Inferred from (10), (6)
Fraction of symptomatics who die pd 0.0065 (3)
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Table S2. Real-world Initial Epidemic Growth Rates

Province/State Country/Region
Initial Epidemic

Growth Rate
Province/State Country/Region

Initial Epidemic
Growth Rate

Province/State Country/Region
Initial Epidemic

Growth Rate

Macau China 0.00 Sierra Leone 0.10 Moldova 0.16
Libya 0.01 North Dakota US 0.10 Kentucky US 0.16

Virgin Islands US 0.02 Guatemala 0.10 Zhejiang China 0.16
Uganda 0.02 Honduras 0.10 Algeria 0.16

French Polynesia France 0.02 Shanghai China 0.10 Colombia 0.16
Liechtenstein 0.02 Uruguay 0.10 South Dakota US 0.16

Cayman Islands United Kingdom 0.02 Nigeria 0.10 Denmark 0.16
Barbados 0.02 Albania 0.10 Indonesia 0.16

Inner Mongolia China 0.03 Reunion France 0.10 Iowa US 0.16
Ningxia China 0.03 Cote d’Ivoire 0.10 India 0.16
Xinjiang China 0.03 Niger 0.10 Argentina 0.17

Guyana 0.03 Mali 0.10 South Africa 0.17
Sint Maarten Netherlands 0.03 Beijing China 0.11 Delaware US 0.17

Australian Capital Territory Australia 0.03 Hawaii US 0.11 Idaho US 0.17
Bahamas 0.03 Western Australia Australia 0.11 Serbia 0.17

Hong Kong China 0.03 Oman 0.11 Finland 0.17
Aruba Netherlands 0.04 Chongqing China 0.11 Bangladesh 0.17

Haiti 0.04 Channel Islands United Kingdom 0.11 Malaysia 0.17
Jilin China 0.04 Japan 0.11 Dominican Republic 0.17

Monaco 0.04 Tanzania 0.11 District of Columbia US 0.17
Togo 0.04 South Australia Australia 0.11 Oklahoma US 0.17

French Guiana France 0.04 Kyrgyzstan 0.11 Rhode Island US 0.17
Gansu China 0.04 Bolivia 0.11 Utah US 0.17

Trinidad and Tobago 0.04 United Arab Emirates 0.11 Panama 0.18
Cambodia 0.04 Slovakia 0.11 Saudi Arabia 0.18

Bermuda United Kingdom 0.04 Cyprus 0.11 New South Wales Australia 0.18
Gibraltar United Kingdom 0.04 Maine US 0.11 Nevada US 0.18

New Brunswick Canada 0.05 Heilongjiang China 0.11 Sweden 0.18
Singapore 0.05 Sichuan China 0.11 Mississippi US 0.18

Zambia 0.05 Andorra 0.11 Alabama US 0.18
Shanxi China 0.05 Bissau Guinea 0.11 Washington US 0.18

Madagascar 0.05 Burkina Faso 0.11 Mexico 0.18
Ethiopia 0.05 Latvia 0.11 Philippines 0.18

Liaoning China 0.05 Iraq 0.12 Wisconsin US 0.19
Guam US 0.05 Lebanon 0.12 South Carolina US 0.19

Newfoundland and Labrador Canada 0.05 Nova Scotia Canada 0.12 Peru 0.19
Guizhou China 0.05 Shandong China 0.12 Ukraine 0.19

Guadeloupe France 0.06 Costa Rica 0.12 Luxembourg 0.19
Qatar 0.06 Ghana 0.12 Romania 0.19
Liberia 0.06 Estonia 0.12 Norway 0.19

Tianjin China 0.06 Bulgaria 0.12 North Carolina US 0.19
Rwanda 0.06 Tunisia 0.12 Ontario Canada 0.19
Brunei 0.06 Egypt 0.12 Virginia US 0.19

Cabo Verde 0.06 Somalia 0.12 Pakistan 0.19
Kuwait 0.06 Jiangxi China 0.12 Poland 0.20

Martinique France 0.06 Jiangsu China 0.12 Ecuador 0.20
Tasmania Australia 0.06 Bosnia and Herzegovina 0.12 Missouri US 0.20

