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Abstract 

The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are 

scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an 

alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would 

allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To 

test this, 31 cHL tumor/normal pairs were exome sequenced to ~1000x median depth of coverage. An 

orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We 

identified mutations in genes novel to cHL including: CDH5 and PCDH7; novel mutations in IL4R, and 

a novel pattern of recurrent mutations in pathways regulating Hippo signaling. This study provides 

proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in 

HRS cells, allowing for the analysis for clinically relevant genomic variants in large cohorts of cHL 

patients. 
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Introduction 

Classical Hodgkin lymphoma (cHL) accounts for about 10% of newly diagnosed lymphoma cases and 

is among the most common cancers diagnosed in adolescents.1 While most cHL patients respond to 

front-line therapy and are cured, a subset of patients relapse or are refractory, and remain a clinical 

challenge. Moreover, standard treatments, including chemotherapy and radiation therapy, may have 

serious long-term complications. Although brentuximab vedotin and immune checkpoint blockade have 

improved outcomes in relapsed/refractory cHL,2–4 improved prognostication and targeted treatment 

options continue to be an unmet need for this malignancy. 

 

In the last decade, high throughput genomic sequencing has provided insight into cancer pathogenesis 

and has facilitated the development of novel therapies. Collaborative organizations such as the 

International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) have 

sequenced thousands of tumor genomes.5 However, cHL was not studied in these efforts. A key barrier 

to the genomic characterization of cHL is the paucity of the malignant Hodgkin and Reed Sternberg 

(HRS) cells, which generally comprise <5% of the tumor and are surrounded by an immunosuppressive 

non-neoplastic immune cell infiltrate.6 Only a few studies have investigated the genomic alterations 

representative of cHL. These studies have addressed the challenges of rare HRS cells in several ways, 

including the use of HRS-derived immortalized cell lines,7 HRS cell isolation from primary samples 

using laser capture microdissection or flow cytometric sorting,8–10 or through the study of circulating 

tumor DNA.11,12 From these studies, patterns of recurrent somatic mutations have been identified within 

the NF-κβ (e.g., TNFAIP3), JAK/STAT (e.g., STAT6 and SOCS1), and the PI3K/AKT (e.g., ITPKB and 

GNA13) signaling pathways.9,11,13–17 Mutations that affect B2M and impact HLA class I expression are 

also recurrent in cHL.7,9,18 Despite this growing body of work that has provided a preliminary 

characterization of the genomic landscape of cHL, experimental limitations include the use of cell lines, 

small sample sets, and biases introduced via complex isolation techniques that require high HRS cell 
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content. Since these techniques will not be feasible in a routine pathology laboratory, alternative 

approaches that utilize bulk lymph node tissue are required to perform large studies to correlate the 

impact of somatic mutations on clinical outcomes. Furthermore, the pathologic confirmation of cHL 

(especially in the relapsed setting) based on tissue from a core needle biopsy remains challenging.19 

The integration of genomic testing could enhance the diagnostic utility of a needle biopsy, compared to 

the substantially more invasive excisional lymph node biopsy.  

 

To address these barriers in the field, we performed ultra-deep exome sequencing to discover recurrent 

genomic events in 31 cHL lymph node biopsies. An approach using multiple independent sequencing 

libraries per sample and custom variant filtering was developed to overcome the challenge of 

uncovering recurrent mutations among high-coverage, low variant allele frequency (VAF) sequencing 

data.20 Mutations were validated using an orthogonal error-corrected sequencing technique. This 

application of ultra-deep exome sequencing to a rare malignant cell population created a reliable and 

reproducible landscape of cHL somatic mutations, expanding our understanding of the genomic drivers 

and pathways important in cHL pathogenesis. 
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Results 

Patient characteristics 

Ultra-deep exome sequencing was used to identify novel recurrent mutations in 31 fresh-frozen cHL 

biopsies with matched non-malignant tissue. This cohort included samples from 27 (87%) newly 

diagnosed and 4 (13%) relapsed cHL patients with clinical characteristics shown in Table 1. 

 

Genomic Data Generated and Coverage Statistics  

We generated ~1000x coverage exomes for both the tumor and normal samples for all patients, 

sequencing three independent libraries for each sample (Methods). The median depth of coverage was 

939x (range: 526-1,294x) for normal samples and 1025x (575-1,321x) for tumor samples (Fig. 1a; 

Supplementary Figure 1). On average 111.11 gb were generated per sample with an average on-target 

duplication rate of 16.5%, with 92% and 94% of bases covered at 200x, and 62% and 67% of the bases 

covered at 400x in the normal and tumor, respectively.  

