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Abstract  54 

Sequalae following stroke represents a significant challenge in current rehabilitation. The location 55 

and size of focal lesions are only moderately predictive of the diverse cognitive outcome after 56 

stroke. One explanation building on recent work on brain networks proposes that the cognitive 57 

consequences of focal lesions are caused by damages to anatomically distributed brain networks 58 

supporting cognition rather than specific lesion locations. To investigate the association between 59 

post-stroke structural disconnectivity and cognitive performance, we estimated individual level 60 

whole-brain disconnectivity probability maps based on lesion maps from 102 stroke patients using 61 

normative data from healthy controls. Cognitive performance was assessed in the whole sample 62 

using Montreal Cognitive Assessment, and a more comprehensive computerized test protocol was 63 

performed on a subset (n=82). Multivariate analysis using Partial Least Squares on the 64 

disconnectome maps revealed that higher disconnectivity in right insular and frontal operculum, 65 

superior temporal gyrus and putamen was associated with poorer MoCA performance, indicating 66 

that lesions in regions connected with these brain regions are more likely to cause cognitive 67 

impairment. Furthermore, our results indicated that disconnectivity within these clusters was 68 

associated with poorer performance across multiple cognitive domains. These findings demonstrate 69 

that the extent and distribution of structural disconnectivity following stroke are sensitive to 70 

cognitive deficits and may provide important clinical information predicting post stroke cognitive 71 

sequalae.  72 

 73 

 74 
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 80 

Introduction  81 

The magnitude and characteristics of cognitive impairments following stroke show substantial 82 

individual differences across patients. While some patients show considerable deficits and 83 

subsequent increased risk of neurodegeneration and dementia, others show no observable 84 

impairments. This heterogeneity in cognitive deficits after stroke arise not only from differences in 85 

the localization and extent of focal lesions, but also from potential secondary cascade effects in 86 

terms of altered brain connectivity (Rehme & Grefkes, 2013), and alterations of the hierarchical 87 

brain network structure (Stam, 2014). Currently, common predictors of cognitive deficits and 88 

recovery include anatomical location, lesion severity, vascular risk factors, chronic brain pathology 89 

and pre-stroke cognitive impairment (Bentley et al., 2014; Macciocchi, Diamond, Alves, & Mertz, 90 

1998; Munsch et al., 2016; Pendlebury, 2009). However, recent studies indicate added predictive 91 

value of connectivity-based measures, which capture perturbations of brain network connections or 92 

dynamics beyond focal lesion site (Ktena Sofia et al., 2019; Lopes et al., 2021b).  93 

In the last decade, a large body of literature has characterized the brain as a complex 94 

network consisting of nodes and their connections, collectively termed the brain connectome. 95 

Building on functional imaging, a coarse parcellation of networks separate the brain in the cingulo-96 

opercular, frontoparietal, ventral attention and default mode networks, aiding cognitive control. The 97 

cingulo-opercular network is associated with the ability to maintain focus, the ability to sustain top-98 

down cognitive control across cognitive tasks (Cai et al., 2016; Hilger, Ekman, Fiebach, & Basten, 99 

2017; Uddin, Yeo, & Spreng, 2019; Wilk, Ezekiel, & Morton, 2012), whereas the frontoparietal 100 

network is assumed to guide moment to moment-attentional control (Fassbender et al., 2006; 101 

Majerus, Péters, Bouffier, Cowan, & Phillips, 2018). The ventral attention network  serves 102 

reorientation to relevant stimuli outside the scope of current attention (Maurizio Corbetta & Gordon 103 

L Shulman, 2011; Vossel, Geng, & Fink, 2014), while default mode network is commonly 104 

associated with self-referential internal activity, and is commonly downregulated during task 105 
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engagement (McKiernan, Kaufman, Kucera-Thompson, & Binder, 2003; Vatansever, Manktelow, 106 

