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Abstract 

Prenatal, perinatal, and postnatal factors have been shown to shape neurobiological 

functioning and alter the risk for mental disorders later in life. The gut microbiome is 

established early in life, and interacts with the brain via the brain-immune-gut axis. However, 

little is known about how the microbiome relates to early-life cognitive functioning in children. 

The present study, where the fecal microbiome in a cohort of 380 children was characterized 

using 16s rDNA and metagenomic sequencing aimed to investigate the association between 

the microbiota and cognitive functioning of children at the age of 45 months measured with 

the Wechsler Preschool and Primary Scale of  Intelligence (WPPSI-III).  

Overall the microbiome profile showed a significant association with cognitive functioning. A 

strong correlation was found between cognitive functioning and the relative abundance of an 

unidentified genus of the family Enterobacteriaceae. Follow-up mediation analyses revealed 

significant mediation effects of the level of this genus on the associations of maternal 

smoking during pregnancy and current maternal smoking with cognitive functioning. 

Metagenomic sequencing of a subset of these samples indicated that the identified genus 

was most closely related to Enterobacter asburiae. 

Our results indicate that alteration of the gut microflora is associated with cognitive 

functioning in childhood.  Furthermore, they suggest that the altered microflora might interact 

with other environmental factors such as maternal cigarette smoking by acting as a mediator 

between those factors and child cognitive function. Interventions directed at altering the 

microbiome should be explored in terms of improving cognitive functioning in young children.  
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Introduction  

The microbiome, a collection of genes of the multitude of microorganisms living in and on the 

human body, has been shown to play a crucial role in somatic health (1,2). Recently, its role 

in the etiology of mental disorders has been documented by a large body of research. The 

gut microflora has been demonstrated to interact with the brain (gut-brain axis), via neural 

(vagus nerve), endocrine, immune and humoral (cytokines, short-chain and long-chain fatty 

acids) reciprocal communication routes (3-5). Moreover, it has been implicated in mental 

health and has been linked to disorders such as schizophrenia, bipolar disorder, attention 

deficit hyperactivity disorder and autism spectrum disorders (6-8). Modern sequencing 

approaches make it possible to investigate these dense microbial populations, such as those 

prevalent in the human gut (1). It has been found that the microbial composition varies 

between both individuals (9,10) and different body sites (1). The human microbiome 

undergoes major changes in the first 1–3 years of life (11,12) but then remains relatively 

stable on an individual level (9,13,14). However, it has yet to be clarified whether bacterial 

colonization of the human body starts in utero or during birth (15). During the birth process, 

infants are exposed to a variety of maternal and environmental microbiota. The microbiome 

can be influenced by various factors including the mode of delivery (16), breast vs. formula 

feeding (14,17) and nutrition in general as well as the use of medication, especially 

antibiotics (18-20). 

While the first few years of life are crucial for the establishment of the microbiome, this 

period is also a critical phase for the development of neurobiological functioning and is likely 

to represent a critical phase in the etiology of neurodevelopmental psychiatric disorders (21). 

Cognitive functioning in children highly reflects healthy neurodevelopment and is related to a 

broad range of mental health outcomes (22,23). Several animal studies have already 

demonstrated an interaction between the gut microbiome and cognitive functioning (24-26). 

Studies have also linked alterations in the microbiome composition to cognitive functioning in 

humans (27). It was recently reported that the microbiome of children measured at one year 
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of age correlated with cognitive functioning and brain volume at age one and two (28) an 

association which has been confirmed in other studies (29-31). However, only a few studies 

have discussed the relationship between the microbiome and cognitive functioning in older 

infants and young children, where mental health and cognitive outcomes are already more 

advanced and easier to evaluate. Moreover the pre-school time period between three and 

five years of age is of particular interest due to its importance in subsequent learning and 

cognitive development (32). 