 

Initial Variant Analysis and Variant Validation 

After variant calling, filtering, and manual review, we identified 4,692 SNVs and INDELs from the ultra-

deep exomes that were considered for validation. We identified one relapse sample (HL-513) with 3,684 

mutations (78% of all variants from the cohort), suggestive of a hypermutator phenotype.21,22  Excluding 

this hypermutated patient, the median number of somatic mutations across the cohort was 11 and the 

mean was 32 (range 0-148). The VAFs for all sites identified, including variants from the hypermutated 

patient, were consistent with detection from rare HRS cells (mean VAF=5.7%; median VAF=5.2%; 

range=0.5-24.1%).  
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Following the identification of variants from the ultra-deep exomes, a HaloPlex panel, with molecular 

barcodes (Unique Molecular Indexes, UMIs) included for error-correction, was designed to validate all 

variants from all patients, except a subset of sites from the hypermutated patient. Due to HaloPlex 

panel size limitations, a subset (834/3684 randomly selected) of the hypermutated patient mutations 

were included. A total of 19,392 amplicons were generated, with these probes spread over 1842 SNVs 

and INDELs, as well as 327 exons of 30 genes (Supplementary table 5). High depth sequencing data 

was generated for HaloPlex targeted regions, with a median of 224,355,855 total reads/sample (range 

125,968,046-387,141,061 total reads) and a median error-corrected depth of coverage at 2,168x and 

3,971x in the normals and tumors, respectively.   

 

The overall exome call validation rate by HaloPlex was 96.7% (1754/1814) (Fig. 1b; Supplementary 

Figure 2). This includes 1,405 fully validated sites and 349 “tumor only” validated (where matched 

normal data were unavailable -Methods). This rate also accounts for sites that could not be evaluated 

due to low tumor read depth (1.5%; 27/1842 sites) or HaloPlex amplicon failure (0.05%; 1/1842). An 

additional 2,850 sites from the hypermutated patient were not assayed due to HaloPlex size limitations 

(Methods). These sites were included in subsequent assays because 811/823 (98.5%) of tested HL-

513 mutations were validated (this rate accounts for sites with low tumor depth; 11/834). A total of 60 

sites (3.3%; 60/1814) failed validation. The correlation of the HaloPlex and exome VAFs among 

validated sites in samples with more than 2 variants was R2=0.85 (p<0.01), demonstrating significant 

concordance of VAF between the two methods (Fig. 1c).  

 

After validating exome-discovered mutations using HaloPlex, new variants were discovered across our 

entire HaloPlex target space (Supplementary Table 5). This included 10 known cHL hotspots (Methods; 

Supplementary Table 1). From this de novo variant calling, 135 new sites were identified across the 
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HaloPlex target region including 7 new variants at known HL hotspots. After updating the annotations 

of all potential variants (de novo and exome-validated) (Methods) the final annotated dataset consists 

of 4,116 non-synonymous coding somatic mutations that were carried forward for all subsequent 

analyses (Fig. 1d, Supplementary Table 6). The final cohort includes 30 individuals, as one patient, of 

the original 31, had 3 exome-discovered variants that all failed validation (patient HL-157). The median 

number of sites in this final validated data set was 11, and the mean was 32.9 (range: 1-148), excluding 

the hypermutated patient, who contributed 3,160 variants to the final data set. The mean and median 

VAFs were 5.6 and 5.1, respectively (range: 0.03-24.10) (Fig. 1d). Among the relapse samples, 

excluding the hypermutated sample, we observed a median of 10 variants and a mean of 19 variants 

(range inclusive of hypermutated sample: 10-3160). There were 27 genes with variants in at least one 

relapse sample (not including genes only mutated in the hypermutated sample; Supplementary Figure 

3).  