Sahakian, Menon, & Stamatakis, 2018). A central property of network nodes is how densely they 107 

are connected. Highly connected nodes, or hubs, are critical for efficient information flow between 108 

brain regions and are thought to play a crucial role in pivoting neural activity across distal brain 109 

regions, allowing for the integration of information required to support cognitive operations (Cole 110 

et al., 2013). Thus, focal damage to any part of a brain network might cause disruptions of distal but 111 

intact brain regions. Indeed, even small lesions in a densely connected hub may cause connectome-112 

wide perturbations (Aben et al., 2019). Recent studies have therefore moved beyond traditional 113 

lesion-symptom mapping, to include measures of network dysfunction to explain and predict stroke 114 

sequelae (Lim & Kang, 2015; Ulrichsen et al., 2020). Recent findings using the lesion-network 115 

mapping approach suggest that patients with overlapping symptoms have lesions in regions that are 116 

functionally connected and that lesions to brain network hubs or their connecting white matter 117 

pathways are associated with more symptoms (Fox, 2018). This network-based concept has also 118 

been shown to apply to a wide range of brain disorders such as Alzheimer disease, schizophrenia 119 

and multiple sclerosis (Crossley et al., 2014; Stam, 2014; van den Heuvel & Sporns, 2019).   120 

Whereas association between functional connectivity following stoke has been investigated 121 

in recent years (Klingbeil, Wawrzyniak, Stockert, & Saur, 2019; Lopes et al., 2021a; Ptak et al., 122 

2020), less is known regarding structural connectivity. The brain is connected by an intricate web of 123 

white matter (WM) pathways, consisting of bundles of myelinated axons responsible for conveying 124 

signals between brain regions, supporting functional networks. While measuring axonal 125 

disconnections in the living human brain has remained a challenging task, a recent implementation 126 

of diffusion tensor imaging (DTI) based tractography for assessing full-brain connection 127 

probabilities has enabled opportunities for detailed estimation of the connections of one or several 128 

lesions in individual patients (Foulon et al., 2018). Based on normative data from healthy controls, 129 

voxel-wise disconnection probability maps for a particular patient can be derived based on a lesion 130 

map. The extent and distribution of these disconnectivity maps have been shown to correlate with a 131 
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surrogate biomarker of neuronal damage in patients with MS (Rise et al., 2021) and shown promise 132 

in predicting deficits following stroke (Salvalaggio, De Filippo De Grazia, Zorzi, Thiebaut de 133 

Schotten, & Corbetta, 2020).  134 

To test for associations between brain disconnection and cognitive performance, we used 135 

Partial Least Squares analysis (PLS) to map common variance between voxel-wise structural 136 

disconnection probability maps in 102 stroke survivors and their performance on the Montreal 137 

Cognitive assessment (MoCA; Nasreddine et al., 2005). PLS (Krishnan, Williams, McIntosh, & 138 

Abdi, 2011) is well-suited for investigating multivariate associations between neuroimaging 139 

features and non-gaussian behavioral and clinical measures commonly obtained from stroke 140 

patients (Blackburn, Bafadhel, Randall, & Harkness, 2013). Although PLS has been suggested to 141 

display  less anatomical specificity, it has shown to produce higher stability in results (Ivanova, 142 

Herron, Dronkers, & Baldo, 2021).  Importantly, MoCA have been shown to reliably identify 143 

cognitive impairment in clinical samples (Bernstein, Lacritz, Barlow, Weiner, & DeFina, 2011), 144 

across latent variables related to executive function, language, memory visuospatial skills, working 145 

memory, as well as orientation (Freitas, Simões, Marôco, Alves, & Santana, 2012). Based on the 146 

literature reviewed above, we hypothesized that patients with higher levels of stroke-induced brain 147 

disconnectivity would show poorer cognitive performance, and further anticipated that this 148 

association could not simply be explained by the size and location of the lesion itself. We further 149 

hypothesized  that derived scores from the PLS would correlate with a broader cognitive battery 150 

derived for stroke patients (Willer, Pedersen, Forchhammer, & Christensen, 2016).  Since previous 151 

studies and existing models of the distributed nature of the neuroanatomical basis of cognitive 152 

functions are sparse, we remained agnostic about the anatomical distribution of the associations 153 

with the disconnectome maps and performed an unbiased full brain analysis with appropriate 154 

corrections for multiple comparisons.  155 

 156 

 157 
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Methods  158 

The present cross-sectional study included participants previously described in detail (Dørum et al., 159 

2020; Kolskår et al., 2020; Richard et al., 2020; Ulrichsen et al., 2020). Briefly, the sample 160 

comprised 102 stroke survivors from sub-acute (>24h post stroke and in clinical stable condition) to 161 

chronic stage. Inclusion criteria were radiologically documented ischemic or hemorrhagic stroke, 162 

and exclusion criteria were psychiatric conditions (bipolar disorder or schizophrenia), other 163 

neurological conditions including known cognitive impairment pre-stroke, substance abuse, and 164 

contraindications for MRI compatibility. All participants gave their written consent before 165 

participating, and the study was approved by the Regional Committee for Medical and Health 166 

