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Abstract 
Background: Autism spectrum disorder (ASD) represents a panel of conditions that begin during 
the developmental period and result in impairments of personal, social, academic, or occupational 
functioning. Early diagnosis is directly related to a better prognosis. Unfortunately, the diagnosis 
of ASD requires a long and exhausting subjective process. 
Objective: To review the state of the art for the automated autism diagnosis. 
Methods: In February 2022, we searched multiple databases and several sources of grey 
literature for eligible studies. We used an adapted version of the QUADAS-2 tool to assess the 
risk of bias in the studies. A brief report of the methods and results of each study is presented. 
Data were synthesized for each modality separately using the Split Component Synthesis (SCS) 
method. We assessed heterogeneity using the I2 statistics and evaluated publication bias using 
trim and fill tests combined with ln DOR. Confidence in cumulative evidence was evaluated using 
the GRADE approach for diagnostic studies. 
Results: We included 344 studies from 186020 participants (51129 are estimated to be unique) 
for nine different modalities in this review, from which 232 reported sufficient data for meta-
analysis. The area under the curve was in the range of 0.71-0.90 for all the modalities. The studies 
on EEG data provided the best accuracy, with the area under the curve ranging between 0.85 to 
0.93. 
Conclusions: The literature is rife with bias and methodological/reporting flaws. 
Recommendations are provided for future research to provide better studies and fill in the current 
knowledge gaps. 
 
Keywords: Artificial Intelligence, Autism Spectrum Disorder, Autistic Disorder, Deep Learning, 
Machine Learning 
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Background 

Rationale 
Autism spectrum disorder (ASD) represents a panel of conditions that begin during the 

developmental period and result in impairments of personal, social, academic, or occupational 
functioning and is currently estimated to affect about 1 in 44 children in the U.S. [1] and 1 in 100 
children worldwide [2]. Furthermore, estimates show that about 2.2% of all adults in the U.S. have 
ASD [3]. It is associated with a high economic burden. The cost of caring for Americans with 
autism reached $268 billion in 2015 and is estimated to rise to $460 billion by 2025 as individuals 
with ASD require special healthcare, special education, and government assistance [4]. 
Individuals with ASD usually have a low quality of life as they have difficulties living independently 
and having social relationships. They also have problems getting employed as fewer than half of 
young adults with ASD maintain a job, even lower than the employment rate of ex-convicts who 
achieve a 75% employment rate [5]. Furthermore, ASD individuals experience substantially higher 
rates of mood disorders than the general population, contributing to less quality of life and higher 
mortality through suicide [6]. 

ASD is associated with verbal and nonverbal communication, social interactions, and 
behavioral complications [7]. Clinical manifestations typically occur in the 2nd–3rd year of life and 
persist through adulthood [8]. Evidence suggests that early diagnosis is directly related to a better 
prognosis [9]. Different health systems follow different clinical pathways; In some countries, 
children get screened using pre-diagnosis screening methods, and potential cases will be referred 
to specialized services by general practitioners [7]. In such cases, a lack of training and technical 
knowledge may lead to a late diagnosis. In some other countries, professionals directly approach 
the patient and their parents, often without former screening [10], which usually happens when 
the patient develops significant signs and symptoms. 

The diagnosis of ASD requires a long and exhausting subjective process. Clinicians must 
conduct a clinical assessment of the patient's developmental age based on a variety of factors 
(e.g., behavior excesses, communication, self-care, social skills) [7] or a combination of 
parent/caregiver information, ideally assessed by standardized instrument, with results from 
standardized direct observation and other additional, independent information from school 
teachers, partner or public authorities [11]. ASD cannot yet be diagnosed with objectively specific 
and sensitive biomarkers. 

Machine learning provides novel opportunities for human behavior research and clinical 
translation. With the new advancements in this area, complex, sophisticated predictive models 
could be quickly developed based on labeled data. It can be applied to the data from individuals 
with ASD to offer new diagnostic biomarkers. ASD diagnosis could be seen as a classification 
problem in machine learning where the clinician tries to build a classifier based on data of 
individuals to classify participants as ASD or typically developed (TD). 

Previously, there have been other reviews [12]–[16] with a similar aim, but we believe all 
those reviews had severe limitations and flaws. First, almost none of the previous studies 
investigated all the modalities used for this subject. Most of these reviews focused on brain 
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imaging methods, with hardly any mention of other existing methods such as facial recognition 
models, electroencephalograms, eye tracking systems, etc. Also, their search strategies were 
seriously flawed. Two reviews [12], [16] used methodological search filters, which are not 
recommended for diagnostic test accuracy reviews due to the lack of availability of appropriate 
subject headings, and inconsistent use of those which are available by database indexers [17]. 
Four other studies [13]–[15] did not report their search strategies or reported them in insufficient 
detail.  

Nevertheless, when comparing the number of studies we found with those reviews, it is 
evident that the flaws in their search resulted in missing a substantial amount of the available 
evidence. Additionally, those reviews either did not assess the risk of bias in the included studies 
or did it ambiguously. Another problem with some of the previous reviews were mixing the 
diagnostic accuracy results of different assessment modalities into one meta-analysis. This is a 
classic example of mixing apples and oranges in a meta-analysis, as was stated by Sharpe in 
1997 [18]. Other limitations included the short presentation of data from the included studies, 
ignoring heterogeneity and not investigating its possible sources, not evaluating for the risk of 
publication biases, and not assessing the overall confidence in the cumulative evidence. Taking 
all these factors into consideration, this study aims to present a comprehensive, in-depth 
systematic review (with meta-analyses when feasible) of the specifications and diagnostic 
accuracy of the current state-of-the-art automated ASD diagnostic or classification models to help 
future researchers in their efforts and reveal the current gaps in knowledge, pitfalls, and promises. 
 

Clinical role of the index test 
In April 2018, the Food and Drug Administration (FDA) approved the first artificial 

intelligence (AI)-based system for clinical use. The system, named IDx-DR, was an AI model with 
a retinal camera device that was developed to detect diabetic retinopathy in adults who have 
diabetes [19]. Since then, the FDA has evaluated dozens of AI-based health-related models, with 
at least nine achieving a de novo pathway clearance and three getting pre-market approval [20], 
[21]. Nevertheless, most algorithms still need to be refined enough to substitute for a clinician's 
judgment. It would be preferable for patients and clinicians alike if they had a simple explanation 
of how a classification algorithm determines a particular label for a case [22]. 

Thus, when these models are used in a clinical setting, the problem is not all about providing 
the correct decision, but one should also be able to describe how the model managed to reach 
that decision. Unfortunately, the decision-making process of most of these algorithms happens in 
a “black box” manner. There are few justifiable reasons behind those decisions, at least by the 
current state of clinical knowledge. Other challenges for delivering clinical impact with AI systems 
include legal issues, logistical difficulties in implementation, and sociocultural considerations [23]. 
Thus, at the moment, we propose these models should only be considered a low-cost, accessible, 
non-invasive method for screening children to identify those at risk of developing ASD. So, if 
enough sensitivity is provided, they may be used as a screening test. Generally, screening tests 
should provide reasonable sensitivities since test-negatives will not be tested by more specific 
tests, but they may have lower specificities. Although, if enough specificity is provided, they might 
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be used as add-on tests to ascertain the diagnosis and differentiate it from other conditions with 
similar symptoms. 
 

Summary of artificial intelligence model pipelines 
Although studies on the diagnosis or classification of clinical outcomes using AI might have 

developmental details different from one study to another, they usually follow a similar pipeline. 
This pipeline generally includes (a) data preprocessing and wrangling, (b) feature engineering, 
(c) feature scaling and selection, and (d) model training and evaluation. This pipeline is presented 
in Figure 1. 
 