Burma 0.06 North Macedonia 0.13 Arizona US 0.20
Yunnan China 0.06 West Virginia US 0.13 Chile 0.20

Faroe Islands Denmark 0.06 Vermont US 0.13 Tennessee US 0.20
Manitoba Canada 0.07 Slovenia 0.13 Korea, South 0.21

Venezuela 0.07 Henan China 0.13 Colorado US 0.21
Hainan China 0.07 Nebraska US 0.13 California US 0.21

Sri Lanka 0.07 Armenia 0.13 Ireland 0.21
Taiwan 0.07 Anhui China 0.13 Czechia 0.21

Paraguay 0.07 Maldives 0.13 Israel 0.21
Congo (Brazzaville) 0.07 Afghanistan 0.13 Ohio US 0.21

San Marino 0.07 Hungary 0.13 Netherlands 0.21
Mayotte France 0.08 Guinea 0.13 Russia 0.22
Fujian China 0.08 Sudan 0.13 Massachusetts US 0.22

Vietnam 0.08 Oregon US 0.14 Maryland US 0.22
Guangxi China 0.08 Kazakhstan 0.14 Indiana US 0.22
Shaanxi China 0.08 Uzbekistan 0.14 Hubei China 0.22

Jamaica 0.08 Arkansas US 0.14 Belgium 0.23
Thailand 0.08 Cuba 0.14 Texas US 0.23

Congo (Kinshasa) 0.08 Minnesota US 0.14 Georgia US 0.23
Georgia 0.08 Lithuania 0.14 United Kingdom 0.24

Saskatchewan Canada 0.08 Puerto Rico US 0.14 Brazil 0.24
Benin 0.08 New Hampshire US 0.14 Louisiana US 0.24

Senegal 0.08 Queensland Australia 0.14 Connecticut US 0.24
Montenegro 0.09 Cameroon 0.14 Austria 0.24
El Salvador 0.09 Iceland 0.14 Quebec Canada 0.25

Kosovo 0.09 Belarus 0.14 Portugal 0.25
Gabon 0.09 Azerbaijan 0.15 Illinois US 0.25
Malta 0.09 Greece 0.15 Florida US 0.25

Hebei China 0.09 Alberta Canada 0.15 Pennsylvania US 0.25
West Bank and Gaza 0.09 Victoria Australia 0.15 Switzerland 0.25

Kenya 0.09 Kansas US 0.15 France 0.26
Wyoming US 0.09 Hunan China 0.15 Iran 0.28

Alaska US 0.09 Guangdong China 0.15 Germany 0.28
Jordan 0.09 Croatia 0.15 Italy 0.28

Isle of Man United Kingdom 0.09 British Columbia Canada 0.15 Michigan US 0.28
Bahrain 0.10 Djibouti 0.15 Spain 0.30

Equatorial Guinea 0.10 New Zealand 0.15 New Jersey US 0.31
Mauritius 0.10 New Mexico US 0.15 New York US 0.31

Montana US 0.10 Morocco 0.16 Turkey 0.31
Note. The initial epidemic growth rates were measured for different political units (province/state or country/region depending on COVID-19 Data Repository by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University (11)). Outbreak data on cruise ships (Diamond princess and Grand princess) were excluded. The results are rounded to the second decimal place.
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Digital Contact Tracing

Apps have already been deployed by states in US and other countries that can use technology developed by Apple and Google
and anonymous Bluetooth signals to digitally trace and notify the 1-hop contacts of COVID-19 patients who test positive (e.g.,
COVID Alert Pennsylvania, COVID Green in Ireland, Delaware COVID-19 tracing app (12)). These apps can trace and notify
1-hop contacts over last 14 days even if patients download the apps after they test positive. Thus, a recursive utilization of this
app can be used to trace k-hop contacts, that is, if 1-hop contacts download such apps after notification of their exposure,
tracing their 1-hop contacts over the previous 14 days will provide the 2-hop contacts of the patient who tested positive
over the last 14 days and so on. The notified individuals receive an alert to check the app, which provides instructions and
information from state health officials about seeking medical help, staying at home, and quarantining. To ensure privacy, the
app shields the identity of the person who tested positive from people receiving a notification, and vice versa. It does not store lo-
cation data, personal information, or the identities of individuals who were possibly exposed and keeps the data anonymous (12).