In young children, many factors can contribute to changes in the microbiome and might 

subsequently have an impact on cognition later in life. For example, exposure to antibiotics 

—a major modulator of the microflora— in the first six months of life has been linked to lower 

cognitive abilities at 11 years of age (33). Additional factors that have been shown to affect 

the microflora during infancy including mode of delivery (Caesarean section vs. vaginal 

birth), type of feeding (breastfeeding vs. formula), gestational age, diet and socioeconomic 

status (34-36). Maternal smoking is another major neurodevelopmental risk factor during 

pregnancy, which has already been linked to reduced birth weight in this cohort (37) and in 

others (38). However, the effect of these factors on the microbiome and on cognitive 

functioning in the pre-school aged children is yet to be explored (39). 

In the present study, we aimed to I) investigate the link between cognitive functioning and 

the intestinal microbiome at the age of 45 months, II) identify particular bacteria species 

associated with cognitive performance. III.) we tested whether the most strongly associated 

covariate (smoking during pregnancy) influenced this association. 

Methods 

Study population          

Subjects were part of an ongoing longitudinal study on pre-, peri-, and postnatal stress and 

offspring development and health (Pre-, Peri-, and Postnatal Stress: Epigenetic Impact on 
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Depression; POSEIDON) (40-42). In total, 410 pregnant women were enrolled in the study 

around four to eight weeks prior to delivery. Inclusion criteria for the mothers were: age 16–

45 years, German-speaking, and being the child’s primary caregiver. Exclusion criteria were 

a hepatitis B, or C or human immunodeficiency virus infection, current inpatient treatment 

due to a diagnosis of a psychiatric disorder, a lifetime diagnosis of schizophrenia or 

psychotic disorder, or a substance dependency other than nicotine during pregnancy. For 

children, the exclusion criteria were birth before a gestational age of 30 weeks, birth weight 

lower than 1,500 grams, or multiple births, as well as any congenital disease, malformation, 

or chromosomal abnormality. The study was registered in the German Clinical Trials 

Register (DRKS00006338), approved by the Ethics Committee of the Medical Faculty 

Mannheim of the University of Heidelberg and conducted in accordance with the Declaration 

of Helsinki. All families provided written informed consent. 

So far, four waves of assessments have been carried out: T1 (during the third trimester of 

pregnancy), T2 (between day 1–3 after birth), T3 (at the age of 6 months), and T4 (at the 

age of 45 months). At T4, of the original 410 families, 302 remained, and the dropouts were 

replaced with 101 newly recruited families. For the newly recruited families, pre-, peri-, and 

early postnatal factors were coded based on parental reports or medical records. Details of 

the assessment procedure have been described previously elsewhere (42-44). 

Assessment included the following variables used in the present study: smoking during 

pregnancy assessed via self-report, Caesarean section (C-section) or natural birth, 

breastfeeding, age of the mother, birth weight and gestational age of the child. Measures at 

T4 used in the present study included the child’s age and BMI, use of antibiotic medication 

during the last 6 months, current maternal smoking, multilingual upbringing, and the years of 

maternal education as a marker of socioeconomic status (45).  

Cognitive functioning was assessed using the Wechsler Preschool and Primary Scale of 

Intelligence - Third Edition (WPPSI-III) (46) at T4, the same time point at which stool 

sampling occurred. Five subtests of the WPPSI-III were conducted: the core subtests 

Receptive Vocabulary, Information, Block Design, and Object Assembly, and the 
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supplementary subtest Picture Naming. For all subtests, the raw scores were converted to 

standardized scores based on the child’s exact age. Full-scale IQ (FIQ) score was calculated 

from the four core subtests, verbal IQ (VIQ) from the Receptive Vocabulary and Information 

subtests, performance IQ (PIQ) from the Block Design and Object Assembly subtests, and 

the general language composite (GLC) from the Receptive Vocabulary and Picture Naming 

subtests. Subjects were included in the analysis if values were available for at least one of 

the WPPSI-III scales, resulting in the exclusion of 21 subjects. Prior to the statistical 

analyses, the test documentation was reevaluated as an additional quality control step. Data 

points for each subtest were excluded if, for example an apparent lack of motivation or lack 

of understanding the instructions was evident, which resulted in the exclusion of additional 

14 subjects.  Five more samples were excluded due to irregularities in shipping or handling 

(e.g. delayed shipping, extended storage at home before shipping).  