 
Figure 1 | Summary of artificial intelligence model pipelines. DWI/DTI: Diffusion-Weighted Imaging/Diffusion Tensor 
Imaging, EEG: Electroencephalogram, fMRI: Functional Magnetic Resonance Imaging, NIRS: Near-Infrared 
Spectroscopy, S-MRI: Structural Magnetic Resonance Imaging. 
 

Data preprocessing and wrangling 
In health-related tasks, datasets can consist of a variety of modality types. These data are 

also usually filled with different nuisance sources, which can interfere with optimal model training. 
Thus, data cleaning is typically necessary to ensure or enhance performance. Although modern 
deep learning models do not require ideal datasets, preprocessing and wrangling techniques have 
dramatically increased the model's performance. Preprocessing techniques usually take 
advantage of statistical methods to improve data quality in different ways. For instance, in the 
case of neuroimaging data, slice-timing correction, head-motion correction, and susceptibility 
distortion correction address particular artifacts, while co-registration and spatial normalization 
are concerned with signal localization [24]. 
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Feature engineering 
While data processing includes cleaning and preparing the raw data, feature engineering 

creates actual model training features. In the case of classifying problems, a feature refers to any 
measurable property with information about the class ownership extracted from raw data. For 
instance, measures such as gray matter volume, white matter volume, or mean diffusivity may be 
used as features in neuroimaging data. The feature engineering process may include various 
techniques, such as numerical transformations, category encoding, clustering, and principal 
component analysis [25]. 
 

Feature scaling and selection 
Feature scaling is the process of normalizing the range of independent variables or features. 

In contrast, feature selection is the selection of a subset of relevant features for use in model 
development. They shorten training time, improve data compatibility with a learning model class, 
and benefit the model by avoiding the curse of dimensionality [26]. Feature selection methods are 
divided into three categories: filtering techniques such as t-test, wrapper methods such as 
recursive cluster elimination, and embedding methods such as least absolute shrinkage and 
selection operator (Lasso). 
 

Model training and evaluation 
The training process is the optimization of model parameters based on the training dataset 

to find better representations of the corresponding class. This process sometimes leads to 
overfitting. Overfitting is "the production of an analysis that corresponds too closely or exactly to 
a particular set of data and may fail to fit additional data or predict future observations reliably" 
[27]. To test for possible overfitting and evaluate the model's generalizability, it should be further 
validated on a dataset different than the one used for the training. Different validation methods 
exist, such as k-fold cross-validation (CV), leave-one-out cross-validation (LOOCV), and external 
validation methods [28]. 
 

Objectives 
To review the current state-of-the-art automated ASD diagnostic or classification models 

and present the gaps in knowledge, pitfalls, and promises 
 

Methods 
The design and methods used for this review complied with the Centre for Reviews and 

Dissemination (CRD’s) Guidance for Undertaking Reviews in Healthcare [29] and are reported in 
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line with Preferred Reporting Items for Systematic Reviews and Meta-Analyses of Diagnostic Test 
Accuracy (PRISMA-DTA) [30]. 
 

Eligibility criteria 
Population: individuals with autism spectrum disorder (ASD) regardless of age, sex, and ethnicity 
Index test: AI models and systems 
Target condition: 

- Autism spectrum disorder (ASD) as defined by the Diagnostic and Statistical Manual of 
Mental Disorders-IV (DSM-IV), DSM-V, and International Statistical Classification of 
Diseases and Related Health Problems 11 (ICD-11) 

- Childhood autism, atypical autism, and Asperger syndrome as defined by ICD-10 
- Autism as defined by Autism Diagnostic Observation Schedule (ADOS), Autism 

Diagnostic Interview-Revised (ADI-R), The Childhood Autism Rating Scale (CARS), or 
Gilliam Autism Rating Scale (GARS) 

- We did not consider participants at risk for autism as eligible for this review. 
Comparator: typically developed (TD) individuals 
Reference standard: diagnosis made by a trained physician, psychiatrist, or other eligible 
experts based on diagnostic criteria mentioned above 
Study design: cross-sectional design, including both single-gate (cohort type) and two-gates 
(case-control type) designs 

We assessed the eligibility of studies reports irrespective of their language, publication 
status, and publication date. We did not include studies that used AI models for the questionnaire-
based diagnosis of ASD because those studies are mostly about using machine and deep 
learning methods to tailor available diagnostic questionnaires, which is different from the scope 
of this review. 
 

Information sources 
In February 2022, we searched Embase, MEDLINE (Ovid), APA PsycINFO (Ovid), IEEE 

Xplore, Scopus, and Web of Science Core Collection for eligible studies. Additionally, we 
searched gray literature using OpenGrey, Center for Research Libraries Online Catalogue (CRL), 
and Open Access Theses and Dissertations (OATD) to find any unpublished potentially relevant 
studies. We also carried out a ‘snowball’ search through citation searching (forward and backward 
citation tracking) using Scopus on all included studies in this review to identify further eligible 
studies or study reports. As a final step, we checked the references of the reviews with a similar 
subject identified through our search to see if other potentially eligible studies existed. 

Our search strategy is reported in line with the PRISMA search extension [31]. No restriction 
or search filter was used. Free-text terms and keywords were identified using the MeSH Browser 
[32] website and PubMed PubReMiner [33] word frequency analysis tool. The search strategy 
was reviewed using the Peer Review of Electronic Search Strategies (PRESS) [34] guideline. The 
Multimedia Appendix 1: Search strategy file presents a detailed report of the search strategy. 
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Study selection 
Citations identified from the literature searches and reference list checking were imported 

to EndNote [35], a citation management software. Duplicates were identified and removed using 
EndNote’s de-duplication tool. Next, the remaining records were imported into Rayyan QCRI [36], 
a web-based application that employs natural language processing, artificial intelligence, and 
machine learning technologies to speed the screening of titles and abstracts of records. Another 
step of de-duplication was conducted in Rayyan. In this process, duplicates were identified, 
manually re-checked, and removed using Rayyan’s automatic de-duplication feature, with the 
similarity threshold set to 0.85. Then four reviewers in two teams independently reviewed the titles 
and abstracts of the first 50 records. Inter-rater reliability was calculated using Cohen’s kappa to 
be 0.87, interpreted as almost perfect agreement. Then the same two teams independently 
screened titles and abstracts of the retrieved records. Two other reviewers were consulted to 
make the final decision in disagreements. Afterward, the full text of all potentially eligible records 
was retrieved. Records from the same study were linked to avoiding including data from the same 
study more than once. Next, the same two teams independently screened full-text studies for 
inclusion. A study was included when both team reviewers assessed it as satisfying the inclusion 
criteria. In cases of disagreements, two other reviewers were consulted. 
 

Data collection process 
A data extraction form was developed. The form was pilot-tested by four reviewers using 

five randomly selected studies. Inter-rater reliability was calculated again using Cohen’s kappa to 
be 0.93 (almost perfect agreement). After holding discussions to resolve discrepancies, the same 
reviewers used the form independently to extract data from eligible studies. Extracted data were 
compared, with any differences being resolved through further discussion. We tried to contact the 
study authors in cases of missing or unclear data. Extracted data included: 

● Study identifiers and design: study name, location, dates, design (single-gate; two-gates), 
and funding sources. 

● Characteristics of dataset: dataset publicity, inclusion, and exclusion criteria, sample size, 
gender, and age. 

● Performance and validation methods: a qualitative description of pre-processing methods, 
feature extraction, and selection methods, modality parameters, qualitative description of 
the AI algorithms, validation methods, and reference standard used. 