General Notes for Tables S3, S4, S5, S6, and S7: Results are presented as range and median (in parentheses). Default
setting for parameters as follows: cooperativity is 100%, false negative rate is 11%, false positive rate is 0%, turnaround time
is 1 day, and contact tracing begins when the first confirmed case is identified. For the default setting, phases A, B, and C
respectively correspond to growth rates of 0 - 0.105, 0.105 - 0.247, and 0.247 - 0.31. We refer to these fixed ranges as low,
intermediate and high. ‘T’ stands for Test and ‘Q’ stands for Quarantine.

Single-hop vs Multi-hop contact tracing - A cost-benefit perspective

Table S3. Relative Benefit/Cost for 3-hop Contact Tracing (Synthetic Networks)

Settings
Low Intermediate High

Relative Benefit Relative Cost Relative Benefit Relative Cost Relative Benefit Relative Costs

Default ≤ 4.2 25.5 - 94.2 (67.7) T: −99.2 - −5.8 (−97.8)
Q: −99.2 - −5.7 (−97.7) 37.3 - 74.7 (67.7) T: 29.9 - 185.9 (91.7)

Q: 32.9 - 193.6 (92.4)

Cooperativity
(Scenario 1)

75% ≤ 5.5 28.3 - 95.5 (68.7) T: −99.1 - −85.2 (−98.6)
Q: −99.1 - −85.9 (−98.6) 41.3 - 68.9 (63) T: 106.2 - 260.9 (164.5)

Q: 97.5 - 231.3 (146.7)
69.4, 77.4 T: 4.7, 52.7

Q: −4.4, 40

50% ≤ 6.7 34 - 95.3 (74.1) T: −98.7 - −42.3 (−95.1)
Q: −98.9 - −53.1 (−95.5) 28 - 57.1 (41.6) T: 238.6 - 301.4 (263.9)

Q: 183.5 - 238.9 (204.8)
49.1, 56.1 T: 139.2, 223.2

Q: 96.6, 170.3

False Negative
1.8% ≤ 4.7 14.8 - 93 (66) T: −99.2 - −22.9 (−98.1)

Q: −99.1 - −22.8 (−98) 33.1 - 75.2 (66.6) T: 43.2 - 168.1 (64.5)
Q: 42.4 - 174.9 (65.7)

58%
≤ 15.3 68.2 - 97.6 (85.7) T: −98.8 - −6.1 (−91.7)

Q: −98.7 - −3.5 (−91.7) 53.9 - 73.4 (61.5) T: 143.2 - 311.7 (290.6)
Q: 151.5 - 341.6 (307)

64.1, 70.7 T: −99.1, −98.7
Q: −99.0, −98.6 68.9 - 74.5 (73.5) T: 13.5 - 176.5 (107.3)

Q: 14.6 - 195.1 (114.6)

False Positive 0.7% ≤ 4.9 24.9 - 94.2 (67.2) T: −99 - −23.3 (−97.7)
Q: −99 - −21.8 (−97.6) 37.4 - 78.1 (68.6) T: 91 - 340.8 (230.3)

Q: 95.3 - 347.7 (244.8)
78.5 T: 72.6

Q: 76.7

Turnaround
Time

3 days
≤ 15 55.3 - 98.8 (89.5) T: −99 - −71.8 (−97.2)

Q: −98.9 - −70.3 (−96.8) 51.1 - 69.5 (56.6) T: 118.8 - 304.7 (253.2)
Q: 128.5 - 342.4 (271.2)

50.3, 74.2 T: −99.3, −99.3
Q: −99.2, −99.2 75.2, 78.0 T: 62.3, 147.1

Q: 72.2, 171.4

Starting Point of
Contact Tracing

1.1% 1.5 - 29.3 (3.2) T: −75.1 - 174 (2.7)
Q: −72.9 - 177.1 (5.8) 42.3 - 91 (66.3) T: −87.3 - 235.9 (−30)

Q: −86.3 - 252.2 (−26.2) 40.3 - 63.2 (56.9) T: 207 - 385.4 (291.2)
Q: 215.5 - 399.2 (312.5)

