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 1 

Abstract 2 

Clinicians have historically used family history and other risk prediction algorithms to 3 

guide patient care and preventive treatment such as statin therapeutics for coronary artery 4 

disease. As polygenic scores move towards clinical use, we have begun to consider the 5 

interplay of these scores with other predictors for optimal second generation risk prediction. 6 

Here, we assess the use of family history and polygenic scores as independent predictors of 7 

coronary artery disease and type 2 diabetes. We highlight considerations for use of family 8 

history as a predictor of these two diseases after evaluating their effectiveness in the 9 

Trøndelag Health Study and the UK Biobank. From these, we advocate for collection of high 10 

resolution family history variables in biobanks for future prediction models. 11 

 12 

  13 
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3 

Perspective 1 

The use of family history in the context of complex diseases may be informative for risk 2 

stratification and interventions aimed at prevention. A positive family history of disease puts 3 

an individual at a greater than 2 times higher odds of cardiovascular disease1 and nearly 3 times 4 

greater risk of type 2 diabetes (T2D)2. Family history captures inherited genetic variation as 5 

well as shared environments and behaviors. Using a statistical framework based on the liability 6 

threshold model3,4, it was estimated that 32% of the association between parental history and 7 

T2D is due to the shared environment between parent-child with the remaining 68% explained 8 

by genetics5. Family history has been shown to be partially independent from genome-wide 9 

polygenic scores (PGSs) in diseases such as schizophrenia6 and heart disease7,8 despite family 10 

history capturing both genetic and environmental disease risk. Other studies have also shown 11 

that genome-wide PGSs are associated with incident coronary artery disease (CAD) and T2D 12 

are independent of family history9.  13 

The simplicity of family history allows for inexpensive and easy to obtain predictive 14 

information, potentially allowing for intervention before prolonged exposure to irreversible 15 

clinical risk factors, such as smoking or elevated lipid levels. PGSs are more expensive and 16 

onerous to obtain than a standard lipid panel or family history, although PGS represents an 17 

exposure present from birth that could be ascertained early in life as part of a broad set of risk 18 

evaluations. Together, family history and PGSs have the potential to enhance risk prediction in 19 

cardiovascular diseases. 20 

Polygenic scores usher in a new era of risk prediction 21 
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4 

Genome-wide association study (GWAS) results are increasingly used to estimate a 1 

PGS for individuals by summing over a person’s disease-risk alleles weighted by their impact 2 

on disease risk. Studies in CAD shows that individuals with the highest 5% of genome-wide 3 

PGSs for CAD have more than a threefold higher risk of CAD than the rest of the population10. 4 

This is similar to the increased CAD risk conferred by monogenic mutations, such as those 5 

causing familial hypercholesterolemia (LDLR, APOB, and PCSK9). However, 20 times as many 6 

people fall into the PGS high-risk category relative to those who carry a monogenic mutation10, 7 

suggesting that more cardiovascular events could be prevented by selecting individuals based 8 

on high PGS in comparison to those with Mendelian mutations. The use of PGS for screening 9 

earlier in life is likely preferred to models based on clinical risk factors such as high lipid levels, 10 

because individuals falling in the top tail of the PGS distribution typically have earlier disease 11 

onset and preventive approaches can be applied prior to development of clinical risk factors. A 12 

previous study demonstrated that individuals in the top 2.5% of the PGS distribution were 13 

diagnosed with CAD 4.4 years earlier than individuals with average PGS, and for T2D 13.4 years 14 

earlier11.  15 

Incorporating family history in an era of polygenic scores 16 

Several studies have evaluated the inclusion of self-reported family history alongside 17 

genetics in risk-prediction models for complex diseases such as Crohn’s12, CAD13,14, breast 18 

cancer15, and prostate cancer16,17. We previously evaluated the use of family history informed 19 

genetic risk score (FHiGRS)18, and a recently developed method, PRS-FH, combines PGS and 20 

family history to improve the accuracy of PGS, particularly in diverse populations19. The use of 21 

six conventional risk factors for CAD, including family history of heart disease, was shown to 22 
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improve the prediction of incident CAD when used in combination with PGS compared to 1 

prediction based on PGS alone or conventional risk factors alone20. Several clinical risk scores 2 