● Model evaluation metrics. 
In cases where one study evaluated several algorithms and presented different results, we 

only extracted the data for the model with the best accuracy. 
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Risk of bias 
Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) [37] tool addresses four 

domains: 1) Patient selection; 2) Index test(s); 3) Reference standard; 4) Flow and timing. Each 
domain is assessed regarding the risk of bias and concerns regarding applicability to the review 
question. 

Since this review aims to evaluate the diagnostic accuracy of artificial intelligence 
algorithms, some revisions to the QUADAS-2 were deemed necessary. Thus, some alterations 
and modifications were done by the discussion and consensus among authors. The patient 
selection domain in such studies is usually more about data sets for training and testing the model. 
This domain's signaling questions and assessments have been revised to cover those issues. 
The index test was divided into two sections, one evaluating the potential biases in the modality 
used and the other assessing the AI algorithms in the study. For question eight (validation of the 
algorithm), judgments were based on the results of a study [38]. In their study, which evaluated 
the validation methods of studies with the aim of automated autism diagnosis, they found that in 
small sample sizes (<60), the leave-one-out cross-validation (LOOCV) is the least biased internal 
validation method. 

In contrast, in the studies with a sample size of >60, k-fold cross-validation is the optimal 
choice. Also, external validation and data-split methods are considered at low risk of validation 
method bias regardless of the sample size. For the reference standard, we assessed if 
participants were diagnosed based on valid criteria or by an expert. Finally, the flow and timing 
domain was judged not to apply to machine learning methodologies. No overall summary score 
was calculated. A detailed summary of the adopted version of the tool is presented in Table 1. 
 
TABLE 1 | Modified version of the QUADAS-2 tool 

Domain 1: Patient selection 

1. Are the data sources clear? 

2. Were the controls matched with the cases for basic characteristics (age, sex, and IQ)? 

3. Did the dataset avoid inappropriate exclusions? 

Domain 2: Index test – Modality 

4. Were data acquisition methods judged to be valid? 

5. Was the data preprocessing pipeline described in appropriate detail? 

6. Was the data preprocessing pipeline judged to be valid? 

Domain 3: Index test - AI algorithm 

7. Is there enough clarity about the specification of the algorithms used? 

8. Was an appropriate validation and evaluation method used? 

Domain 3: Reference standard 

9. Was a valid reference standard test used? 
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The tool was piloted before use. Four reviewers independently evaluated 10% of the 
included studies to calculate inter-rater reliability using Cohen’s kappa, which was 0.78. After re-
training and holding discussions to resolve discrepancies, the same four reviewers evaluated all 
the included studies independently. They recorded supporting information and justifications for 
judgments of risk of bias for each domain (low, unclear, high, or not applicable). We discussed 
disagreements and resolved discrepancies through discussion. 
 

Diagnostic accuracy measures 
We used the data from the two-by-two tables to calculate true-positives (TP), true-negatives 

(TN), false-positives (FP), false-negatives (FN), sensitivity (Se), specificity (Sp), and accuracy for 
the best-performing algorithm in each study. When any TP/FP/TN/FN values were 0, 0.5 was 
added to prevent zero cell count. Our primary accuracy measure for the meta-analyses was the 
diagnostic odds ratio (DOR): 
 

𝐷𝑂𝑅	 = 	
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	✕	𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

(1	 − 	𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)	✕	(1	 − 	𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) 

 

Synthesis of results 
We summarized diagnostic test accuracy by creating a two-by-two table for the best-

performing algorithm in each study. When two-by-two tables were unavailable, we tried to 
calculate the metrics by putting the available data in equations. 

Meta-analyses were conducted using R version 4 [39], function ‘SCSmeta’ [40]. Hierarchical 
bivariate random-effects models are commonly used for the meta-analysis of diagnostic test 
accuracy studies. These models can consider both within- and between-subject variability and 
threshold effect [41]. An issue with bivariate models is that the inputs into the model are the study-
specific pairs of Se and Sp. The latter can demonstrate heterogeneity across studies either due 
to systematic differences or implicit dissimilarity in test thresholds, or both. Another issue is that 
some of the between-study variability could be due to some degree of threshold variability, and 
while the bivariate approach takes the negative correlation between Se and Sp into account when 
modeling Se/Sp pairs, such a correlation may also be artifactual because of systematic error 
(study biases), spectrum effects, or implicit variations in thresholds when tests are interpreted 
differently. We used the more robust Split Component Synthesis (SCS) method [40]. The SCS 
estimator for the DOR, Se, and Sp is less biased and has a more minor mean squared error than 
the bivariate model estimator. For this purpose, first, we estimated the logit Se, logit Sp, and ln 
DOR for each study. We estimated the summary ln DOR and variance using the IVhet model [42]. 
Then we generated a centered ln DOR for each study. We fitted two ordinary least squares 
regression models: one for the logit Se (dependent variable) on the centered DOR (independent 
variable) and the other for the logit Sp (dependent variable) on the centered DOR (independent 
variable). The intercept in each linear regression model corresponds to the summary logit Se and 
summary logit Sp respectively. 
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Summary Receiver Operating Characteristics (SROC) curves were generated for each 
modality based on parameter estimates extracted from the SCS model. The SROC curves were 
specified by the summary Se and Sp intersection point, its 95% CIs, and the confidence limits of 
the Se and 1-Sp. Individual study Se/Sp pairs were indicated on the plot as circles with size 
proportional to the inverse of the study's variance in DOR. The area under the curve (AUC) was 
calculated using the following formula: 
 
𝑙𝑜𝑔𝑖𝑡(𝐴𝑈𝐶) 	= 	 (𝑙𝑛	(𝐷𝑂𝑅)	/	2 (If DOR ≥ 1) 
 

We quantified heterogeneity with I2 and τ2 statistics. I2 quantifies inconsistency across 
studies to assess the impact of heterogeneity on the meta-analysis [43]. I2 is interpreted as 
follows: 0% to 40%: might not be important; 30% to 60%: may represent moderate heterogeneity; 
50% to 90%: may represent substantial heterogeneity; 75% to 100%: represents considerable 
heterogeneity. 

To investigate the possible role of overfitting on the accuracy results of the included studies, 
we performed a meta-regression analysis. In this analysis, the accuracy of each study was plotted 
against its sample size. We also conducted sensitivity analyses on modalities with at least five 
studies at low risk of bias in all domains to evaluate the robustness of our results. 
 

Reporting bias assessment 
The impact of publication bias has been understudied in the context of DTA systematic 

reviews. One possible reason is that the statistical significance of treatment efficacy is well-
defined in clinical trials; however, statistical significance needs to be more intuitively defined for 
measures of diagnostic test accuracy. Another reason is that the odds ratio is expected to be 
large in diagnostic studies. Applying tests for funnel plot asymmetry in such circumstances will 
likely result in publication bias being incorrectly indicated by the test far too often [44]. 
Nevertheless, empirical evidence has demonstrated that smaller studies report greater diagnostic 
test accuracy; thus, ignoring the impact of publication bias when conducting a meta-analysis can 
lead to overestimating the diagnostic test accuracy [45]. 

A contour-enhanced funnel plot was designed to assess publication bias in our review with 
ln DOR on the x-axis and the inverse of the standard error on the y-axis. To check for potential 
unpublished studies on the plot, we used the trim and fill method [46] combined with ln DOR, as 
shown in a simulation study, to be superior to other funnel plot asymmetry tests for DTA reviews 
[47]. Using the Deeks method, we also performed a statistical test for funnel plot asymmetry [48]. 
 