12.6% 5.4 - 40.8 (10.6) T: −34.9 - 167.1 (30.9)
Q: −31 - 166.2 (32.3) 35.2 - 73.3 (56.4) T: −12.1 - 220.6 (62.1)

Q: −6.9 - 235.4 (69.9) 34.6 - 57.5 (51) T: 178.9 - 275.9 (197.9)
Q: 185.2 - 295 (214.3)

40% 17.2 - 41.4 (23.4) T: −3.6 - 190.8 (48.8)
Q: −0.3 - 179.3 (50.5) 33.8 - 58.8 (49.4) T: 30.5 - 113.2 (50.0)

Q: 34.5 - 119.9 (51.2) 35.5 - 54.8 (52.9) T: 75.3 - 132.8 (120.8)
Q: 80.1 - 130.3 (126)

Cooperativity
(Scenario 2)

75% 1.3 - 57.2 (6.1) T: −97.4 - 78.8 (−75.4)
Q: −97.2 - 78.7 (−72.9) 24.5 - 88.2 (44.6) T: −88.1 - 202.8 (31.9)

Q: −88.6 - 213.1 (32.5) 21.1 - 43.4 (25.5) T: 139.2 - 280.5 (192.9)
Q: 148.3 - 289.1 (206.6)

50% 12 - 43.1 (20.9) T: −85.7 - 45.6 (−50.1)
Q: −84.8 - 45.8 (−47.2) 2.6 - 25.7 (8.4) T: 18.2 - 78.2 (27.8)

Q: 18.3 - 81.1 (29.2) 6.1 - 25.6 (9.7) T: 34 - 121.6 (52.7)
Q: 34.8 - 124.6 (55.2)

Comparison Across Different Number of Hops - A cost-benefit perspective

Default Setting (Data-driven Network). We now consider the data-driven network under the same default setting. Recall that for
different values of the parameter r, the growth rates for the networks are distributed in the second half of the intermediate
range and in the high range. In the intermediate range, the benefit provided by 1-hop is 30.8-43.7% with 42.1% as median.
2-hop contact tracing provides further benefit of 47.6 - 57.7% median 53.6%. Increasing the number of hops beyond 2-hop
provides 9.4% or lower further benefit. The costs for 2-hop are even comparable or lower than those for 1-hop (further costs for
2-hop are negative except in 1 instance). Thus 2-hop constitutes an appropriate choice in this region.
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In the high range, further benefits of 1-hop, 2-hop, 3-hop, 4-hop are 10.9 - 29.7%, median 21.3%, 29.3 - 44.5%, median
36.4%, 22.5 - 38.4%, median 29.2%, 3.4 - 13.7%, median 6.0%, respectively. Starting 2-hop, the further benefits are mostly
progressively decreasing. Also, the further costs of these hops are all positive, except some cases for 3-hop. By our criteria, the
choice will be between 2 and 3 hops, except in one instance in which the further benefit for 4-hop exceeds 10% in which case
2, 3, and 4 hops should be considered. Thus, the phenomena previously observed in various types of synthetic networks also
recur in the data-driven networks.

Level of Cooperation with Contact Tracing and Testing: Scenario 1. The trends are same as the default scenario with the following
differences. For 50% cooperativity, the behavior of the instances with the two highest growth rates in the intermediate growth
rate range become identical to those in high growth rate region. Specifically, each hop incurs higher costs compared to the
previous hop. The further benefit attained by 4-hop exceeds 10%, and in one of these two instances, the further benefit of even
5-hop exceeds 10%. Thus, in these two instances, the choice would be between 2, 3, and 4 hops or even 2, 3, 4, and 5 hops and
will depend on the affordability of the additional costs of each hop.

Properties of Tests. As noted earlier, false positives primarily increase the costs for greater number of hops in the high growth
rate region; further cost of tests and quarantine for 3-hop is respectively up to 313.4 and 319.1 for 0.8% false positive rate.
Otherwise, the trends are the same as that for the default scenario.

Under false negatives, the trends for 1.8% false negative rate is very similar to those for 11% (default), which means that the
trends in general and the effectiveness of multi-hop contact tracing in particular are resilient to increases in the false negative
rate in a realistic range. However, we notice actual divergence from the broad trends reported above only for the impractically
high false negative rate, 58%, which we consider for the sake of completeness. We describe the divergences next.