Microbiome analysis 

Sampling and storage 

Stool samples were collected by the parents at the age of 45 months (T4).  The samples 

were collected using a standard stool sample kit (Sarstedt, Nuembrecht, Germany) on the 

days prior to or the day of the T4 appointment and temporarily stored in a home refrigerator 

until being delivered at ambient temperature to the lab on the day of the appointment. In 

circumstances when this was not achievable, stool samples were sent to the lab at ambient 

temperature by mail service, which usually took 1-2 days. The effect of the shipment on the 

microflora was analyzed and taken into account. Upon arrival, stool samples were frozen at -

80°C and stored in the Biobank of Psychiatric Diseases Mannheim (BioPsy) (47) until further 

processing. 
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DNA extraction 

Fecal samples were thawed and an aliquot of 100 mg was taken to extract genomic DNA 

using the ZymoBIOMICS™ 96 MagBead DNA Kit according to the manufacturer’s protocol. 

The protocol included a bead-beating step to enable complete homogenization/disruption of 

the microbial cell walls. ZymoBIOMICS™ Microbial Community Standard (Zymo Research 

Europe GmbH) was included in the DNA extraction process to ensure an accurate 

representation of microbial communities in samples (48) and to control for potential 

environmental contaminants. DNA quantity and quality were determined by Thermo 

Scientific NanoDrop™ 1000 Spectrophotometer and normalized for further analysis to 5 

ng/µL. 

Characterization of the Microbiome 

Library preparation 

The DNA was amplified using primers directed at conserved bacterial 16S ribosomal 

sequences in the v3–v4 region, and 380 individually indexed (Nextera XT, Illumina, San 

Diego, CA) libraries were generated following the Illumina 16S metagenomic library 

preparation protocol. Each library was quantified using Qubit (Life Technologies) and 

concentration was normalized to 4�nM. A 5�μl aliquot of each library was pooled and 

denatured using 0.2�N NaOH and subsequently diluted to 10�pM using HT1 (hybridization 

buffer) supplied by Illumina (San Diego, CA). Prior to loading, the library was spiked with a 

10% 20�pM PhiX control. Sequencing was performed on the MiSeq Illumina sequencing 

platform using a 2 × 300 PE sequencing reagent kit (Cat # MS-102-3003 Illumina, San 

Diego, CA). 

 

Sequence Analysis  

Raw paired-end reads were first de-multiplexed using 5′ index information, and adapter 

sequences were trimmed off prior access. Sequence reads were analyzed separately using 
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the QIIME 2 (v 2018.11) platform (49). In addition to filtering out any remaining PhiX 

contaminants and chimeric sequences, the DADA-q2 plugin (50) was utilized to remove low-

quality reads. All unique sequences were collected into a feature table, which was filtered to 

remove low-abundance features using the feature-table q2 plugin (51). Next, multiple 

sequence alignment was performed by employing the MAFFT alignment plugin (52) followed 

by computing a phylogenetic tree using the FastTree program (53). Sampling depth was set 

to 2263 sequence reads. Phylogenetic diversity analyses utilized this phylogenetic tree in 

order to calculate the following alpha diversity matrices: number of observed species, 

Shannon’s and Faith’s phylogenetic diversity and Pileou’s Evenness. To explore the 

bacterial composition of the samples, taxonomy was assigned to sequences using a pre-

trained naive Bayes classifier (54) and q2-feature-classifier plugin 

(https://github.com/qiime2/q2-feature-classifier). This classifier was trained on Greengenes 

v13_8 99% OTUs, where the sequences have been trimmed to only include v3–v4 regions 

of the 16S rRNA gene bound by Illumina primer pairs. Analyses of taxa focused on the level 

of genera since that is the level that can be determined with the highest degree of certainty 

with this method (55). Prior to analysis, the number of counts for each genus were log-

transformed using natural logarithm after adding 1, so that the log of 0 counts would read as 

0 instead of missing.  