Confidence in cumulative evidence 
The confidence in cumulative evidence for each synthesis was assessed using the Grading 

of Recommendations, Assessment, Development, and Evaluation (GRADE) approach for 
diagnostic tests and strategies [49], which takes into account five considerations: study design, 
risk of bias, inconsistency, indirectness, imprecision, and publication bias. Factors designed for 
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upgrading the evidence (dose effect, plausible bias, large effect, and confounding) still need to be 
well developed, and thus we did not consider them in our review. The only exception is the ‘large 
effect’ domain, which was considered in this review. We decided that a substantial likelihood of 
disease associated with test results (sensitivity and specificity more than 0.85) will increase the 
quality of evidence. Four reviewers rated the certainty of the evidence for the outcome as high, 
moderate, low, or very low. We resolved any discrepancies by consensus. 
 

Results 

Overview of results 
This research aimed to review the current state-of-the-art automated ASD diagnostic or 

classification models and present the gaps in knowledge, pitfalls, and promises. First, we have 
introduced a summary of the study selection process, followed by the characteristics of the 
included studies, including sample sizes, participants' age, the modalities used, the sources of 
data (datasets), the classifiers implemented, and the evaluation metrics utilized by the included 
studies. Next, we have presented the results for assessing the risk of bias in the studies. It is 
immediately followed by the results of the syntheses, which include synthesis based on modality, 
synthesis based on feature set, meta-regression analysis, and sensitivity analysis. Finally, we 
have evaluated the reporting biases in the included studies and confidence in the cumulative 
evidence. A summary overview of the results, alongside a chart of the flow of the study, is 
presented in Figure 2. 
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Figure 2 | A) PRISMA flowchart of the review; B) Accuracy distribution of classifiers in this review; C) Accuracy 
distribution of modalities in this review; D) Proportions of classifiers in this review; E) Meta-regression of accuracy vs. 
sample size of the included studies; F) Publications per year. 
AE: Autoencoders, CNN: Convolutional neural networks, FCNN: Fully-Connected Neural Networks, GNN: Graph 
Convolutional Networks, KNN: K-Nearest Neighbors, LR: Logistic Regression, SVM: Support Vector Machines. 
DWI/DTI: Diffusion-Weighted Imaging/Diffusion-Tensor Imaging, EEG: Electroencephalography, rs-fMRI: Resting-state 
functional Magnetic Resonance Imaging, S-MRI: Structural Magnetic Resonance Imaging, T-fMRI: Task-based 
functional Magnetic Resonance Imaging. 
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Study selection 
For a detailed summary of the flow of the studies, see the PRISMA flow diagram presented 

in Figure 2. For this review, we identified 12567 records in our primary search. After removing 
duplicates, we screened the titles and abstracts of 8245 records. Another 6748 records were 
excluded at that stage, and 1497 records remained for full-text assessment. We excluded 1154 
studies following the evaluation of the full text of the records. In the end, we included 344 studies 
[50]–[393] with 186020 participants (following the removal of overlapping participants in public 
databases, 51129 are estimated to be unique) in this review. Three studies reported results for 
two different modalities separately, resulting in 347 results being included in this review. 
 

Study characteristics 
A summary of the characteristics of the contributing studies is provided in Multimedia 

Appendix 2: Characteristics of included studies which includes the parcellation atlas used by 
each study (if applicable), the feature selection methods used, the sample sizes, the validation 
method for the algorithm, the classifier and the algorithm specifications, the evaluation metrics of 
the algorithm for diagnosing or classifying ASD individuals, and the potential sources of bias in 
each study. Readers who are interested in designing new AI algorithms for diagnosing or 
classifying ASD individuals are highly recommended to check this data as it would give them an 
overview of the methods used so far and their effectiveness, guiding them through the next steps 
required to achieve better results, while also avoiding duplicate efforts. 
 

Sample sizes 
The median sample size was 152.5 participants (interquartile range 58–871). The smallest 

sample size was 12, and the largest was 17614. 
 

Age of participants 
The age group of participants overlapped in most of the included studies. Thirteen studies 

included toddlers (<2 years old), 143 included children and adolescents (2-18 years old), 30 
included adults (>18 years old), and 139 included participants of all ages. Also, 23 studies did not 
report the age of the participants. 
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Modality 
Our investigations revealed that 155 studies used the data from resting-state functional 

magnetic resonance imaging (rs-fMRI), 53 used structural MRI (S-MRI), 48 used 
electroencephalography (EEG), 21 used eye-tracking, 14 used task-based fMRI (T-fMRI), 11 
used diffusive weighted imaging/diffusive tensor imaging (DWI/DTI), and 10 used facial 
recognition. Also, 24 studies used data from more than one modality. In contrast, 14 used other 
miscellaneous modalities (functional near-infrared spectroscopy, kinematic features, response to 
name, video analysis, photo shooting, vocal analysis, and positron emission tomography). 
 

Dataset 
We observed that 187 studies used the data stored in Autism Brain Imaging Data Exchange 

(ABIDE) initiative [394], [395] (a dataset that has aggregated functional and structural brain 
imaging data of ASD participants collected from laboratories around the world), 15 used the data 
from the National Database for Autism Research (NDAR) [396] (a dataset with data at all levels 
of biological and behavioral organization (molecules, genes, neural tissue, behavioral, social and 
environmental interactions) of ASD participants), and 141 studies used other sources. 
 

Classifier 
Our investigations revealed that 124 studies used a support vector machine (SVM) 

classifier, 48 used convolutional neural networks (CNN), 24 used fully-connected neural networks 
(FCNN), 17 used graph neural networks (GNN), 15 used logistic regression (LR), 14 used a 
combination of an autoencoder and softmax layer (AE + Softmax), and ten used k-nearest 
neighbors model (KNN). Also, 50 studies used ensemble algorithms, while 48 used other 
miscellaneous models. The choice of classifiers is usually highly dependent on the data structure. 
As a result, we sought to identify the type of classifiers used for each modality. Check Figure 3 
for the results. 
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Figure 3 | The type of classifiers used for each modality. AE: Autoencoders, CNN: Convolutional neural networks, 
FCNN: Fully-Connected Neural Networks, GNN: Graph Convolutional Networks, KNN: K-Nearest Neighbors, LR: 
Logistic Regression, SVM: Support Vector Machines. 
DWI/DTI: Diffusion-Weighted Imaging/Diffusion-Tensor Imaging, EEG: Electroencephalography, rs-fMRI: Resting-state 
functional Magnetic Resonance Imaging, S-MRI: Structural Magnetic Resonance Imaging, T-fMRI: Task-based 
functional Magnetic Resonance Imaging. 
 

Most of the included modalities were classified using SVMs as they are easy to use and 
powerful conventional classifiers. The only exceptions were the facial recognition modality (which 
almost entirely used CNNs) and the T-MRI modality (which mainly used CNNs). 
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Evaluation metrics 
The median Sensitivity was 80.8% (interquartile range 71.2%-89.7%). The lowest sensitivity 

was 24.8%, and the highest was 100%. Unfortunately, 116 studies did not report the sensitivity. 
The median Specificity was 80.9% (interquartile range 71.0%-90.6%). The lowest specificity 

was 33.0%, and the highest was 100%. Unfortunately, 117 studies did not report the specificity. 
The median accuracy was 80.0% (interquartile range 70.9%-90.0%). The lowest accuracy 

was 50.0%, and the highest accuracy was 100%. 
 