Considering the low growth rate region, in two instances towards the upper end, 2-hop provides greater than 10% further
benefits beyond what 1-hop provides (62.4, 70.5%) with less costs than 1-hop. The behavior of those instances with highest
growth rates in the low growth rate region is similar to those in the intermediate growth rate region. Recall that in the earlier
subsection of the Results section, we had noted that phase B starts at the higher end points of the low growth rate region for
the same setting. The phenomena here is consistent with the earlier observation.

In the intermediate growth rate region, the further benefit of 5-hop is lower than 2.8% throughout. So, the choice ought to
be between 2, 3, and 4 hops. 2-hop always, 3-hop mostly and 4-hop in some instances, provide greater than 10% further benefit.
Also, except for 2 instances which have the highest growth rates, 3-hop attains lower cost compared to 2-hop which attains
lower cost compared to 1-hop, 4-hop attains comparable or lower costs compared to 3-hop. Thus, 3 or 4 hops constitute the
natural choices in most of these instances (wherever its further benefit of 3 hops exceeds 10%). In two instances with the highest
growth rates, 4-hop provides further benefits, 12.8, 14.7%, and 2, 3 hops incur greater costs compared to the previous hop,
while 4-hop attains lower cost in one instance and greater cost in another instance. Thus, the choice for the right number of
hops can be 2, 3, or 4 depending on the affordability of the additional costs incurred through the increments. These parameter
combinations differs from most settings in that 4-hop provides non-negligible further benefits even for the intermediate growth
rate range.

In the high growth rate region, further benefits are mostly substantially lower for 1 and 2 hops and substantially higher
for 3 and 4 hops compared to 1.8, 11% false negative rates. The costs above the previous hop are positive. Increasing the
number of hops beyond 4-hop provides a further benefit lower than 10.2%. Thus, the choice of the hop number will depend on
the affordability of the additional costs. And, in many instances in intermediate and high growth rate regions, the principle
of diminishing return for further benefits with increase in the number of hops do not hold. Thus, overall, opting for higher
number of hops is more beneficial in this extreme scenario.

Test Result Turnaround Time. In most of the low growth rate region (except the 2 highest growth rates), the minimum further
benefit of 1-hop is 75%, while the maximum further benefit of 2-hop is 15%, with median 8.2%. Thus, in this region there
is a large separation between benefits attained by 1 and 2 hops, though the further benefit of 2-hop exceeds 10% in some
instances. In the 2 instances corresponding to the highest growth rates in the low growth rate region, 2-hop becomes the clear
choice, since it provides considerable additional benefit compared to 1-hop (50.3, 74.1%) and incurs considerably lower costs.
Increasing the number of hops further attains negligible additional benefit. Thus, the choice can be 1 or 2 hops in the low
growth rate region, with greater number of instances that may opt for 2 hops than when turnaround time was 1 day (the
default scenario). Again, this phenomenon is consistent with our findings in the earlier subsection of the Results section, that
for the same setting, phase B starts at the higher end points of the low growth rate region.

For the intermediate growth rate range, either 2 or 3 hops constitute a clear choice; in this, this resembles the default
scenario. But 2-hop constitutes the clear choice in only 3 instances which are the lowest of the growth rates. For these, 2 hop
provide considerable additional benefits (55 − 95.3%, median 81.8%) and attains considerably lower costs than 1 hop, and 3
hop provides negligible additional benefit (≤ 0.8%). For the rest of the instances, both 2 and 3 hops provide considerable
additional benefits, but 3 hops incurs comparable or lower costs as compared to 2 hops. Thus, 2-hop can be ruled out. The
further benefit of 4-hop is at most 7%, thus 4-hop may be ruled out by our criteria. Besides, 4-hop incurs greater costs than
3-hop. Thus, by and large, 3 hops is a clear choice in these.

In the high growth rate region, the further benefits for 5-hop is at most 10.7%, thus, 5-hop can mostly be ruled out by our
criteria. The costs above the previous hop are mostly positive. Thus, 2, 3 and 4 hops may be chosen depending on the further
benefits and affordability of the additional costs as for the default scenario. Note that further benefits are lower for 1-hop,
mostly lower for 2-hop, comparable or lower for 3-hop, higher for 4-hop and 5-hop compared to 1 day turnaround time. For 3
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days turnaround time, the principle of diminishing returns for further benefits with increase in the number of hops holds except
for a few instances in intermediate and high growth rate regions.