Research Ethics South-East Norway (2014/694 and 2015/1282).  167 

  Table 1 displays sample demographics as well as time between stroke and MRI and 168 

cognitive assessment.  169 

 Mean  sd  min  max  

Age  66.3 12.3 24 87 

Sex   74.5% males  

Education (self-report, years)  14.6 3.3 7 30 

Interval between stroke onset and 

MRI / MoCA assessment (days) 

515  444 1 1399 

Lesion size (2mm resolution) 7693 24723 5 30031 

Number of lesions 3 2 1  12 

Interval between stroke onset and 

CabPad- assessment (days) 

634 379 89 1428 

     

NIHSS (score) 1.02 1.35 0 7 

Hemispheric distribution Left:39 / Right:41 / Bilateral:19 / Subcortical: 2  

Time since stroke: Acute: 20 / Subacute: 25 / Chronic:57    

Table 1. Summary of clinical and demographic variables. NIHSS: National Institute of Stroke Scale. CapPad: 170 

Cognitive Assessment at Bedside for iPad. Acute: Less than seven days since stroke. Subacute: between 7 and 180 days 171 
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since stroke. Chronic: more than 180 days since stroke. * Based on radiological description. Number of lesions and 172 

lesion size is based on MNI- normalized lesion masks. 173 

 174 

Cognitive assessment 175 

Patients were assessed with MoCA (Nasreddine et al., 2005) at time of MRI scanning. At follow-up 176 

(Table 1), a subsample (n=82) were also assessed using CabPad (Willer et al., 2016), a 177 

computerized test battery assessing a range of functions, including motor speed (finger tapping) for 178 

dominant and non-dominant hand, verbal fluency (phonetic and semantic word generation), 179 

attention span (symbol sequencing), working memory (reversed symbol sequencing), a spatial 180 

Stroop / flanker task, spatial short-term memory and psychomotor speed (symbol-digit coding task).  181 

 182 

MRI acquisition 183 

Patients were scanned at Oslo University Hospital on a 3T GE 750 Discovery MRI scanner 184 

with a 32-channel head coil. T2-FLAIR images were acquired with the following parameters: TR: 185 

8000 ms; TE: 127 ms, TI: 2240 ms; flip angle (FA): 90°; voxel size: 1x1x1 mm.  T1-weighted scans 186 

were collected using a 3D IR-prepared FSPGR (BRAVO) sequence (TR: 8.16 ms; TE: 3.18 ms; TI: 187 

450 ms; FA: 12°; voxel size: 1×1×1 mm; FOV: 256 x 256, 188 sagittal slices) for co-registration.  188 

 189 

Lesion delineation  190 

Lesion delineation was initially guided on each participant's FLAIR image, using the semi-191 

automated Clusterize-Toolbox, implemented in MATLAB (de Haan, Clas, Juenger, Wilke, & 192 

Karnath, 2015), before finalized by manual demarcation. The demarcation was guided by 193 

radiological descriptions, and evaluated by a medical doctor before finalization. Normalization 194 

parameters were estimated by linear registration of the structural T1-image to the MNI152-template 195 

and applied to the lesion masks using Flirt (Jenkinson & Smith, 2001). Figure 1 displays overlap in 196 

lesion location across the sample.  197 
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198 

Figure 1. Lesion overlap across 102 stroke patients. 12 transversal slices, with 5 mm thickness. Color scale indicates 199 

number of participants overlapping. Z coordinates denotes transversal slices in the MNI152-coordinate system.   200 

 201 

Group comparisons.  202 

To asess goup differences in MoCA-score between the patients in acute, subacute and chronic 203 

phase, a linear model was estimated with MoCA-score as dependent variable, and group as 204 

independent variable. To assess impact of lesion load, a linear model was estimated with MoCA-205 

score as dependent variable and lesion size and number of lesions as independent variables.  206 

 207 

Estimation of structural disconnectome maps 208 

To estimate the extent of the structural disconnection for each patient, we employed an automated 209 

tractography-based procedure (Foulon et al., 2018). Briefly, full-brain tractography data of 170 210 

healthy controls from the 7T Human Connectome Project was used as a normative training set to 211 

identify fibers passing through each lesion (Thiebaut de Schotten, Foulon, & Nachev, 2020). Using 212 

affine and diffeomorphic deformations (Avants et al., 2011; Klein et al., 2009), individual patient’s 213 

lesion maps were registered to each control’s native space and used as seeds for the probabilistic 214 

tractography in Trackvis (Wang, Benner, Sorensen, & Wedeen, 2007). The resulting tractograms 215 

were transformed to visitation maps, binarized, and registered to MNI152 space before a percentage 216 

overlap map was produced by summarizing each point in the normalized healthy subject visitation 217 