(e.g., Reynolds Risk Score, MESA CHD Risk, NORRISK21, QRISK22) incorporate family history to 3 

estimate an individual’s 10-year risk of cardiovascular disease. Family history is formally 4 

considered a risk enhancing factor for individuals with an intermediate estimated risk of 5 

ASCVD in the United States23. However, the Framingham score24, SCORE225, and Pooled 6 

Cohort Equations (PCE)26 do not incorporate family history to estimate 10-year atherosclerotic 7 

cardiovascular disease (ASCVD) risk26. 8 

Given this background, we examined how existing clinical risk factors such as family 9 

history compare to PGS with regards to association with complex disease outcomes. We 10 

evaluated prediction using family history and polygenic risk in two independent population-11 

based data sets, the Trøndelag Health Study (HUNT, N=69,635 ) and the UK Biobank (UKB, 12 

N=408,577), for two diseases: CAD and T2D (see Supplemental Methods). We found evidence 13 

to support the importance of modeling both family history and PGS for risk prediction in 14 

clinical care and observed potentially confounding relationships between self-reported family 15 

history and age of the individual at time of self-report. We highlight ways to refine family 16 

history and PGS as predictive variables to advance ASCVD risk estimators. 17 

Proof of concept: family history and PGS as significant predictors of CAD 18 

First, we calculated PGS for CAD (PGSCAD) in 69,635 HUNT study participants based on 19 

LDpred and then divided the sample into 20 ventiles, each containing 5% of the sample, to 20 

assess the prevalence of disease across the PGS distribution. To assess the impact of family 21 

history, we collected self-reported family history reports surveys at the time of study 22 
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6 

enrollment.  We stratified individuals by self-reported family history, divided each stratum into 1 

twenty PGS bins (ventiles), and calculated observed CAD prevalence within each family 2 

history-stratum and ventile.  Notably, as shown in Figure 1, CAD prevalence between strata 3 

overlaps only in the opposite tails of PGS distribution—between the top 10% of individuals 4 

with no family history of CAD and the bottom 5% of individuals with positive family history of 5 

CAD. Since stratification before division into ventiles may bias the results towards larger 6 

differences between positive and negative family history strata, we also divided the data by 7 

PGS ventiles before stratifying by family history and found the CAD prevalence and trends to 8 

be largely similar (Supplementary Figure 1). In a sensitivity analysis across the number of 9 

quantile divisions (from 4 to 100), the trend between negative and positive family history strata 10 

was robust (Supplementary Figure 1).  11 
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1 

 2 
 3 

Figure 1: CAD prevalence across PGS quantiles, stratified by family history of myocardial infarction in HUNT. Prevalence 4 
of coronary artery disease per polygenic score ventile in the entire population of HUNT, stratified by self-reported family 5 
history of myocardial infarction (MI). 6 
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8 

 In HUNT participants with a positive family history of CAD, individuals with a CAD 1 

polygenic score (PGSCAD) in the top 5% of the score distribution had 2.78 times higher odds of 2 

CAD (95% CI 2.41-3.22) compared to 2.59 times higher odds of CAD among all participants 3 

with high PGSCAD (95% CI 2.34-2.87) (Table 1). This trend—of larger odds of disease in the high-4 

risk group stratified first by family history and then by PGSCAD —holds across quantile 5 

thresholds for top scores (e.g. 5%, 10%, 20%, Table 1). 6 

The PGSCAD distributions are significantly different between CAD cases and controls 7 

(Wilcoxon Rank Sum Test [WRST] p-value=1.4x10-127), and between positive and negative self-8 

reported family history (WRST p-value=1.5x10-125, Supplementary Figure 2). The Pearson 9 

correlation between PGSCAD and family history is 0.09 (Supplementary Figure 3). While this 10 

correlation is low, we observed a significant association between family history and PGSCAD 11 

using a logistic regression model (p-value=4x10-131, OR for positive family history=1.22 per s.d. 12 

of PGSCAD [1.20,1.24]). 13 

Through model selection, we observed that birth year and participation age (also 14 

known as biobank enrollment age) were significant predictors for CAD. Using a full model, we 15 

demonstrate that family history and PGSCAD are significant predictors of disease (Table 2), 16 

even after accounting for birth year and enrollment age, with a high degree of independent 17 

information. A positive family history puts an individual at nearly 2 times greater odds of CAD 18 