Starting Point of Contact Tracing. First, note that the initial infection levels of 12.6%, 40% are unlikely to arise in practice and are
being investigated for completeness.

For low growth rates, the trends for when the starting point is at 1.1%, 2-hop contact tracing attains a further benefit lower
than 10% in all but 2 highest growth rates in the region, and may therefore be ruled out. Thus, 1-hop constitutes a natural
choice in these. For these 2 highest growth rates, 2-hop attain considerable further benefits at lower costs and constitutes
natural choices. Recall that in the earlier subsection we had found that these 2 points belonged to phase B. By the same
yardsticks, when the starting point is at 12.6%, 1-hop constitutes the natural choice in 4 instances, 2-hop in 3 instances; 2-hop
constitutes the natural choice in even more instances when the starting point is at 40%. Thus, as contact tracing commences
later, the incentive for choosing 2 hops increases.

In the intermediate growth rate range, when the initial infection is 1.1%, the further benefit of 4-hop is lower than 10%,
while those of both 2, 3 hops is considerable. Thus, the choice ought to be between 2, 3 hops depending on the affordability
of the additional costs of 3 hops over 2 hops. For the higher values of initial infection, 5-hop attains a further benefit lower
than 10%, and 4-hop mostly lower than 10% (maximum is 12.8, 10.4% for 12.6%, 40% initial infections respectively). Besides,
4-hop fetches greater costs than 3-hop in all cases. Thus, the choice would largely be between 2 and 3 hops in these cases. For
12.6% and 40% starting points, 3-hop results in greater costs than 2-hop in all cases in the intermediate region (further cost of
tests and quarantine for 3-hop is respectively up to 118.5 and 125.8 for 12.6% starting point; up to 64.0 and 67.6 for 40%
starting point). Thus, the choice between the hops depends on whether the additional costs incurred by a given choice of hops
is affordable. Thus, if the start of the contact tracing is significantly delayed (starting points, 12.6%, 40%), the intermediate
growth rate region behaves similarly as the high growth rate, and both 2 and 3 hops constitute likely choices throughout the
intermediate growth rate region (the further benefit of 4 hops remains low throughout).

The high growth rate region exhibits similar trends as the default scenario. The principle of diminishing returns for further
benefits with increase in the number of hops generally holds (except in one instance in the high growth rate region).

Level of Cooperation with Contact Tracing and Testing: Scenario 2. For low growth rates, as the cooperativity becomes lower, there
are more cases where 2-hop provides greater than 10% further benefits. When cooperativity is 100%, the number is 0. When
cooperativity is 75%, this happens for 2 highest growth rates in this range; in these 2 instances 2-hop provides 41.9%, 56.5%
further benefits with lower costs than 1-hop. Increasing the number of hops beyond 2-hop provide further benefits in the range
0.6 - 3.9%. These two instances resemble those in intermediate growth rate region. When cooperativity is 50%, the further
benefits of 2-hop exceed 10% throughout this region (10.7 - 25.2%, median 18.0%), and the costs are mostly lower than 1-hop.
Even further benefits attained by increasing the number of hops beyond 2-hop exceeds 10% in several instances (1.3 - 17.9%,
median 3.2%). Thus, as cooperativity decreases, for low growth rates, the choice can become 2 or even 3 hops in more and more
instances depending on the affordability of the additional costs (note that 2-hop incur lower costs than 1-hop in most cases).