 

Metagenomic Shotgun Sequencing   

A subset of 39 samples and 1 blank were selected for metagenomic sequencing. The, 

selection was based on a broad distribution of WPSSI-III full scale IQ score including 

samples with both low or high scores. After exclusion for invalid WPSSI values or 

irregularities in shipping or handling, data from 33 subjects was used for statistical analysis 

(WPSSI-III full scale IQ: mean = 98.67; SD = 14.27).  Aliquots of 1ng of extracted fecal DNA 

from the selected samples were used to generate paired-end metagenomic libraries using 

Illumina Nextera XT Low Input DNA kit following the manufacturer's instructions (Nextera XT 

DNA Library Prep Kit Reference Guide (15031942)). The concentration of each library was 
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measured by using Quibit and normalized to 4nM. Libraries were then sequenced using the 

Illumina HiSeq 4000, using the sequencing core facility at University of Maryland. Sequence 

reads with homology to human sequences were removed according to the selected 

downstream pipeline. The remaining sequence reads were then mapped to microbial 

databases employing Centrifuge (v1.0.3) (56) as previously described. Centrifuge uses a 

novel indexing scheme based on the Burrows-Wheeler transform (BWT) and the Ferragina-

Manzini (FM) index optimized specifically for the metagenomic classification problem. 

Centrifuge output was visualized using the R-based application Pavian 

(https://ccb.jhu.edu/software/pavian/) (57).  

 

Statistical Analyses 

Restricted maximum likelihood (REML) models were computed to assess the association of 

the overall microbiome profile with the cognition outcomes as implemented in the software 

package omic-data-based complex trait analysis (OSCA v.0.45) (58). This approach applies 

REML to assess the overall association of the microbiome profile with the tested variables, 

which is expressed as the share of explained variance (59). Corresponding 95% confidence 

intervals (CI) were calculated with bootstrapping as implemented in FIESTA v1.0 (60). 

Further analyses were conducted with the R open-source environment for statistical 

computation and graphics (v3.5.1) (R Development Core Team, 2013). Regression analyses 

were used to explore bivariate associations between the WPPSI-III full-scale IQ score and 

alpha diversity measures and the relative abundance of specific genera. Standardized betas 

(ß) and their 95% confidence intervals (CI) are reported. The resulting p values were 

corrected for multiple comparisons (q-values) using Bonferroni correction for the number of 

tested diversity measures (q = 0.05/4 = 0.0125) or genera (q = 0.05/82 = 6.1×10−4). Initially, 

regressions were computed without controlling for covariates. Subsequently, significant 

(q<.05) bivariate associations of diversity measures or specific genera with the WPPSI-III 

FIQ score were explored by adding potential  confounding variables as covariates in the 
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regression model if they were associated with the respective diversity measure or genus at 

the nominal level (p<.05): maternal age, sex of the child, infant feeding (formula vs. breast), 

gestational age, birth weight, antibiotic exposure during the 6 months prior to T4 (no vs. yes), 

type of birth (vaginal delivery vs. C-section), maternal cigarette smoking during pregnancy 

(none vs. any), current maternal cigarette smoking at T4 (none vs. any), child age at T4, 

child BMI at T4, multilingual upbringing at T4, level of maternal education (in years of 

education), and shipment vs. delivery by parents. Additional regression analyses were 

performed to test the association between the taxa identified by metagenomic sequencing 

and the WPPSI-III subscales. Subjects with missing data for a WPPSI-III scale or covariates 

were excluded from the respective analyses (pairwise deletion). 