(OR=1.72, 95% CI 1.61-1.83, Table 2). Family history and PGSCAD have a nominally significant 19 

interaction term (p-value=0.02) in the full model (Table 3). Adding PGSCAD to the base model 20 

yields a larger change in Nagelkerke’s R2 (0.023) than adding family history to the base model 21 

(0.010) (Table 3).  22 
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Age matters with respect to family history in risk prediction models 1 

Older individuals are more likely to report a positive family history (Figure 2). The 2 

Pearson correlation between enrollment age and positive family history of myocardial 3 

infarction (MI) was 0.38 (Supplementary Figure 3). This has important implications for: i) 4 

recording age at variable collection, ii) the importance of updating family history within the 5 

electronic medical record, iii) determination of optimal age to use family history in risk 6 

prediction, and iv) the impact of pharmaceutical intervention on disease and family history 7 

incidence. 8 

The average age of first MI in HUNT was 70.5 years (95% CI 70.3,70.9). A positive family 9 

history for MI was significantly predicted by older age at enrollment (2-sided p-value < 2 x 10-10 

308). HUNT2 participants were asked if they have a family member who had an MI before the 11 

age of 60: sixteen percent of participants between 19-40 years of age reported “yes” versus 12 

52% of participants over 40 years of age. Similarly, the median enrollment age of persons 13 

reporting no affected first degree relative was significantly lower than the age of persons 14 

reporting positive family history (35.5 versus 50.7 years, WRST 1-sided p-value < 2.2 x 10-308, 15 

Figure 2). In HUNT2, the survey metric specified the relationship type experiencing a MI before 16 

60 years of age. Individuals that reported a sibling or child with the disease were slightly older 17 

than individuals who reported affected parents (48.7 versus 48.2 years, WRST 1-sided p-18 

value=7.9x10-11).  19 

 20 

 21 

 22 
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 1 

Figure 2 Distribution of participation ages (i.e. biobank enrollment ages) for the first degree family history of myocardial 2 
infarction 3 

 4 

This finding is not surprising for common, complex diseases—as someone ages, their 5 

relatives also age and are at a higher risk of disease. However, this finding encourages careful 6 

collection of the age at which an individual self-reports family history of disease. Presently, the 7 

accuracy of self-reported family history is imperfect, with some studies indicating specificity 8 

ranging from 75-98% for common conditions such as diabetes and obesity27. We found age at 9 

self-report of family history was an important variable to control for when using family history 10 

in prediction models (Supplementary Figure 4). Within the HUNT longitudinal study, we 11 

identified instances where more recent family history data were used to correct or update past 12 

family history variables from questionnaires, which de-coupled family history from the 13 
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reporting age. As such, the individual’s age at time of self-reporting family history was 1 

incorrect for a small subset of individuals whose family history record had been updated.  2 

We tested the performance of the predictors—family history and PGSCAD—with respect 3 

to age at self-report by modeling across enrollment age bins (e.g., the age an individual was 4 

when they completed the questionnaire and self-reported a positive or negative family 5 

history). Both family history and PGSCAD were significant predictors across the lifespan for CAD 6 

(Figure 3). Family history of MI showed a U-shaped curve and had a maximum odds ratio 7 

estimate at the youngest enrollment age bin (19-30). We hypothesize the high effect of family 8 

history between enrollment ages 19-30 is driven by rare variants of large effect, leading to 9 

earlier onset or more severe disease. The higher odds ratio observed for older enrollment ages 10 

for family history may be due to lifetime exposure to shared-family environmental risk factors 11 

(e.g., diet, exercise, smoking) and more time for cardiac events driven by polygenic genetic risk 12 

to occur in family members. The odds ratio estimate for PGSCAD decreases slightly across 13 

decades for CAD. We hypothesize that environmental factors introduce more variation into the 14 

outcome as a person ages, so the contribution of genetics to risk decreases concomitant with 15 

an increase in the role of environmental and lifestyle risk factors.  In comparison to family 16 

history, the predictive utility of PGSs were much more consistent across age of study 17 

participant. 18 

 19 
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1 
Figure 3 Family history and PGS as predictors of CAD across biobank enrollment ages. Each model is adjusted for principal 2 
components 1-4 from genetic data, participation age, participation age squared, birthyear, sex, and genotyping batch Odds 3 
ratio for PGS is for continuous PGS (yellow) and for FH is for positive family history (green) within the enrollment age bin and 4 
for. 5 