 

Recurrent and Significantly Mutated Genes 

A total of 3,168 somatically mutated genes were identified across all 30 samples, versus 732 mutated 

genes when the hypermutated patient was excluded. Somatic mutations were identified in 263 genes 

in at least 2/30 samples. The most recurrently mutated genes in our cohort are SOCS1 [43.3%], 

TNFAIP3 [40%], and IGLL5 [26.7%] (Figure 2). We identified 28 genes that were significantly mutated 

above the background mutation rate (significantly mutated genes; SMGs; Fig. 2). SMGs identified in 

this analysis included several genes that have previously been shown to be mutated in cHL, including 

members of the JAK/STAT signaling pathway (i.e. SOCS1 and STAT6 [20%]) and the NFκB signaling 

pathway (i.e. TNFAIP3 [40%] and XPO1 [20%]). Other SMGs identified in this study known to be 

mutated in cHL include: B2M [16.7%], ITPKB [16.6%], and GNA13 [20%]. Components of the 

SWItch/Sucrose Non-Fermenting (SWI/SNF) complex including BCL7A [13%], SMAD3 [6.6%], and 
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ARID1A [6.6%], were also mutated. BCL7A and SMAD3 are known to be involved in lymphomagenesis 

but not previously implicated in cHL. ARID1A was not among our SMGs, but was mutated in 3 cases 

and has been identified by others to be recurrently mutated in cHL.9 A summary of genes found to be 

recurrently mutated in cHL across several recent studies of adult cHL9–11,18 is provided (Supplementary 

Figure 4). To our knowledge, the following SMGs have not previously been reported in cHL: AXDND1 

[6.7%], CDH5 [13.3%], LIMD2 [10%], OR13C2 [6.7%], PCDH7 [20%], RDH12 [ 6.7%], SCN9A [6.7%], 

and STRAP [6.7%].   

 

Previously unreported mutations in multiple cadherin genes were identified. There were 74 mutations 

in 42 different cadherin genes identified. The two cadherin SMGs were PCDH7, a protocadherin, and 

CDH5, a type II classical cadherin. Many of the cadherin mutations were only identified in the 

hypermutator patient; however, if these are excluded, 21 mutations were discovered across 9 different 

cadherin-related genes: CDH10 [3%], CDH23 [3%], CDH5 [16%], CELSR1 [13%], DSC2 [3%], DSG3 

[7%], FAT3 [3%], PCDH19 [3%], and PCDH7 [16%]. 

 

Mutation Signature Analysis and AID Targets 

To further understand the etiology of somatic mutations in cHL, a mutation signature analysis was 

conducted to identify the trinucleotide context in which the somatic mutations occurred. The patterns of 

SNV mutational classes identified were compared to the COSMIC v2 database of known mutational 

profiles.23 The most prevalent mutation signatures were 1, 3, 9, and 30. Additionally, signature 6 was 

observed in the hypermutated patient (Supplementary Figure 5).  

 

We observed the presence of COSMIC signature 9 in several patients (Supplementary Figure 5). This 

signature is associated with the activity of an enzyme called activation-induced cytidine deaminase 
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(AID). In a recent analysis of the CLL mutational landscape, two AID signatures were observed;24 one 

that is characterized by a canonical AID signature that includes C to T/G mutations at the WRC/GYW 

AID hotspot, as well as a non-canonical AID signature that includes A to C mutations at WA motifs, 

which is consistent with COSMIC signature 9. Although our analysis suggests that signature 9 (non-

canonical AID) is common in our cohort, the COSMIC v2 database does not contain an AID signature 

that is associated with canonical AID activity. As shown by Kasar et al.,24 mutation signatures 

associated with canonical and non-canonical AID activity share some similarities; thus it is possible that 

our identification of signature 9 could in fact reflect the presence of canonical AID activity. To address 

whether our data actually indicate a canonical AID signature, a list of genes known to be significant 

targets of off-target canonical AID activity in diffuse large B-cell lymphoma (DLBCL) and follicular 

lymphoma (FL) was generated.25,26 Our analysis revealed 24 canonical AID-target genes were mutated 

in at least one non-hypermutated patient sample. Of these, 8 genes had SNVs (23 SNVs total) located 

in the known WRC/GYW AID target motif, including: SOCS1, IGLL5, ARID5B, CD83, HIST1H2AL, 

ZFP36L1, HIST1H1B, and HIST1H1C. Of the 19 SNVs identified in SOCS1, 12 were within WRC/GYW 

motifs. Four of 9 SNVs in IGLL5 and two of two SNVs in HIST1H1B were within a WRC/GYW motif. At 