 

Mediation analysis 

Regression analysis was used to investigate the hypothesis that the occurrence of an 

identified taxa mediates the effect of the most strongly associated covariates (i.e. smoking 

during pregnancy or current maternal smoking, see results) on the WPPSI-III full-scale IQ 

score, using quasi-Bayesian Monte Carlo simulation with 10,000 simulations as implemented 

in the mediation package. 

Results 

Study population 

Microflora profiling was successful in 364 out of 380 samples (Figure 1). For the subsequent 

statistical analyses one subject with an outlying gestational age, 35 subjects with a lack of 

valid measures for any of the WPPSI-III scales, and 5 with irregularities in shipping/storage 

were excluded, resulting in a total of 323 subjects. For the corresponding families, 
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demographics (maternal age, child age, sex), pre-, peri- and postnatal factors (gestational 

age, birth weight, smoking, C-section, breastfeeding, maternal education, multilingual 

upbringing, child’s BMI, antibiotics use), and cognition (WPSSI-III FIQ, VIQ, PIQ, GLC) are 

described in Table 1. 

Variance in cognition explained by the microbiome  

The variance explained in the WPPSI-III scales by the overall microbiome was characterized 

by restricted maximum likelihood (REML) models. These analyses showed that a significant 

part of the variance of WPPSI-III FIQ (variance explained = 13.3%, p=.0010) and the 

subscales WPPSI-III VIQ and WPPSI-III GLC (variance explained = 15.8%; 10.3%, 

p=.000027; p=.0014 respectively) but not of WPPSI-III PIQ (0.5%; p = .46) was explained by 

variation in the bacterial microflora (for details see Table 2). 

Significant negative correlations were observed between alpha diversity metrics and 

cognition As shown in Table 3, the associations of WPPSI-III FIQ with Faith's phylogenetic 

diversity index remained significant after correction for multiple testing. We observed 

significant (p<0.05) negative correlations of antibiotics use with Shannon diversity index and 

Pileou’s Evenness and of gestation age with Shannon diversity index and number of 

observed species, and a positive correlation of C-section with Faith's phylogenetic diversity 

index (see Supplementary Figure S1). When we adjusted for these covariates in the 

association analyses with the respective diversity measures, we observed similar results, 

however the associations did not remain significant after correction for multiple testing 

(Supplementary Table S2). 

The phylogenetic analysis was capable of identifying 82 unique genera. As shown in Figures 

2 and 3, relative abundance of one genus - an unidentified genus within the family 

Enterobacteriaceae were significantly associated with lower WPPSI-III FIQ (ß=-.20 [-.31; -

0.095], p=.00031, q=.025, Supplementary Figure S2) after correction for the 82 tested 

genera. Relative abundance of this genus were also associated with lower performance on 
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the WPPSI-III VIQ (ß=-19 [-.30; -.083] p=. 0.000636, q=.052), PIQ (ß=-.14 [-.25; -.031], 

p=.012, q=1), and GLC (ß=-.21 [-.32; -.10], p=.00015, q=.012) scores (Figure 2 A-D). 

Explorative analyses revealed an additional genus, Eubacterium genus of the 

Erysipelotrichaceae family (ß=-.20 [-.31; -.094], p=.0003047; q=.025) being associated with 

WPPSI-III verbal IQ subscales (q<.05). 

We subsequently carried out additional analyses with the unidentified genus within the family 

Enterobacteriaceae. It was nominally associated with following covariates (p<.05): maternal 

age (ß=-0.13 [-.24; -.024], p=.018), shipment (ß=-0.18 [.070; .28], p=.0014), and more 

pronounced with maternal cigarette smoking during pregnancy (ß=.22 [.12; .33], 

p=0.0000505, Figure 3B) and smoking at T4 (ß=.18 [.077; .29], p=0.00088). The relationship 

between the unidentified genus within the family Enterobacteriaceae and WPPSI-III FIQ 

remained nominally significant when those variables were employed as covariates (ß=-.14 [-