 6 

At first glance, family history is an ideal predictive indicator for CAD, since it is 7 

inexpensive and easy to obtain, however, the paucity of familial disease events for young 8 

individuals (Figure 2) suggests family history may be a less effective predictive tool than PGS 9 

for early intervention. Before 40 years of age, we expect that family history might help capture 10 

individuals at risk due to familial monogenic mutations causing early onset disease in parents, 11 

but is probably not as helpful in cases of polygenic genetic variation causing later disease onset 12 

(Figure 3). By the time a sibling is old enough to become affected, the benefit of family history 13 

as a disease predictor is less useful as the timeframe for preventive interventions for the 14 

individual may have mostly passed. A tool that has its greatest predictive effect after the 15 

average age of disease onset is likely less effective. This finding may prove to limit the utility of 16 
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family history to predict late-onset diseases, particularly diseases observed in siblings or 1 

cousins. 2 

As more effective preventive strategies are introduced and rates of cardiovascular 3 

disease decrease in the population, we expect rates of positive family history to decrease in 4 

frequency. While this will be a welcome outcome of precision medicine, it does have 5 

ramifications for predictors such as family history which are a function of disease incidence. 6 

This has been observed for individuals with familial hypercholesterolemia, in whom high-7 

intensity lipid-lowering therapies have dramatically decreased the risk of MI28. As of 2013, 8 

27.8% of the general adult (>40 years of age) population in the United States report using 9 

statins, and 52.7% of patients with ASCVD use statins29. Recent research suggests high-10 

intensity statin usage could prevent 51-71% of premature ASCVD events (1.4 million events in 11 

the US) when patients aged 30-39 are treated for 30 years30. Using genetically inferred kinship 12 

in the subset of HUNT for which we have statin information (HUNT3, N=14,055), of the 2,595 13 

first degree relatives of cases, 26.8% take statins compared to 16.8% of individuals not related 14 

to a case (Chi-square p-value=3.6x10-58). A person with a high risk of ASCVD may have relatives 15 

on statins, which prevents disease progression, and therefore report a negative family history. 16 

For this reason, the utility of family history as a predictor across the lifespan will need detailed 17 

evaluation and may change for different generations. 18 

Family history and PGS trends replicate for Type 2 Diabetes 19 

 We evaluated the same models for T2D, another complex disease with environmental 20 

and genetic risk factors and with well-powered GWAS available for the PGS. Similar to CAD, 21 

we observed an overlap of the family history strata with the top 5% of PGST2D individuals with 22 
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no family history of T2D and the bottom 5% of PGST2D individuals with positive family history 1 

(Figure 4). Participants with a PGST2D in the top 5% with a positive family history have 3.64 2 

times higher odds of T2D compared to the rest of the population, versus 2.6 times higher odds 3 

without stratification by family history (Supplementary Table 1). The PGST2D distributions are 4 

significantly different between T2D cases and controls (WRST p-value=3.3x10-173) and between 5 

positive and negative self-reported family history (WRST p-value=3.4x10-96). While the Pearson 6 

correlation between family history and PGST2D is small (r=0.08, Supplementary Figure 5), the 7 

association between T2D and PGST2D was significant (p-value=3x10-8, OR=1.21 [1.19,1.24]). A 8 

positive family history was associated with 3 times greater odds of having T2D (OR=3.01, 95% 9 

CI 2.79-3.24, Supplementary Table 2). We observed a larger increase of Nagelkerke’s R2 when 10 

adding family history to PGST2D with T2D compared to CAD (0.026 versus 0.021, 11 

Supplementary Table 3). Family history has a larger association with T2D than CAD, potentially 12 

because it represents more of a shared environmental component, or because there is not as 13 

substantial a depletion of positive family history for T2D due to drug treatment as there is for 14 

CAD due to treatment with statins. 15 
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 1 