 

e 
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maps. The resulting disconnectome maps are whole-brain voxel-wise probability maps indicating 218 

for each patient and for each voxel in the brain the probability that the voxels were disconnected. 219 

Next, these individual-level disconnection maps were included in group-level analysis. 220 

 221 

Statistical analysis 222 

To assess associations between MoCA scores and disconnectome maps, we used non-rotated task-223 

based PLS using PLS Application (Krishnan, Williams Lj Fau - McIntosh, McIntosh Ar Fau - Abdi, 224 

& Abdi, 2010) for MATLAB (MathWorks, 2018), entering female, age and MoCA score as 225 

behavioral variables, with contrasts for mean effects for each (1 0 0; 0 1 0; 0 0 1). We performed 226 

permutations (n=1000) to assess the significance of the estimated latent variables, while precision 227 

was estimated using bootstrapping (n=1000) and used to calculate pseudo-z or bootstrap ratio brain 228 

maps (McIntosh & Lobaugh, 2004). 229 

 To assess associations with cognitive performance, disconnectivity within each significant 230 

PLS cluster associated with MoCA was extracted and correlated with CabPad performance.  231 

 232 

Results 233 
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Figure 2 displays patient distribution of MoCA-scores. 35% of the patients fulfilled criteria for mild 234 

cognitive impairment, based on a suggested cutoff at 26 (Nasreddine et al., 2005). 235 

 236 

Figure 2. Histogram depicting the distribution of MoCA scores across the sample.  237 

 238 

Investigation of association between group and MoCA performance revealed no significant 239 

relationship (F=1.8, p=0.17, Figure 3). All participants were therefore pooled for further analysis. 240 

Investigation of association between MoCA score and lesion load identified a significant 241 

association between total lesion volume and MoCA score (t=-2.96, p=0.004), but not with number 242 

of lesions (t=-1.502, p=0.13). However, after removal of one participant with an extreme lesion 243 

size, the association between MoCA and lesion volume did not remain significant (t=-1.7, p=0.09).  244 

ld 
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 245 

Figure 3. Distribution of MoCA scores by patient group.  246 

 247 

Figure 4 and Table 2 summarize the results from the PLS. Briefly, permutation testing revealed 248 

three significant clusters (pseudo-z > 3) showing common variance between MoCA performance 249 

and structural disconnectivity, including 1) right frontal operculum/insular cortex, 2) right superior 250 

temporal gyrus, and 3) the right putamen. Of note, association between lesion size and individual 251 

PLS brain scores remained highly similar after removal of an individual with an extreme lesion size 252 

(included: t=-9.1, p= 7.6e-15, excluded: t=-7.4 p=5.13e-11), indicating that our main results within 253 

the PLS was not strongly driven by the outlier.   254 

 255 

 256 

Cluster-# Location  Size mm3 Max pseudo-Z X, Y, Z (vox) 

1 Right frontal operculum/insula 1063 4.09 [25, 75, 33] 

2 Right superior temporal gyrus, 

posterior division 

273 3.65 [15, 48, 41]  

3 Right putamen 37 3.61 [34, 68 32] 

Table 2. Disconnectome clusters significantly associated with MoCA performance, identified by PLS analysis. 257 
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  258 

Figure 4. Voxel-wise disconnectome bootstrap ratio maps for the MoCA association, thresholded at pseudo-z >3. 259 

 260 

Figure 5 illustrates correlations between disconnectivity within each of the significant clusters 261 

identified by MoCa-PLS and CabPad performance. Disconnectivity was negatively associated with 262 

performance on all tests, with strongest correlations for semantic and phonetic fluency.   263 

 264 
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265 

Figure 5. Correlation between MoCA, PLS-weights, disconnectivity within the significant clusters, and CabPad 266 

performance. 267 

 268 

Discussion  269 

In the current study, we investigated associations between individual structural disconnectome 270 

maps and post-stroke cognitive performance as measured with MoCA in 102 stroke survivors. We 271 

also performed follow-up investigation assessing cognitive associations with a broader cognitive 272 

battery on a subsample. Our analysis revealed that structural disconnections implicating the right 273 

insula and frontal operculum, along with right superior temporal gyrus and right putamen were 274 

associated with poorer general cognitive performance as measured with MoCA. In a subsample 275 

comprising 82 of the patients, we demonstrated that the association generalized to a range of 276 

cognitive domains, including word generation, attention span, and speed. Together, our results 277 

support the relevance of altered structural connectivity on cognitive impairments following stroke.  278 