ARID5B, ZFP36L1, HIST1H2AL, and HIST1H1C, 1 SNV was identified at each locus in a WRC/GYW 

motif (1/1; 1/3; 1/1; 1/1). To test whether the number of mutations identified within WRC/GYW motifs 

was significantly different from random expectation, we simulated the number of mutations we observed 

at each gene 100,000 times and asked how many times mutations were identified in a WRC/GYW 

motif. On average, each SOCS1 simulation had 3.73 mutations that met the criteria for a potential 

mutation generated by aberrant AID activity. In contrast, only 9 simulations had at least 12 variants, as 

we observed in our actual cohort (p=0.0009). Following a similar logic, the simulated IGLL5 dataset 

identified 47/100,000 tests with at least 4 SNVs that could result from aberrant AID activity (p=0.0005). 

We assessed the enrichment of off-target AID mutations at the other loci we identified and three 

additional genes that exhibited significant enrichment for AID mutations: ARID5B (p=0.0083), 
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HIST1H1B (p=0.017) and ZFP36L1 (p=0.014). We also asked whether the overall number of mutations 

we saw across the 24 potential AID targets was different from random expectations. The results of this 

permutation analysis showed that across the coding space of all 24 genes, we would expect to observe 

6.36 total mutations meeting our AID target criteria. We did not observe any permutations with a total 

of 23 mutations (p<0.00001), suggesting that the overall pattern of off-target AID activity is significantly 

different from random expectations. These results indicate that we observed a significant number of 

mutations that are the result of canonical off-target AID, across multiple loci and specifically at SOCS1 

and IGLL5.    

 

JAK/STAT Signaling Mutations  

Mutations were identified in 22 genes from the JAK/STAT signaling pathway, with 50% of our cohort 

(15/30) having at least one somatic mutation in a JAK/STAT signaling gene. Several novel stop gain 

and frameshift mutations were discovered, clustered in the genomic region that encodes the 

cytoplasmic region of IL-4R that contains an immunoreceptor tyrosine-based inhibitory motif (ITIM). 

These mutations were downstream of the box1 motif (JAK1 interaction region) and the amino acids 

that are thought to be required for STAT6 interaction.27 The potential loss of function mutations we have 

identified may represent an additional mechanism to promote cHL proliferation in response to IL-4 

stimulation via mutation of normally inhibitory ITIMs.   

 

Two nonsense mutations were also identified in the cytoplasmic regions of CSF2RB (IL3RB). This gene 

encodes the common β chain (CD131) that associates with the IL-3, IL-5, and the granulocyte-

macrophage colony stimulating factor (GM-CSF) alpha receptors. This gene has been shown to be 

recurrently mutated in HL cell lines7 and HL primary samples.9,28 The nonsense mutations we identified 

at this locus are beyond the JAK2 box 1 motif (amino acids 474-482). Because a truncated isoform of 

the common β chain may be related to the pathogenesis of acute myeloid leukemia (AML),29 and 
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mutations in the cytoplasmic region have been associated with growth in T-cell acute lymphoblastic 

leukemia,30 it is possible that these mutations are related to cHL pathogenesis.   

 

Regulating Hippo  

The Hippo pathway is highly conserved across many species, playing a role in cell death, differentiation, 

and inhibition of cell proliferation.31 Somatic mutations in 31 genes involved in pathways regulating 

Hippo/TAZ/YAP or directly interacting with the Hippo cascade were identified. These genes are mutated 

in 40% (12/30) of our cohort. Two SMGs, CDH5 and GNA13, are among this group. CHD5/VE-cadherin 

has not been previously described as a driver of cHL. VE-cadherin is linked through its cytoplasmic tail 

to adherens junction (AJ) proteins, p120, Beta-catenin, and plakoglobin.32 The mutations identified here 

span amino acids 650 - 680, which could impact the p120 and Beta-arrestin association regions of VE-

cadherin that are vital for the stability of catenin-cadherin complexes (Fig. 4). It has been shown that 

disruption of VE-cadherin clustering or suppression of VE-cadherin expression results in the nuclear 

localization of YAP and the promotion of cell proliferation.33,34  

 