Risk of bias 
Figure 4 shows the judgments for risk of bias and concerns regarding applicability for each 

domain across the included studies. 
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Figure 4 | Risk of bias graph: review authors’ judgments about each risk of bias and applicability item presented as 
percentages across all included studies. 
DWI/DTI: Diffusion-Weighted Imaging/Diffusion-Tensor Imaging, EEG: Electroencephalography, rs-fMRI: Resting-state 
functional Magnetic Resonance Imaging, S-MRI: Structural Magnetic Resonance Imaging, T-fMRI: Task-based 
functional Magnetic Resonance Imaging. 
 

Patient Selection 
For this domain, 174 studies (51%) were judged to be at high risk of bias, while 73 (21%) 

were at unclear risk. Only 96 studies (28%) were considered to be at low risk of bias in patient 
selection. The three main issues with studies at high/unclear risk were: 
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1. Unclear data source and/or participants’ characteristics (age, sex, etc.) 
2. ASD and TD groups not being matched for age or sex 
3. Unclear inclusion/exclusion criteria 

 

Index Test - Modality 
For this domain, 47 studies (14%) were judged to be at high risk of bias, while 16 studies 

(5%) were considered to be at unclear risk. Also, this domain was not applicable (N/A) for 32 
studies (9%). Most facial recognition studies were at high risk for this domain due to not 
performing data preprocessing/cleaning. 
 

Index Test - AI Algorithm 
For this domain, 75 studies (22%) were judged to be at high risk of bias, primarily due to 

inappropriate validation methods. In contrast, 24 (7%) were considered to be at unclear risk due 
to insufficient reports of the characteristics of the classifying algorithm used. 
 

Reference Standard 
For this domain, 25 studies (7%) were judged to be at high risk of bias because they did not 

specify if participants were diagnosed using valid criteria or with the help of an expert. Also, 29 
studies (8%) mentioned that an expert diagnosed participants but did not specify which criteria 
were used for the diagnosis. 
 

Results of syntheses 

Synthesis based on modality 
Two hundred thirty-two studies provided sufficient data (sensitivity and specificity values or 

other diagnostic measures which allowed us to calculate them ourselves) for SCS analysis. 
Results of the meta-analyses are presented in SROC curves in Figure 5 and Table 2. 
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Figure 5 | Summary Receiver Operating Characteristics (SROC) curves for SCS analysis of 232 included studies. The 
confidence limits of the DOR are also shown in the plot. Individual study Se/Sp pairs are indicated on the plot as open 
circles with size proportional to the inverse of the variance of the study’s logarithm of DOR. For better visualization 
purposes, the size proportions of open circles are different between graphs. 
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TABLE 2 | Results of SCS meta-analyses for each modality. 

Modality # Studies N (ASD/TD) Sen (95% CI) Spe (95% CI) AUC (95% CI) +LR (95% CI) -LR (95% CI) I2 Tau2 
rs-fMRI 115 34283/32462 0.74 (0.71-0.77) 0.74 (0.71-0.76) 0.74 (0.72-0.76) 2.80 (0.38-20.50) 0.35 (0.05-2.61) 94 0.74 
S-MRI 30 4114/4667 0.74 (0.64-0.83) 0.71 (0.60-0.80) 0.73 (0.65-0.79) 2.55 (0.38-16.95) 0.36 (0.05-2.61) 92 1.21 
EEG 21 688/840 0.89 (0.82-0.93) 0.90 (0.84-0.94) 0.89 (0.85-0.93) 9.06 (0.49-166.29) 0.13 (0.01-2.12) 41 1.08 
DWI/DTI 7 379/387 0.74 (0.66-0.81) 0.75 (0.67-0.82) 0.74 (0.69-0.80) 2.96 (0.38-22.76) 0.35 (0.05-2.61) 50 0.24 
Eye Tracking 15 433/414 0.86 (0.76-0.92) 0.80 (0.69-0.88) 0.83 (0.76-0.88) 4.33 (0.40-46.41) 0.18 (0.01-2.34) 66 1.34 
Facial Recognition 6 6378/6368 0.90 (0.85-0.94) 0.89 (0.84-0.93) 0.90 (0.87-0.92) 8.53 (0.48-150.37) 0.11 (0.01-2.02) 95 0.43 
Multimodal 16 2354/2531 0.65 (0.48-0.79) 0.76 (0.59-0.87) 0.71 (0.59-0.80) 2.66 (0.38-18.54) 0.46 (0.08-2.59) 93 1.27 
Other Modalities 13 1758/1679 0.89 (0.88-0.91) 0.85 (0.83-0.87) 0.87 (0.86-0.88) 5.89 (0.43-80.2) 0.13 (0.01-2.13) 0 -0.06 
T-fMRI 9 375/311 0.79 (0.73-0.85) 0.79 (0.72-0.84) 0.79 (0.75-0.83) 3.72 (0.39-35.09) 0.26 (0.03-2.53) 32 0.17 

 

Synthesis based on the feature set 
In this synthesis, 232 studies that provided sensitivity and specificity were included. We 

performed statistical synthesis for the feature set used in the studies if there were at least five 
studies for the feature set. Data were presented as accuracy range in cases with fewer than five 
studies. See Multimedia Appendix 3: Results of SCS meta-analyses for the results of the 
syntheses. 
 

Results of meta-regression analysis 
All studies were included in the meta-regression analysis to investigate the effect of sample 

size on the reported accuracy measures. The results of this synthesis are presented in Figure 1. 
β1 was -0.002, indicating a negative correlation between the sample size of the studies and their 
accuracy result. This relationship was tested using a t-test, revealing that the correlation was 
statistically significant (p<.001). β0 was 81.0, while R2 was 0.003. 
 

Results of sensitivity analyses 
Thirty-six studies (5 modalities) provided sufficient data to be included in the sensitivity 

analyses. The results of the sensitivity analyses are presented in Table 3. 
 
TABLE 3 | Results of sensitivity analyses. 

Modality # Studies N (ASD/TD) Sen (95% CI) Spe (95% CI) AUC (95% CI) +LR (95% CI) -LR (95% CI) I2 Tau2 
rs-fMRI 8 602/566 0.74 (0.54-0.88) 0.70 (0.50-0.85) 0.72 (0.58-0.83) 2.50 (0.38-16.34) 0.37 (0.05-2.61) 89 1.50 
S-MRI 10 982/1420 0.86 (0.74-0.93) 0.84 (0.71-0.92) 0.85 (0.77-0.91) 5.34 (0.42-67.55) 0.16 (0.01-2.29) 83 1.08 
Eye Tracking 5 104/106 0.84 (0.57-0.95) 0.82 (0.54-0.95) 0.83 (0.65-0.93) 4.68 (0.41-53.44) 0.20 (0.02-2.4) 73 2.75 
Multimodal 8 405/373 0.82 (0.71-0.90) 0.90 (0.81-0.95) 0.87 (0.80-0.92) 8.42 (0.48-147.26) 0.19 (0.02-2.39) 53 0.79 
Other Modalities 5 124/132 0.91 (0.84-0.95) 0.89 (0.81-0.94) 0.90 (0.85-0.93) 8.33 (0.48-144.44) 0.10 (0.01-1.97) 0 -0.41 

 

Reporting biases 
The contour-enhanced funnel plot for the studies that reported both sensitivity and 

specificity is presented in Figure 6. 
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Figure 6 | Funnel plot of the included studies with the trim-and-fill method applied. Solid points indicate published 
studies, while white points indicate unpublished studies. 
 

Visual inspection of the plot revealed an asymmetrical plot, with missing studies in the lower-
left portion of the plot. Though the statistical test (p=.115) was not significant, it cannot rule out 
the presence of publication bias. 
 