.25; -.026], p=.016, q = 1) in a regression model. As the variables most strongly associated 

with the genus were maternal smoking during pregnancy and current (T4) maternal smoking, 

those were further explored in mediation models. Mediation analyses (Fig 3.) revealed a 

significant mediation effect of this genus in the family Enterobacteriaceae for the effects of 

maternal smoking during pregnancy (proportion mediated = 13.7% [3.4%; 32%]; p=.007) and 

current smoking (proportion mediated = 12.0% [3.1%; 29%]; p=.0034) on WPPSI-III FIQ 

(controlling for age of the mother and shipment). 

We further characterized the microbiome by metagenomic analysis performed in a subset of 

33 samples (demographics details of subset are shown in Supplemental Table S1C). This 

analysis indicated that the organisms which belongs to this unidentified genus of the family 

Enterobacteriaceae were most closely related to Enterobacter asburiae (ß=.87 [.70; 1.0], 

p=3.8x10-11, Figure 2E), and were also related to Enterobacter cloacae (ß=.76 [.54; .99], 

p=2.4x10-7) and Kluyvera intermedia (ß=.51 [.20; .81], p=.0026). Of those organism, 

Enterobacter cloacae was significantly associated with the WPPSI-III FIQ and Enterobacter 

cloacae and Enterobacter asburiae were associated with the WPPSI-III PIQ subscale.  
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Discussion 

The present prospective study revealed an association between the composition of the fecal 

bacterial microflora and cognitive functioning as measured by the WPPSI-III in healthy 

children at 45 months of age. 

Overall, we found that a significant portion of the difference in cognitive functioning of these 

children as measured by the WPPSI-III is correlated with variance in the composition of their 

fecal microflora. Of interest, this correlation was observed for the FIQ and the language-

related subscales (VIQ & GLC), but not for the PIQ subscale of the WPPSI-III.  

Additionally, we found evidence of a negative association of cognition measures with alpha 

diversity, with a higher diversity being associated with lower cognitive scores. Again, the 

significant associations were limited to the FIQ and the language-related subscales (VIQ & 

GLC). Such associations between the composition of the bacterial microflora and cognitive 

functioning are consistent with the findings of Carlson and colleagues (28). They measured 

the fecal microbiome in children at the age of one and assessed cognitive functioning 

(Mullen scales of early learning) at the age of one and two years. They identified three 

distinct bacterial clusters, where significant differences between the clusters were associated 

with cognitive functioning as measured by Mullen scales of early learning by both overall 

score and by subdomain performance at the age of two years. As observed in the current 

study, negative correlations were found in alpha diversity measures, with higher diversity 

being associated with lower cognitive functioning scores, however no association remained 

significant after correction for multiple testing.  

  

At the genus level, we found that lower levels of cognitive functioning in preschool-aged 

children was associated with an increased level of DNA of an unidentified genus of the 

family Enterobacteriaceae. In previous studies, supportive evidence links exposure to similar 

organisms to altered cognitive functioning in aging humans (61) and in animal models of 

aging (62). Notably, antibiotics usage, which has been linked to lower cognitive abilities later 
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in childhood (33) showed no correlation with this genus. The mechanisms of these 

associations are still unclear but are likely to involve alterations of immune activity within the 

brain via alterations of the gut-immune-brain axis (63,64). Metagenomic sequencing of a 

subset of samples indicated that the associated taxon was closely related to Enterobacter 

asburiae and Enterobacter cloacae. Both are highly homologous organisms which inhabit 

the gastrointestinal tract of infants and young children and are occasionally associated with 

symptomatic infections (65,66). It is yet to be clarified whether this taxon represents a novel 

species related to both Enterobacter asburiae and Enterobacter cloacae or a mixture of 

several related species within the Enterobacter cloacae complex (67). Additional 

metagenomic sequencing will be required to further characterize these organisms. To 

determine whether the Enterobacter taxa has a direct or indirect effect on cognitive 

functioning, further exploration of the communication channel this taxa utilizes to 

communicate with the brain is required. 