Gα13 (encoded by GNA13) is a g-protein coupled receptor known to be mutated in cHL.9–11,18 Gα13 is 

also involved in G-coupled signaling that activates Rho GTPases, which subsequently activates Rho-

associated protein kinase I and II (ROCK1/2). This leads to actin cytoskeletal tension, and has been 

shown to negatively regulate YAP/TAZ phosphorylation.35–38 We observed several missense, 

frameshift, and nonsense mutations, consistent with previous observations in cHL,9–11 Burkitt’s 

lymphoma, and DLBCL.39,40 Frameshift and nonsense mutations may cause loss of function of Gα13, 

which is unlikely to promote TAZ/YAP signaling.39,41 However, two missense mutations were observed, 

including one located at G225S, which is similar to a dominant-negative mutation at G225A40,42 and 

close to Q226L, which is known to cause constitutive activation of Gα13.36,43,44 In addition to the likely 
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loss of function consequences of the GNA13 mutations observed, we identified other variants that may 

impact Hippo signaling either through GTPases or other pathways, including mutations at PRKCH, 

ROCK2, and CSF1R.45–47 

 

MAPK Signaling Mutations 

We identified mutations in 59 genes that are involved in MAPK signaling pathways. Moreover, 43% 

(13/30) of the cohort had at least one mutation in a gene annotated to a MAPK signaling pathway 

(Supplementary Figure 6). Mutations in DUSP4 (missense mutation) and DUSP6 (single base deletion) 

were also defined. DUSP6 and DUSP4 are known to inhibit (dephosphorylate) ERK.48–50 If the 

mutations we identified alter the function of DUSP6 and DUSP4, they would support the proliferation of 

HRS cells. Mutations in the MAPK3 kinases that precede p38 in the signaling cascade (MEK3, 

TAOK1/2, and MAP3K6) and in scaffold proteins like KSR1/2 and JIP1/2 were discovered. These 

results suggest that previously unreported key growth pathways are mutated in cHL and may contribute 

to the pathogenesis of cHL.   

 

Phosphatidylinositol Signaling Mutations  

The PI3-kinase (PI3K)-Akt signaling pathway is an important regulator of many cellular functions and 

is often targeted and dysregulated in cHL.17,51,52 Thirty percent (9/30) of our cHL patient cohort had a 

mutation in a gene mapped to phosphatidylinositol signaling, including the SMG ITPKB. Similar to Tiacci 

et al,10 ITPKB was mutated in 16.6% of our cohort (Supplementary Figure 7). Several missense 

mutations and one nonsense mutation (p.Y4*) were discovered, which is in contrast to the high 

frequency of truncating mutations previously reported.10 We also identified several mutations in this 

pathway that are involved in calcium signaling (ITPR1, ITPR3, and CALM2). Although these are not 
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well described drivers of cHL, it has been shown that these genes can impact oncogene-induced 

senescence and can promote cellular proliferation.53  

 

Germline Mutation in Hypermutated Patient    

To address the etiology of the hypermutated patient, the patient’s germline was analyzed for 

predisposing genetic conditions that could explain the hypermutated phenotype. Since a strong 

presence of COSMIC mutation signature 6 was observed, which is generally associated with defects 

in DNA mismatch repair (MMR) and microsatellite instability (MSI), analysis for unique mutations in 

mismatch and base excision repair genes was performed (Methods and Supplementary Table 2). 

Germline mutations in NTHL1 and MSH6 were discovered. The NTHL1 mutation is an SNV in exon 1 

causing a stop gain at Q287*. The MSH6 mutation identified was a 58 base pair duplication in exon 9, 

resulting in a frameshift (NM_000179; NP_000170.1:p.Lys1325SerfsTer2). This mutation appears the 

most likely candidate responsible for the hypermutated phenotype. This duplication is similar in kind 

and location to a number of the frameshift and nonsense mutations reported in ClinVar that are known 

to cause Lynch Syndrome, an autosomal dominant cancer predisposition syndrome characterized by 

MMR deficiency and MSI (Fig. 6) 
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Discussion 

This study demonstrated the utility of ultra-deep sequencing to uncover recurrently mutated genes in 

low frequency malignant cells and to further define the landscape of somatic mutations in cHL. We 

generated ~1000x exomes in a cohort of 31 primarily newly diagnosed cHLs and matched non-

malignant germline tissues. These findings were validated with orthogonal error-corrected sequencing 

with a recovery rate >95%. Ultra-deep sequencing strategies such as this have been employed to 

detect low VAF and/or subclonal variants in a number of cancers including ovarian cancer,54 CLL,55 

and AML.56,57 However, here we pioneered this approach to overcome the progress-limiting rarity of 