Stroke frequently cause cognitive impairment, and investigations of the underlying network 279 

dynamics may add to our current understanding and prognostics. Structural disconnections caused 280 
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by stroke have been shown to influence functional connectivity both directly and indirectly (Griffis, 281 

Metcalf, Corbetta, & Shulman, 2019, 2020). This suggests a mechanism of cognitive sequelae in 282 

which altered functional connectivity due to structural disruptions cause aberrant function in distal 283 

nodes, where lesions perturbating any part of a network supporting cognitive functions may cause 284 

cognitive and behavioral impairment (Alstott, Breakspear, Hagmann, Cammoun, & Sporns, 2009) 285 

(Chen et al., 2019; Lim & Kang, 2015).  286 

A challenge in current healthcare is assessment of cognitive function with a sensitivity and 287 

specificity able to detect and differentiate cognitive difficulties (Dong et al., 2010). MoCA 288 

(Nasreddine et al., 2005) has been suggested as a feasible screening tool for detecting cognitive 289 

impairment following stroke (Horstmann, Rizos T Fau - Rauch, Rauch G Fau - Arden, Arden C Fau 290 

- Veltkamp, & Veltkamp, 2014; Julayanont & Nasreddine, 2017; Munthe-Kaas et al., 2021), where 291 

key advantages are short administration time and multiple cognitive domains of assessment (Burton 292 

& Tyson, 2015; Stolwyk Renerus, O’Neill Megan, McKay Adam, & Wong Dana, 2014). 293 

Importantly, MoCA is sensitive to specific cognitive domains such as attention, executive and 294 

visuospatial function when utilized in lesion-mapping studies (Shi et al., 2018; Zhao et al., 2017).  295 

Of note, post stroke MoCA score has been demonstrated to differentiate cerebral blood flow in  296 

anterior cingulate and prefrontal cortex (Nakaoku et al., 2018). Anterior cingulate is strongly 297 

connected to insula and frontal operculum both structurally (Ghaziri et al., 2017) and functionally 298 

(Horn et al., 2010), and is suggested to be among the core nodes of the cingulo-opercular network. 299 

Importantly, these network nodes are suggested to mediate regulation and differentiation between 300 

the frontoparietal, ventral attention and default mode networks  (Goulden et al., 2014; Menon & 301 

Uddin, 2010). The frontoparietal and default mode network are furthermore viewed as 302 

anticorrelated networks reflecting cognitive state, where degree of this differentiation have been 303 

shown to predict cognitive function in stroke survivors at the group (Geranmayeh, Leech, & Wise, 304 

2016) and individual level (Lorenz et al., 2021). Indeed, lesions causing altered connectivity in 305 

cingulo-opercular nodes have been linked to cognitive impairment across multiple domains (Siegel 306 
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et al., 2016; Warren et al., 2014), including general impairments as measured using MoCA 307 

(Vicentini et al., 2021).  308 

 Our analysis revealed significant associations between MoCA and disconnectivity in the 309 

right superior temporal gyrus (STG) and a small cluster in the putamen. STG is commonly 310 

associated with language production and interpretation (Brugge, Volkov, Garell, Reale, & Howard, 311 

2003), and has also been found to be activated in in conjunction with insula during evaluation of 312 

responses in decision-making tasks (Megías, Cándido, Maldonado, & Catena, 2018; Paulus, 313 

Feinstein, Leland, & Simmons, 2005), where information needs to be integrated and evaluated over 314 

longer periods. STG has also been found to coactivate with visual attention , frontoparietal  and 315 

cingulo-opercular nodes during reorientation of visual attention (Vossel et al., 2014), suggesting a 316 

more general role in attentional processing.  317 

Putamen is involved in various aspects of motor functioning and learning, including 318 

language functions and reward signaling. The putamen is connected to thalamic and motor cortices 319 