 

The results of the mediation analyses in the present study indicate that the effects of both 

smoking during pregnancy and current smoking on cognition might be (partially) mediated by 

the microbiome. Cognition in early childhood is impaired by maternal smoking (68). Maternal 

smoking has already been linked to adverse outcomes in both somatic and mental health of 

the offspring (69). Both animal and human studies indicate possible effects of smoking on 

the microbiome. For example, in rats, smoking was associated with reductions in 

Bifidobacteria (70), and side-stream smoking increased the levels of Clostridium and 

reduced the levels of Firmicutes (Lactococci and Reminococcus) and Enterobacteriacae 

families in mice (71). In humans, it has been shown, that smokers and non-smokers differ in 

regard to their microbiome     (e.g. 72,73), and that changes in smoking behavior affect the 

microbiome (74). As the mother’s microbiome has been shown to influence the microbiome 

of the child (15), it is plausible that cigarette smoking during pregnancy could influence the 

child’s microbiome profile as well. 
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There are several possible caveats to our findings. Our results indicate that altered level of 

this unidentified genus of the Enterobacteriaceae family has a direct effect on cognitive 

functioning, although the presence of this genus might be related to unmeasured 

concomitant factors, such as altered diet, family structure, and social interactions (61). 

Among the above listed concomitant factors, diet is quite unlikely, since all children except 

one were attending national daycare where they have been exposed to a very similar diet. 

Several postnatal factors were not investigated in the present study, including household 

size, exposure to pets and other animals, travel, urban vs. suburban living, and additional 

lifestyle factors (e.g. diet or parental alcohol consumption), which might be associated with 

the microbiome, smoking and cognitive functioning. The potential role of these factors as 

mediators between the microbiome and cognitive development should be the subject of 

additional studies. Furthermore, generalizability of the data might be limited, and replication 

in samples of different background is needed. Another limitation of this present study was 

that in the case of the subset of subjects who were newly recruited at T4, covariates, 

regarding environmental factors from earlier time points such as smoking during pregnancy 

or breastfeeding could only be assessed retrospectively. However, these variables were 

taken into account as binary variable in our analyses, hence the retrospective self-report is 

unlikely to introduce strong bias. Another limitation of our study is that our microbial data 

collection is cross-sectional, which limits any strong conclusion because it makes it difficult 

to establish causality and rule out alternative explanation of the results. Additional 

longitudinal studies are planned to confirm our findings 

 

Our study documents an association between intestinal microflora composition and cognitive 

functioning, with the microbiome mediating the effect of maternal smoking on cognition in a 

group of otherwise healthy preschool-aged children. The microbiome of a child can be 

altered by environmental factors, such as diet, antibiotics and exposure to cigarette smoke, 

as well as therapeutically by administration of probiotic or prebiotic medications (75). Follow-

up studies need to test the possibility of a direct interaction between the microbiome and 
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cognitive functioning in this age group. The establishment of a cause-and-effect association 

may benefit future longitudinal studies that aim to improve cognitive functioning through 

alterations of the microbiome in infants and young children. 
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Figure 1: Consort flow diagram indicating the number of subjects participating in the 

POSEIDON study at the T1 and T4 time points, along with the number of subjects who 

provided stool samples and the number of samples that were included in the statistical 

analysis following successful library preparation and microbiome analyses. 
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Figure 2: Correlation between the log transformed relative abundance of an 
unidentified genus within the family Enterobacteriaceae and A) the full scale IQ and B-
D) subscales of the WPPSI-II. IWPPSI-III = Wechsler Preschool and Primary Scale of 
Intelligence; FIQ = full-scale IQ; GLC = general language composite; PIQ = performance IQ; 
VIQ = verbal IQ 
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Figure 3: Distribution and mean of the full-scale WPPSI-III score A) by abundance of 

the genus within the family Enterobacteriaceae and B) by smoking during pregnancy. 