Confidence in cumulative evidence 
Confidence in cumulative evidence was judged to be low for rs-fMRI, very low for S-MRI, 

high for EEG, moderate for eye tracking, moderate for T-fMRI, low for DWI/DTI, low for facial 
recognition, high for other modalities, and very low for multimodal results. 
 

Discussion 

Summary of main findings 
This research offers the most extensive review of the automated diagnosis or classification 

of ASD up to this date. In this systematic review, we screened 12567 records and included 344 
studies. For a summary report of the results, see Table 4. 
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TABLE 4 | Summary of main findings. 

Modality Number of 
studies 

Sample 
size 

Pooled measures* (95% CI) 
AUC (95% 

CI) 
Heterogeneity 

(I2) 
Confidence in cumulative 

evidence (GRADE) 

Sensitivity Specificity 

rs-fMRI 115 66745 0.74 (0.71-
0.77) 

0.74 (0.71-
0.76) 

0.74 (0.72-
0.76) 94% ⊗⊗⊕⊕ 

S-MRI 30 8781 0.74 (0.64-
0.83) 

0.71 (0.60-
0.80) 

0.73 (0.65-
0.79) 92% ⊗⊗⊗⊕ 

EEG 21 1528 0.89 (0.82-
0.93) 

0.90 (0.84-
0.94) 

0.89 (0.85-
0.93) 41% ⊕⊕⊕⊕ 

Eye tracking 15 847 0.86 (0.76-
0.92) 

0.80 (0.69-
0.88) 

0.83 (0.76-
0.88) 66% ⊗⊕⊕⊕ 

T-fMRI 9 686 0.79 (0.73-
0.85) 

0.79 (0.72-
0.84) 

0.79 (0.75-
0.83) 32% ⊗⊕⊕⊕ 

DWI/DTI 7 766 0.74 (0.66-
0.81) 

0.75 (0.67-
0.82) 

0.74 (0.69-
0.80) 50% ⊗⊗⊕⊕ 

Facial 
recognition 6 12746 0.90 (0.85-

0.94) 
0.89 (0.84-

0.93) 
0.90 (0.87-

0.92) 95% ⊗⊗⊕⊕ 

Other 
modalities 13 3437 0.89 (0.88-

0.91) 
0.85 (0.83-

0.87) 
0.87 (0.86-

0.88) 0% ⊕⊕⊕⊕ 

Multimodal 16 4885 0.65 (0.48-
0.79) 

0.76 (0.59-
0.87) 

0.71 (0.59-
0.80) 93% ⊗⊗⊗⊕ 

* Estimated based on split component synthesis (SCS) meta-analysis. 
** ⊗⊗⊗⊕: Very low certainty, ⊗⊗⊕⊕: Low certainty, ⊗⊕⊕⊕: Moderate certainty, ⊕⊕⊕⊕: High certainty 

 
As our results suggest, EEG data may be the most reliable source for establishing models 

for automated diagnosis or classification of ASD. However, it should be noted that most of the 
included studies on EEG used in-house datasets, which are usually more homogenous in their 
core compared to the studies on other modalities such as rs-fMRI and S-MRI, where most studies 
used the more heterogenous publicly available datasets like ABIDE. Nevertheless, we encourage 
future research to work more on EEG data, considering the limited number of studies currently 
available for this modality. Unfortunately, at the moment, no large publicly available dataset exists 
for EEG of ASD patients, which in turn makes future research on this modality less feasible. 

Another finding observed in our results was the high accuracy of the studies that utilized 
facial recognition models. Although the results of these studies look promising, one should be 
careful in interpreting these results because most of the studies on this modality used the Kaggle 
dataset, where most of the images are downloaded from websites and Facebook pages related 
to autism and thus, might not be considered a very reliable source of data. 

We also found other interesting results across the included studies. These results are 
presented in Highlight box 1. 
 
 
 
 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 29, 2023. ; https://doi.org/10.1101/2021.06.29.21254249doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.29.21254249
http://creativecommons.org/licenses/by/4.0/


 

 22 

HIGHLIGHT BOX 1 | Results of highlighted research. DNN: Deep Neural Network, DWI/DTI: Diffusion-Weighted 
Imaging/Diffusion Tensor Imaging, EEG: Electroencephalography, FC: Functional Connectivity, FS: Feature Selection, 
ROI: Region of Interest, rs-fMRI: Resting-state functional Magnetic Resonance Imaging, S-MRI: Structural Magnetic 
Resonance Imaging. 

The study of A Ronicko 2020 [85] found that the classification of ASD using rs-fMRI data improves with full correlation FC compared to partial correlation. 
 
The study of Abdolzadegan 2020 [219] on EEG data found that the use of the DBSCAN algorithm for artifact removal significantly improves classification results. 
 
The study of Ahmed 2020 [199] proposed a single-volume image generator that can produce 2D three-channel images from a 4D fMRI image. They proposed 
that the generated 2D images represent activated brain regions during the performed task by the patients promptly. 
 
The study of Aslam 2021 [252] proposed an EEG-based ASD classification processor that targets a patch-form factor sensor that may be used for long time 
monitoring in a wearable environment. 
 
The study of Cancino 2021 [103] evaluated the impact on the performance of a given model when using different preprocessing strategies on rs-fMRI, namely 
global signal regression (GSR), bandpass filtering (BPF), BPF + GSR, and none. They concluded that the best preprocessing strategy depends on the 
classification model used. 
 
The study of Demirhan 2018 [311] concluded that when using S-MRI data, the minimal-Redundancy Maximal-Relevance (mRMR) algorithm was more successful 
in FS than the ReliefF algorithm when the selected number of the features was the same. 
 
The study of Eill 2019 [381] found that rs-fMRI data was significantly more informative than S-MRI and DWI/DTI data for the classification of ASD and non-ASD 
participants. 
 
The study of Fan 2021 [302] proposed a novel federated deep learning framework for multi-site 3D brain MRI images that aggregates learned features from 
different sites without transferring raw data, ensuring the security of subject information, while also holding to high accuracy performance. 
 
The study of Ferrari 2020 [329] introduced a new workflow to deal with confounders and outliers in medical data which allows for finding generalizable patterns 
even if the dataset is limited. 
 
The study of Georges 2020 [341] investigated a large pool of existing FS techniques for boosting feature reproducibility within a dataset. They introduced FS-
Select, a method capable of identifying the best FS method to discover the most reproducible and reliable subset of features. 
 
The study of Graa 2019 [307] introduced a multi-view learning-based data proliferator that enables the classification of imbalanced multi-view representations 
by generating synthetic data for each view to handle imbalanced data and mapping all original and proliferated views into a shared subspace where their 
distributions are aligned for the target classification task. 
 
The study of Gupta 2020 [129] proposed a new measure called ambivert degree that considers the node’s degree as well as connection weights in rs-fMRI data 
to identify nodes with both high degree and high connection weights as hubs, leading to significantly higher classification accuracy with significantly fewer 
trainable weights compared to using FC features. 
 
In the study of Hu 2020 [102], an interpreting method was proposed which could explain a trained FCNN model with a precise linear formula for each input 
instance and identify decision features of the model which contributed most to the classification task. 
 
In the study of Huang 2019 [65], a novel sparse low-rank constrained multi-templates data-based method for ASD diagnosis or classification using rs-fMRI data 
was proposed, which simultaneously performs FS and adaptive local structure learning. 
 
In the study of Huang 2019 [71], novel multiple network-based frameworks for rs-fMRI modality were introduced to enhance the representation of FC networks 
by fusing the common and complementary information conveyed in multiple networks. 
 