(Jung et al., 2014; Leh, Ptito, Chakravarty, & Strafella, 2007), and is strongly connected to the 320 

frontoparietal network where the integrity of the connecting pathway is correlated with executive 321 

functioning in healthy adults (Bennett & Madden, 2014; Ystad et al., 2011). These results together 322 

suggests that post-stroke cognitive dysfunction may partly arise from lack of differentiation 323 

between large-scale brain networks. Our results align with this understanding, as structural 324 

disconnectivity of the insula and operculum was associated with impaired MoCA performance, 325 

potentially through disrupted network regulation.    326 

 Expanding our results, disconnectivity within the MoCA-associated clusters correlated with 327 

performance across several cognitive domains as measured by CabPad. While the apparent lack of 328 

cognitive specificity within and across clusters may reflect that the disconnectome approach 329 

captures a more over-arching impairment, strongest correlations were seen with phonetic and 330 

semantic generation and visual attention span. Phonetic and semantic fluency reflect executive 331 

functioning beyond pure language generation (Delis, Kramer, Kaplan, & Holdnack, 2004), and 332 
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greater functional connectivity within the cingulo-opercular and ventral attention network has been 333 

associated with reading fluency.   334 

 Our results revealed significant associations within the right hemisphere only. A recent 335 

investigation of structural connectivity in patients with ischemic leukoaraiosis found predominantly 336 

right side altered graph metrics when compared to healthy controls, and reported associations with  337 

cognitive performance (Lu et al., 2021). Comparably, right side functional abnormalities in cingulo-338 

opercular nodes during resting state have been associated with impaired MoCA performance 339 

following a transient ischemic attack (Guo et al., 2014), and right side dominance in bilateral insula 340 

activation is robustly found during task engagement in healthy controls (Rottschy et al., 2012). 341 

Further, right hemisphere is to a larger degree linked to visual attention, reorientation, and bottom-342 

up processing, and damage to right side pathways associated with impaired spatial attention, target 343 

detection and vigilance (Maurizio Corbetta & Gordon L. Shulman, 2011). Albeit speculative, our 344 

results indicate a larger right-side vulnerability for abrupted structural connectivity augmenting post 345 

stroke cognitive difficulties.  346 

 The current study has limitations. First, our cross-sectional design does not allow for 347 

integrating premorbid cognitive function and chronic brain pathology, which is highly relevant as 348 

an outcome predictor (Sagnier & Sibon, 2019). Further, the current sample represents a 349 

heterogeneous group regarding stroke severity, we lack measures on vascular risk and the sample 350 

size is moderate, factors that are relevant for the generalizability of the reported findings to the 351 

stroke population in general (Marek et al., 2020). Of note, our data did not allow for differentiation 352 

between stroke reported at hospital admittance and potential older strokes reported in the 353 

radiological description. We can therefore not rule out the possibility that the associations are partly 354 

driven by previous strokes in some of the patients. Further, jointly estimating all voxels in a single 355 

PLS model increases sensitivity, however, comes with a trade-off in spatial specificity as we can 356 

only make statements about significance for the spatial pattern as a whole.  PLS has shown 357 

comparable performance compared to similar multivariate lesion symptom mapping approaches, it 358 
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has shown to display less anatomical specificity, warranting caution when interpreting spatially 359 

sparse clusters (Ivanova et al., 2021).  Still, the reliability of each voxel’s contribution to the 360 

observed pattern was assessed through bootstrapping. While the follow-up association between 361 

brain scores and the broader CabPad-battery may indicate whether the MoCa-driven PLS-362 

decomposition is driven by general or more specific cognitive domains, it cannot capture novel 363 

associations not initially captured by the MoCA Although MoCA has been shown to display 364 

adequate sensitivity and specificity to detect mild cognitive impairment, it does not offer a 365 

comprehensive assessment. Indeed, lack of specificity and variability in difficulty increases the 366 

likelihood to overlook minor cognitive difficulties. Indeed, MoCA only provide a crude proxy for 367 

cognitive impairment, and does not allow for drawing interference on broad cognitive abilities.  Of 368 

note, premorbid cognitive function is associated with post stroke outcome. In the current data 369 

collection we did not obtain measures allowing for estimation of premorbid function” In 370 

conclusion, our study supports the relevance of investigating disrupted structural connectivity 371 

following stroke. Although our study does not allow differentiation between proximal and distal 372 

effects due to sample size and lesion homogeneity, our results highlight the relevance of altered 373 

structural connectivity when investigating cognitive sequalae after stroke. In line with previous 374 

studies, our results indicate lesions affecting the insula and the frontal operculum are associated 375 

with cognitive impairment and support the inclusion of measures of structural disconnection when 376 

evaluating cognitive and functional sequelae in stroke patients.   377 

 378 
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