 2 

Figure 4 T2D prevalence across PGS quantiles, stratified by family history of diabetes in HUNT. The prevalence of Type 2 3 
diabetes per polygenic score ventile in the entire population of HUNT and stratified by self-reported family history of diabetes.4 
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Similar to the observations for CAD, the Pearson correlation between age of enrollment 

and family history of T2D is 0.33 (Supplementary Figure 5). Nine percent of 19-40 year aged 

participants report a positive family history of T2D, versus 35% of participants greater than 40 

years of age. Both PGS and family history (when modeled together) are significant across the 

lifespan for T2D (Figure 5). The odds ratio estimated for family history of T2D had a U-shaped 

curve with higher odds of disease indicated by family history on both tails of enrollment age 

(Figure 5), again similar to the pattern observed for CAD association with family history of MI. 

 

 

 
Figure 5 Family history and PGS as predictors of T2D across biobank enrollment ages in HUNT. Each model is adjusted for 

principal components 1-4 from genetic data, participation age, participation age squared, birthyear, sex, and genotyping 

batch. 
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the top tail of the PGS distribution with a positive self-reported family history for both CAD 

(Supplementary Figure 6) and T2D (Supplementary Figure 7). A relationship between negative 

family history for heart disease and younger enrollment ages was also observed 

(Supplementary Figure 8). Using the covariates from the model selection from HUNT, we 

observed similar odds ratios for clinical predictors in UK Biobank as in HUNT (Supplementary 

Table 2,4). In the UK Biobank, a model with predictors for both family history and PGS and 

their interaction were significant terms for CAD, but the interaction term between PGS and 

family history was not significant for T2D (Supplementary Table 5). 

Improving family history and polygenic scores to advance prediction of CAD  

Current American Heart Association guidelines for lipid-lowering (i.e., statin, ezetimibe 

or PCSK9i therapies) intervention are multifaceted with a many-step protocol based on: past 

CVD events, LDL-C levels, 10-year ASCVD risk estimated by PCE, diabetes status, age, and 

coronary artery calcium score23. Family history is considered a risk enhancing factor, however, 

we advocate for formal inclusion of both family history and PGS to risk estimation models 

given that both variables are significant and independent predictors of CAD in HUNT and UK 

Biobank. Currently PGSs are limited by trans-ethnic portability31,32, sensitivity to population 

stratification33, and miscalibration34 among other considerations. Future iterations of PGSs 

may integrate genetic risk for clinical risk factors such as genetic prediction of LDL cholesterol 

or body mass index or other multi-trait risk models that improve prediction. The addition of an 

easily ascertained predictor such as family history suggests we should incorporate this variable 

as we continue to evaluate the use of other biomarker PGSs (as in Sinnott-Armstrong et al
35) 

and clinical risk factors to predict disease (as in Inouye et al
20), particularly early in life.  
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Family history must be consistently recorded in the electronic health record to be 

impactful in advanced risk estimation algorithms. For example, a binary predictor describing 

the presence or absence of family history is less informative than more precise family history 

records such as: age at time of family history report, the number of affected relatives, 

relationship to relatives with disease, severity of disease in the family member, or the age of 

disease onset/diagnosis in these relatives. Differentiating between first-degree relative 

(mother, father, sibling) and second degree relative (grandparent, aunt, uncle) will yield 

specificity as to the degree of shared genetic liability. Even more useful is a grid of diseases and 

relationships to allow for higher resolution family history variables. As providers move towards 

electronic surveys at intake of clinical appointments, logic allowing for more detailed questions 

about family members with specific diseases listed on the grid should be implemented. The 

age at time of reporting family history should be recorded and regular updates to both the 

family history information (coupled with age at time of report) will improve prediction based 

on family history.  

These richer predictive features are rarely systematically collected in biobank surveys, 

clinic visits, or the electronic health record, and we contend that this detailed documentation 

will enable greater predictive accuracy and contribute to earlier intervention with preventive 

therapies. We observed similar levels of utility and independence of family history and PGS 

association with T2D as with CAD. In the absence of quantitative risk prediction algorithms for 

T2D (such as the PCE for CAD), our work suggests the potential utility of family history and 

PGS in addition to clinical measurements such as HbA1C. Additional studies should be 

performed in traits with Mendelian inheritance patterns (e.g., breast cancer) and early onset 
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diseases (e.g., asthma) to determine the utility of family history across a spectrum of disease 

prevalence, heritability and genetic architecture. 