The study of Huang 2021 [174] found that using causal connectivities for FC data improves diagnostic accuracy significantly compared with using correlations 
and partial correlations. 
 
The study of Jiao 2020 [87] utilized capsule networks to build classifiers for classifying ASD participants and stratifying them into groups with distinct FC patterns. 
 
In the study of Jun 2019 [162], a novel method was proposed that directly models the regional temporal BOLD fluctuations in a stochastic manner and estimates 
the dynamic characteristics in the form of likelihoods. They also transformed the learned weight coefficients of the model into activation patterns, from which it 
was possible to identify the ROIs that are highly associated with ASD and TD groups. 
 
In the study of Karampasi 2020 [193], they compared classification performance using different FS methods, namely Local Learning-based Clustering FS 
(LLCFS), Infinite FS (InfFS), and minimal-Redundancy Maximal-Relevance (mRMR) and Laplacian Score. They concluded that the best FS method depends 
highly on the classification model. They also introduced two novel features, namely the Haralick texture features and the Kullback-Leibler divergence. 
 
In the study of Kazeminejad 2020 [150], graph theory was used to extract the positive correlation matrix (only the positive values of the original correlation matrix), 
the absolute value of the correlation matrix, and the anticorrelation matrix (only the negative correlation values). Following implementing a model on those data, 
they concluded that graph features extracted from the anti-correlation matrix led to the highest accuracy, suggesting that anti-correlation should not be discarded 
as they may include useful information that would aid the classification task. 
 
The study of Kernbach 2018 [108] proposed a transdiagnostic hierarchical Bayesian modeling framework for rs-fMRI data which combined Indian Buffet 
Processes and Latent Dirichlet Allocation to find shared endo-phenotypes of default mode dysfunction in attention deficit hyperactivity disorder (ADHD) and ASD. 
 
The study of Leming 2021 [301] introduces a novel technique of deriving symmetric similarity matrices from regional histograms of grey matter volumes estimated 
from S-MRI as features. 
 
In Li 2017 (363) study, a new approach for estimating FCs by remodeling Pearson's correlations as an optimization problem was suggested, which provided a 
way to incorporate biological/physical priors into the FCs. 
 
The study of Li 2020 [62] proposed a federated learning approach, where a decentralized iterative optimization algorithm is implemented and shared local model 
weights are altered by a randomization mechanism, ensuring that private information cannot be recovered from the model gradients or weights. 
 
The study of Li 2021 [346] designed novel ROI-aware graph convolutional layers for fMRI data, which contained ROI-selection pooling layers that highlight salient 
ROIs making it possible to infer which ROIs were important for prediction. 
 
The study of Lu 2021 [391] for the first time integrated genomic data with rs-fMRI data for the classification of ASD. 
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The study of Ma 2021 [159] found that phase synchrony-based classification models of fMRI data outperformed static FC-based models. 
 
The study of Manoharan 2021 [222] on EEG data found that cosine metric and FAN (fixed amount of nearest neighbors) outperformed Euclidean metric and 
threshold respectively as the distance metric and the neighborhood selection strategy. 
 
The study of Naghashzadeh 2021 [156] exploited the transfer function perturbation (TFP) method to estimate the instantaneous phase and envelope features 
from rs-fMRI data for the classification task. They concluded that phase features had a significantly lower correlation than envelope features. 
 
The study of Okamoto 2021 [111] implemented a model based on invariant information clustering (IIC) which improved the performance of the leave-one-site-
out cross-validation technique. 
 
In the study of Payabvash 2019 [387], tract-based spatial statistics (TBSS) were used for voxel-wise comparison and co-registration of edge density (ED) maps 
in addition to conventional DTI metrics, resulting in an improvement of model predictive power. 
 
The study of Rabany 2019 [173] utilized dynamic FC measures from rs-fMRI data in a model to classify and study the overlap in neuropathology between 
schizophrenia and ASD. 
 
The study of Reiter 2021 [120] used different ASD sample compositions stratified by gender and severity score for the classification task. Their findings suggested 
that model performance varies significantly with the sample composition. 
 
The study of Sadiq 2022 [196] used the non-oscillatory brain connectivity (NOC) method instead of Pearson’s correlation coefficients (PCC) to distinguish 
subtypes of ASD (namely autistic disorder, Asperger’s disorder, and Pervasive developmental disorder-not other specified) from healthy controls. They found 
that the use of NOC measures significantly improved the performance of the model compared to using PCC. 
 
In the study of Sartipi 2018 [186], ROIs from rs-fMRI data were decomposed using the double-density dual-tree discrete wavelet transform into time-frequency 
sub-bands and the generalized autoregressive conditional heteroscedasticity (GARCH) model was used for feature extraction from those sub-bands. Extracted 
features were used in a classification model and achieved satisfactory results. 
 
The study of Shahamat 2020 [315] proposed a novel genetic algorithm-based brain masking (GABM) method for visualization of the knowledgeable regions 
used by a 3D-CNN trained on the fMRI FC data. 
 
The study of Shi 2020 [128] proposed a novel FS method based on the minimum spanning tree (MST) to seek neuromarkers from rs-fMRI data, which significantly 
improved the performance of the classification task. 
 
The study of Soussia 2018 [340] used high- and low-order relationships between morphological regions in the S-MRI data as features instead of the typical brain 
connectomes and found that they improve classification performance. 
 
In the study of Xing 2018 [112], a new convolutional neural network with element-wise filters (CNN-EW) for FC data was proposed that gives a unique weight to 
each edge of the brain network which may reflect the topological structure information more realistically. 
 
The study of Yang 2019 [86] implemented several classical machine learning classifiers (such as support vector machines, logistic regression, and ridge) on 
seven different brain atlases (CC400, CC200, AAL, HOA, EZ, TT, and Dosenbach) for rs-fMRI data and found that the most promising brain atlas was Craddock 
400 (CC400). 
 
The study of Yang 2020 [81] implemented DNNs with four different hidden layer configurations using the four different pipeline datasets from the ABIDE repository 
(CPAC, CCS, DPARSF, and NIAK). Their results indicated that the dataset preprocessed by using the CPAC (Configurable Pipeline for the Analysis of 
Connectomes) pipeline achieved the highest accuracy, recall, and precision. 
 
In the study of Yang 2021 [337], three new models (2D CAM, 3D CAM, and 3D Grad-CAM) were proposed which help with the interpretability of the classification 
task on S-MRI data. 
 
The study of Yao 2019 [144] proposed a multi-scale triplet graph convolutional network (MTGCN) for rs-fMRI data that utilizes multiple atlases to partition the 
brain into ROIs and also takes into account the underlying high-order (e.g., triplet) association among subjects. 
 
In the study of Zhang 2020 [202] fixel-based analysis (FBA) method was implemented on DTI data for the first time to classify ASD participants. 
 
The study of Zhang 2020 [334] introduced path signature (PS) features for rs-fMRI data, which can capture the dynamic longitudinal information of the brain 
development for ASD Identification. 
 
Study of Zhao 2018 [182] proposed a multi-level, high-order FC network representation as an alternative to the pairwise correlation between ROIs in fMRI data 
that can capture complex interactions among brain regions. 
 
In the study of Zhao 2020 [158], a central-moment method was proposed to extract temporal-invariance properties contained in either low- or high-order dynamic 
FC networks. 
 
In the study of Zhuang 2019 [89], invertible networks were used to help interpret the classification model’s decisions on fMRI data, presenting new insights into 
model interpretation techniques. 