The group means are indicated by the dashed lines. WPPSI-III = Wechsler Preschool and 

Primary Scale of Intelligence Version III. FIQ = full-scale IQ 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.26.21259573doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.26.21259573
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4

 Frequency / Mean (SD) N 
Maternal age (years) 31.33 (4.89) 323 
Smoking during pregnancy 20.7% 323 
Gestational age (weeks) 39.14 (1.25) 318 
Birth weight (gramm) 3392 (468.48) 317 
Current maternal smoking 24.1% 323 
C-section 31.3% 323 
Breastfeeding 83.2% 322 
Child’s sex (female) 53.2% 323 
Antibiotics last 6 months 31.4% 322 
Maternal education (years) 14.78 (2.23) 323 
Multilingual upbringing 23.4% 321 
Child’s age (months) 45.02 (1.00) 323 
Child’s BMI  15.44 (1.35) 320 
   
WPPSI-III FIQ 103.30 (11.81) 308 
WPPSI-III VIQ 104.81 (11.72) 311 
WPPSI-III PIQ 100.62 (13.48) 315 
WPPSI-III GLC 102.33 (11.39) 320 
Table 1: Information on pre-, peri-, and postnatal factors and cognition in the final 
study sample (n = 323). WPPSI-III = Wechsler Preschool and Primary Scale of 
Intelligence; SD = standard deviation; FIQ = full-scale IQ; GLC = general language 
composite; PIQ = performance IQ; VIQ = verbal IQ 
 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 30, 2021. ; https://doi.org/10.1101/2021.06.26.21259573doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.26.21259573
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5

 

 

Phenotype (V/G)Vp (CI) P 

WPPSI-III FIQ 13.4% (4.9%; 25.1%) .0010 

WPPSI-III VIQ 15.8% (7.1%; 29.4%) .0000273 

WPPSI-III PIQ 0.5% (0.0%; 12.4%) .46 

WPPSI-III GLC 10.3% (2.7%; 22.2%) .0014 

Table 2: Explained variance of cognition phenotypes by 
variation in the microbiome estimated using restricted 
maximum likelihood (REML) models. (V/G)Vp = explained 
variance; CI = 95% confidence interval; WPPSI-III = Wechsler 
Preschool and Primary Scale of Intelligence Version III; FIQ = full-
scale IQ; GLC = general language composite; PIQ = performance 
IQ; VIQ = verbal IQ 
 

Phenotype Shannon 
diversity index Pielou 

Faith 
phylogenetic 

diversity index 
OTUS 

WPPSI-III 
FIQ 

-0.103  
(-0.215;0.008) 

-0.068  
(-0.179;0.044) 

-0.144**  
(-0.255;-0.033) 

-0.101  
(-0.212;0.011) 

WPPSI-III 
VIQ 

-0.131*  
(-0.242;-0.021) 

-0.101  
(-0.212;0.010) 

-0.136*  
(-0.247;-0.026) 

-0.112* 
(-0.223;-0.002) 

WPPSI-III 
PIQ 

-0.044  
(-0.154;0.067) 

-0.026  
(-0.137;0.085) 

-0.086  
(-0.196;0.024) 

-0.046  
(-0.157;0.064) 

WPPSI-III 
GLC 

-0.129*  
(-0.238;-0.020) 

-0.078  
(-0.187;0.032) 

-0.133*  
(-0.242;-0.024) 

-0.129*  
(-0.238;-0.020) 

Table 3: Associations of measures of cognition with measures of alpha diversity.  
Standardized betas and the 95% confidence interval are given; WPPSI-III = Wechsler 
Preschool and Primary Scale of Intelligence Version III; FIQ = full-scale IQ; GLC = general 
language composite; PIQ = performance IQ; VIQ = verbal IQ; * = p<.05, ** = p < 0.0125 
(0.05 / 4) 
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