Conclusion 

In two electronic health record-linked biobanks, HUNT and UK Biobank, we evaluated 

the association of family history and PGS with two different diseases: CAD and T2D. We 

confirm that family history and PGS are both significant and mostly independent predictors of 

disease by evaluating CAD and T2D prevalence. Given the significant but weak interaction 

between family history and PGS, we note that family history is not simply a proxy for PGS, but 

likely represents lifestyle and social determinants of health, and is therefore, an important 

component of risk prediction in addition to PGS. We demonstrate increasing rates of positive 

family history with increasing age at report of family history. We also highlight that positive 

family history of MI is less common at younger ages, when relatives are also young, but family 

history also has the highest impact on odds of CAD in this age group. We suggest advancing 

electronic health record-linked biobank infrastructure to enable meaningful integration of 

detailed family history and PGS to improve upon current ASCVD risk estimation with PCE 

leading to prevention of disease.  
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Tables 

 

Table 1 Clinical impact of high risk stratification for CAD in HUNT. 

Predictor High Risk 

definition 

Reference 

Group 

Odds Ratio 95% CI p-value % of sample 

in High Risk 

(N)  

Median 

participatio

n age in 

High Risk 

Prevalence 

in High Risk 

Prevalence 

in 

Reference 

Group 

Sensitivity Specificity 

PGS Top 20% Remaining 

80% 

2.01 1.89-2.14 2.03x10
-108 

20%  

(13746) 

41.6 0.14 0.086 0.29 0.81 

Top 10% Remaining 

90% 

2.27 2.10-2.46 1.29x10
-94 

10% 

(6873) 

41.7 0.16 0.090 0.16 0.91 

Top 5% Remaining 

95% 

2.59 2.34-2.87 4.25x10
-75 

5% 

(3437) 

41.8 0.18 0.092 0.09 0.95 

Top 1% Remaining 

99% 

3.60 2.92-4.42 1.45x10
-33 

1% 

(688) 

41.2 0.21 0.095 0.02 0.99 

FH Positive Negative 1.83 1.72-1.95 2.14x10
-79 

35.6% 

(24446) 

50.7 0.15 0.066 0.56 0.67 

PGS 

conditional 

on Positive 

FH 

Top 20% of 

Positive FH 

Remaining 

80% 

2.31 2.13-2.51 1.11x10
-90 

7.1% 

(4889) 

49.9 0.21 0.088 0.15 0.94 

Top 10% of 

Positive FH 

Remaining 

90% 

2.49 2.32-2.77 5.27x10
-62 

3.6% 

(2445) 

49.3 0.23 0.092 0.08 0.97 

Top 5% of 

Positive FH 

Remaining 

95% 

2.78 2.41-3.22 2.49x10
-43 

1.8% 

(1223) 

49.1 0.24 0.094 0.04 0.99 

Top 1% of 

Positive FH 

Remaining 

99% 

3.83 2.84-5.16 9.99x10
-19 

0.35% 

(245) 

49.4 0.30 0.096 0.011 0.997 

An indicator variable was created for the various high risk definitions above. The model controlled for batch, participation age, participation age squared, birth year, principal 

components 1-4 from genetic data, and sex. 

 

 

Table 2 Full model estimates for CAD in HUNT 
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Predictor  OR 95% CI p-value  

Standardized Participation 

Age 

10.9 8.5-14.0 2.96x10-76 

Standardized Participation 

Age Squared 

0.13 0.11-0.16 1.21x10-86 

Standardized 2021-birthYear 2.86 2.62-3.10 1.94x10-135 

Male Sex 2.69 2.54-2.85 4.25x10-253 

Positive Family History  1.72 1.61-1.83 3.39x10-60 

Inverse normalized PGS 1.53 1.53-1.60 3.66x10-9 

Family History x Inverse 

normalized PGS (interaction 

term) 

0.94 0.86-0.99 .024 

Adjusted for principal components 1-4 from genetic data and genotyping batch (HUNT)
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Table 3 Model comparisons for CAD in HUNT 

Model 1 Model 2 LRT p-value ⊗ Nagelkerke’s r
2 

Base PGS model 9.22x10
-188 

0.023 

Base FH model 

 