 
In general, we believe state-of-the-art AI algorithms might be used to ascertain diagnosis 

by differentiating ASD from other conditions with similar symptoms. These tools might also be 
used as a screening test before the actual diagnosis by the clinician. Yet again, we do not suggest 
using these tools as the replacement for a clinician’s judgment, as stakeholders would prefer a 
simple explanation for how an algorithm arrives at its classification of a particular case. 
Unfortunately, the decision-making process of these algorithms happens in a “black box” manner. 
We found little effort in the included studies to explain the features their algorithms specifically 
used to get to their decisions and the justifiable reasons behind them. Thus, we suggest future 
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studies try to present saliency maps or class activation maps (CAM) to visualize the features used 
by their models to classify ASD individuals and to what extent those decisions are in line with the 
available clinical knowledge. Some other methods to address this issue are provided elsewhere 
[397]–[402]. The inappropriate use of feature reduction methods in the literature was also an 
issue. It must be noted that any feature reduction steps should not be applied to test data as they 
may induce overfitting [403]. Very few studies seem to consider this issue. Some other critical 
challenges of using automated tools to achieve clinical impact are highlighted in the paper of Kelly 
et al. in 2019 [23]. Regrettably, very few attempts to address these challenges were observed in 
the included studies. Most notably, a considerable proportion of the studies reported their results 
only in one measure (accuracy) while not providing other essential measures such as sensitivity 
and specificity. Another primary concern with these studies is the cost and convenience of the 
modalities used. A simple brain MRI could cost between $1600 to $8400 in the U.S. [404], while 
an fMRI scan could cost the patient around $3500 to $5200 [405]. An EEG usually costs lower 
than MRI, and fMRI scans, with an estimated range of $200 to $700 for a standard EEG, but if 
extended monitoring is required, the cost could go as high as $3000 [406]. However, ASD patient 
cooperation in performing an EEG is often poor, requiring sedation, which decreases the 
convenience of the procedure [407]. 

Our results also indicate that overfitting is a serious issue in the included studies, as the 
meta-regression revealed that sample size was significantly correlated with accuracy results 
across the studies. A recent paper by Ying 2019 [408] offers a variety of solutions to address the 
overfitting problem. These include the early-stopping strategy, network-reduction strategy, data 
expansion, and use of regularization terms and dropout technique. Also, linear classifiers are less 
prone to overfitting than non-linear classifiers due to their lower complexity [116]. Such strategies 
should be strongly considered in future studies, especially with small sample sizes. 

A significant flaw in the literature was that most studies relied on only two class labels (ASD 
and Non-ASD) for data labeling, assuming that both cases and controls are well-defined entities. 
This approach ignores that ASD can be broken down into subgroups such as typical autism, 
low/high function autism, idiopathic autism, and monogenic autism. This approach also ignores 
that the diagnostic criteria for ASD are composed of behavioral symptoms that may overlap with 
other mental disorders, such as attention deficit hyperactivity disorder (ADHD). 
 

Overall completeness and applicability 
There were no significant concerns regarding completeness and applicability in this review. 

Assessments of indirectness using the GRADE tool confirmed this. 
 

Quality of the evidence 
Unfortunately, the currently available evidence is rife with bias, especially in the patient 

selection domain. Future studies should be more accurate in their methods to gain robust results. 
Also, we could not include a considerable proportion of the studies in meta-analyses, as these 
studies only reported one single evaluation metric (mainly accuracy). We tried contacting the 
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authors for additional data but were unsuccessful in most cases. Including those studies could 
have had a significant effect on our results. 
 

Potential biases in the review process 
There was a considerable risk of publication bias, which downgraded our results' 

confidence. 
 

Implications for research 
Our recommendations for future research are summarized in Highlight box 2. The most 

prominent weakness in the literature was the need for better methodological and reporting quality. 
For example, in most studies, we couldn’t assess the risk of bias for at least one domain simply 
due to inadequate reporting. We strongly suggest that future researchers consider using standard 
reporting guidelines such as MINIMAR [409], CLAIM [410], and STARD-AI [411], which are 
specifically developed for reporting AI studies in healthcare. 

We also detected a similar pattern across the literature: most studies implemented an AI 
algorithm on the data of ASD individuals and reported the results of the classification task, but 
very few studies tried to explain what features their algorithms use or how justifiable the reasons 
behind those features used for the classification task. As discussed above, providing a reasonable 
justification behind the algorithm's decisions is as important as its results for such a technology 
to enter the clinical setting. Future studies should consider addressing this issue. Also, future 
studies should consider deriving more fair decisions from their AI models by (1) pre-processing: 
transforming the original dataset so that the underlying discrimination towards some groups is 
removed; (2) in-processing: adding a penalization term in the objective function or imposing a 
fairness-relevant constraint; and (3) post-processing: further recomputing the results from 
predictors to improve fairness. More on this subject could be found elsewhere [412]. 

Future studies must also consider the overfitting problem by addressing data-level and 
model-level issues. This includes using bigger training data, dropout technique, L1/L2 
regularization, and batch normalization [413]. The results of the studies must also be reported in 
more than just one evaluation metric (sensitivity, specificity, recall, precision, etc.). 

Another prominent issue across the literature was the use of datasets that do not reflect the 
biological diversity of patients optimally, with gender unbalance being the most frequent example 
of it. Current publicly available datasets contain primarily male patients, which may result in male-
biased models. A similar pattern was observed for participants’ functioning, where most data 
came only from the high-functioning participants. Thus, the development of more balanced 
datasets seems to be a necessity. An ideal dataset should be Findable, Accessible, Interoperable, 
and Reusable (FAIR) [414]. More on the requirements for an ideal medical imaging dataset in the 
era of AI, including the essential metadata required, is discussed elsewhere [415]. 

We also encourage future researchers to evaluate and compare the biomarkers used to 
differentiate cases from controls by different models within the same modality, as such data could 
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be of enormous value in finding markers specific to ASD patients and also help illuminate the 
“black-box” decision-making nature of these models. 

Studies should also try to break ASD and non-ASD groups into smaller subgroups like “mild 
autism” and “severe autism” or “low function autism” and “high function autism.” 

Finally, a gap in the knowledge is human-machine collaboration. As AI algorithms can 
complement, but not replace, physicians in most aspects of medicine, future models should be 
studied and implemented as an integral part of a complete healthcare system. Indeed, scientists, 
physicians, patients, regulatory agencies, and health insurance providers need to create a 
healthcare system that can learn and adapt as it develops [416]. At the same time, AI researchers 
should recognize the limits of their models to prevent their overuse and misuse, which could 
otherwise sow distrust and cause patient harm [417]. 
 
HIGHLIGHT BOX 2 | Recommendations for future research. 

• Use standard reporting guidelines (such as MINIMAR CLAIM, and STARD-AI). 
• Use saliency maps, class activation maps (CAM), invertible networks, or other methods of model interpretation to avoid black-box dilemmas in AI 

modeling. 
• Use the early-stopping strategy, network-reduction strategy, data expansion, regularization terms, dropout technique, or other techniques to avoid 

model overfitting on data. 
• Report evaluation performance in more than just one metric (e.g., sensitivity, specificity, positive predictive value, etc.). 
• Use datasets that are balanced for the most important potential confounders (e.g., gender, age, IQ, ASD subtype, etc.). 
• Develop biologically diverse datasets to address gender unbalance and function unbalance problems of current publicly available datasets (e.g., 

ABIDE). 
• Develop publicly available datasets (like ABIDE for fMRI) for other modalities, especially EEG data as its results are promising. 
• Avoid aggregating data from different subtypes of ASD into one general “ASD class”. 
• Evaluate the model performance on a separate dataset unseen to the model (i.e., test dataset). 
• Avoid applying feature reduction methods to test data as it may induce overfitting. 
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