When the growth rate increases, the sparsity in the network that can be traced limits the efficacy of multi-hop contact
tracing. In the intermediate and high growth rate regions, for any finite number of hops, the full benefit provided by each hop
substantially decreases with decrease in cooperativity. For example, 3-hop contact tracing reduces the outbreak size by 84.6 -
100.0% (median 99.8%) for 100% cooperativity, 26.1 - 95.4% (median 54.9%) for 75% cooperativity, and 3.0 - 44.9% (median
12.3%) for 50% cooperativity. Further benefits by 4 and 5 hops exceeds 10% frequently for 75%: 1) 1.7 - 19.2% (median 13.3%)
for 4-hop 2) 0.5 - 17.2% (median 10.3%) for 5-hop. Incrementing the number of hops also mostly continually increase the cost.
Thus, the number of hops need to be chosen between 2, 3, 4, and 5 based on the affordability of the additional costs. For 50%
cooperativity, due to further decline in the efficacy of multi-hop contact tracing, further benefits of 1) 2 hops is frequently
below 10%, 2) 3 hops is mostly below 10%, 3) 4 and 5 hops are below 10%. Thus, the number of hops need to be chosen based
on assessment of further benefits and costs. Finally, there is no behavioral difference between intermediate and high growth
rate regions for both 75% and 50% cooperativities.
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Table S4. Further Benefit/Cost Across Different Number of Hops (Data-driven Network)

Intermediate
1-hop 2-hop 3-hop

Benefit Further Benefit Further Cost Further Benefit

30.8 - 43.7 (42.1) 47.6 - 57.7 (53.6) T: −86.4 - 9.5 (−35.7)
Q: −86.2 - 9.3 (−36.0) ≤ 9.4

High
1-hop 2-hop 3-hop 4-hop 5-hop

Benefit Further Benefit Further Costs Further Benefit Further Costs Further Benefit Further Costs Further Benefit

10.9 - 29.7 (21.3) 29.3 - 44.5 (36.4) T: 69.2 - 162.2 (122.4)
Q: 73 - 174.1 (134.2) 22.5 - 38.4 (29.2) T: −64.2 - 56.6 (0.1)

Q: −64.5 - 57.2 (−0.3) 3.4 - 13.7 (6.0) T: 30.1 - 116.9 (64.1)
Q: 33.3 - 119.9 (67.8) ≤ 3.9

Note. The growth rates for data-driven networks are distributed in the second half of the intermediate range and in the high range.
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Table S5. Further Benefit/Cost Across Different Number of Hops In Low Growth Rates Region (Synthetic Networks)

Settings
1-hop 2-hop 3-hop

Benefit Further Benefit Further Cost Further Benefit Further Cost

Default 85.0 - 99.9 (97.8) ≤ 4.3
Cooperativity
(Scenario 1)

75% 83.6 - 99.9 (97.3) ≤ 5.6
50% 82.0 - 99.8 (97.2) ≤ 6.7

False Negative
1.80% 84.6 - 99.9 (99.2) ≤ 4.6

58%
65.1 - 97.5 (90.2) 2.4 - 13.3 (9.5)

29.2, 35.8 62.4, 70.5 T: −98.8, −92.9
Q: −98.7, −92.8 ≤ 1.8

False Positive 0.70% 84.3 - 99.9 (97.7) ≤ 4.6
Turnaround

Time
3 days

75.8 - 98.7 (91.4) 1.2 - 15 (8.2)

25.7, 49.6 50.3, 74.1 T: −99.5, −99.4
Q: −99.4, −99.4 ≤ 0.06

Starting Point of
Contact Tracing

1.10%
89.0 - 98.2 (97.1) ≤ 5.4

69.7, 75.1 23.8, 28.5 T: −84.1, −77.5
Q: −82.8, −76.2 ≤ 0.8

12.60%
85.5 - 92.0 (87.0) ≤ 9.3

* 52.1 - 77.4 (59.1) 18.2 - 37.6 (30.0) T: −47.0 - −5.0 (−34.9)
Q: −43.8 - −2.5 (−32.0) ≤ 3.2

40% 42.0 - 75.7 (67.7) 12.7 - 34.8 (20.3) T: −20.2 - 69.2 (10.1)
Q: −17.1 - 65.2 (11.8) ≤ 7.7

Cooperativity
(Scenario 2)

75%
77.1 - 98.6 (93.8) 1.2 - 9.8 (5.4)

42.4, 52.3 41.9, 56.5 T: −96.6, −78.6
Q: −96.5, −78.9 ≤ 3.9

50% 4.8 - 84.3 (68.1) 10.7 - 25.2 (18.0) T: −74.8 - 13.3 (−52.8)
Q: −73.8 - 13.7 (−51) 1.3 - 17.9 (3.2) T: −14.3 - 32.3 (−4.6)

Q: −14.5 - 32.1 (−5.3)
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