8.72x10
-82 

0.010 

PGS model PGS + FH (additive) model 

 

1.71x10
-60 

0.007 

FH model PGS + FH (additive) model 1.65x10
-166 

0.021 

PGS + FH (additive) model PGS + FH + PGS x FH 

(interaction) model 

0.022 0.00014 

Comparison of models in HUNT with family history (FH) and polygenic score (PGS) using ANOVA. The base model is sex, 

birthyear, participant age, and participant age squared, and first four principal components from genetic data
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Supplementary Methods 

Trøndelag Health Study 

The Trøndelag Health Study (HUNT) is a population-based health survey conducted in 

Trøndelag county, Norway, since 198436. Participation in the HUNT Study is based on informed 

consent, and the study has been approved by the Data Inspectorate and the Regional Ethics 

Committee for Medical Research in Norway. Of the >120,000 participants in the HUNT 1-3 

study, 69,635 individuals of European ancestry have been genotyped using Illumina Human 

CoreExome v1.1 array with 70,000 additional custom content beads and imputed to 25M 

genetic markers using 2,202 whole-genome sequenced samples from HUNT together with 

Haplotype Reference Consortium reference panel37,38.  We used a combination of hospital, 

outpatient, and emergency room discharge diagnoses (ICD-9 and ICD-10) along with self-

reported variables and lab measurements to identify cases and controls for common diseases 

(Supplementary Table 6,7). Self-reported family history of disease was obtained from survey 

questionnaires from HUNT 1-3 (Supplementary Table 8). Variables across HUNT collections 

were collapsed to create a single indicator variable for first-degree family history of myocardial 

infarction (MI) or diabetes for as many samples as possible. The age of participation in HUNT 1-

3 was recorded with the earliest age being taken if the participant answered the question in 

multiple collections.  

UK Biobank 

The UK Biobank is a population-based cohort collected from multiple sites across the 

United Kingdom39,40. Genotyped and imputed data for 408,577 individuals of white British 

ancestry were used for this analysis. Case and control status was ascertained using phecodes41. 
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Family history across multiple family members was obtained from field IDs 20107, 20110, 20111 

and collapsed into a single indicator variable for first degree family history of heart disease or 

diabetes (Supplementary Table 6-8). 

Polygenic scores 

We used previously generated weights for an optimized set of genome-wide variants 

(6.6M for CAD and 6.9M for T2D) to calculate the disease-specific PGS10. Briefly, these 

weights6 were based on genetic effect estimates (beta) from large GWAS for CAD (N=60,801 

cases and 123,504 controls) and T2D (N=26,676 cases and 132,532 controls) and genetic 

variants were pruned using LDpred and tuning parameters of 0.001 and 0.01 respectively. The 

weights for CAD and T2D were applied to individual-level imputed dosages for each HUNT 

participant and UKB participant to estimate PGSCAD  and PGST2D . A limitation of this analysis is 

the LDpred tuning parameters were optimized in UKB phase 1, but the weights came from 

external GWAS and the performance did not vary widely across the models in the optimization 

step.   

Statistical analysis 

We estimated the odds ratios (ORs) for models with PGS and self-reported family 

history as predictors using logistic regression with binomial link function adjusting for 

covariates including the effect of sex, age at biobank enrollment, age at biobank enrollment 

squared, birth year, and first four genetic principal components. In analyses where we estimate 

the odds ratio for predictors, we perform several variable transformations. Birth year is 

transformed to the age in 2021 so the odds ratio is on the scale of risk rather than protection 
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(i.e odds ratio > 1), but is referred to as birth year to avoid confusion. The PGS is inverse 

normalized (using R package RNOMni) and age-related covariates are scaled to have a mean of 

0 and variance of 1. When evaluating model selection for family history and PGS we used 

standard multivariable logistic regression. When considering risk thresholds using family 

history and PGS, we used an indicator variable based on a percentile threshold for PGS with or 

without conditioning on family history. Reported p-values from logistic regression are from 

Wald tests, and the p-values from model comparison with ANOVA are Likelihood Ratio Tests. 

Statistical analyses were conducted using R version 4.0.3 software. Hereafter, when describing 

the predictors, family history refers to self-reported family history from surveys
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