HRS cells in cHL. These findings open up new avenues of research, as this approach provides a 

platform for future prospective studies to analyze mutations in bulk cHL biopsies. Ultra-deep 

sequencing of cHL bulk biopsies confirmed the importance of previously reported pathways in cHL 

including JAK/STAT, NFkB, and those relevant for immune evasion. Moreover, mutations in previously 

unreported genes (AXDND1, CDH5, LIMD2, OR13C2, PCDH7, RDH12, SCN9A, and STRAP) and 

pathways (Hippo/YAP and MAPK) not often associated with cHL were discovered. Mutations 

associated with off-target AID activity that may be driving the pathogenesis of cHL were also revealed. 

Finally, we identified a hypermutated cHL patient and discovered a mutation in MSH6 that is similar in 

kind and location to other variants associated with Lynch syndrome, which could be driving the patient’s 

hypermutated phenotype.  

  

This study identified both known and novel mutations in cHL, with several previously reported 

JAK/STAT pathway mutations confirmed, including STAT6. Truncating mutations in, and proximal to, 

the ITIM located at the C-terminus of IL-4R were discovered, revealing a novel potential mechanism 

for constitutive activation of STAT6 in cHL, by eliminating this suppressive function of IL-4R signaling. 

Kashiwada, et al.58 found hyperproliferation in response to IL4 stimulation when the ITIM in IL-4R is 

disrupted through site-directed mutagenesis in a murine bone marrow cell line, and this response was 
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correlated with increased activation of STAT6. We also observed stop gain mutations in IL3RA. It has 

been shown that HL cell lines express high levels of IL3RA and also express IL3RB,59,60 but there is 

some dispute as to whether or not HL growth is impacted by the presence of IL3.59,61 It has also been 

suggested that mutations at IL3RB may impact leukemia pathogenesis.29,30 Further study is needed to 

understand whether the mutations we identified support the growth of HRS cells or impact cHL biology.  

 

The most recurrently mutated gene we uncovered is SOCS1, a finding observed by others,9,10 

suggesting concordance of our ultra-deep bulk exome approach with HRS purification approaches. 

This included a number of frameshift and nonsense mutations, as well as missense mutations, 

consistent with loss-of-function. SOCS proteins negatively regulate the JAK/STAT pathway, with loss-

of-function leading to augmented JAK/STAT growth signaling. Several SOCS1 mutations were 

identified in the AID sequence recognition motif, and our analyses suggested off-target AID activity as 

a driver of some mutations. AID is a crucial enzyme involved in immunoglobulin gene (Ig) somatic 

hypermutation and class switching that can act on non-Ig chromosomal locations and mutate these 

regions. Off-target canonical AID activity may be responsible for the pathogenesis of some lymphomas 

and leukemias.62–64 Mottok et al. have implicated aberrant AID activity resulting in off-target somatic 

hypermutation as the mechanism of  SOCS1 mutations in multiple germinal center lymphomas.65,66 In 

addition to AID mutations in SOCS1 we also show that potentially aberrant AID mutations are present 

in ARID5B, IGLL5, ZFP36L1, and HIST1H1B. The results of our study suggest aberrant off-target AID 

activity is a characteristic of cHL and impacts several loci including SOCS1, which is the gene most 

impacted by recurrent somatic mutations in our cohort.  

 

Mutations in 31 genes involved in Hippo regulation were identified, with 40% of our cohort (12/30) 

having at least one mutation in a Hippo regulating gene. A number of studies have suggested that 

human tumors use YAP/TAZ,  which are integral transcriptional coactivators within the Hippo pathway, 
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to facilitate proliferation, progression, migration, and metastasis.67 A recent study demonstrated the 

importance of YAP/TAZ somatic mutation to squamous cell cancers including: cervical, lung, head and 

neck, and bladder urothelial squamous cell carcinoma.68 High expression of YAP was also shown to 

be significantly correlated with disease progression and poor prognosis in DLBCL and knock down of 

YAP expression suppressed cell proliferation in DLBCL cell lines.69 Furthermore, the overexpression 

of MST1 or the knock down of YAP inhibited cell proliferation, promoted cell cycle arrest, and apoptosis 

in natural killer/T-cell lymphoma.70 The most prominent mutated genes we identified that impact Hippo 

signaling are CDH5 and GNA13, both of which were shown to be SMGs. CDH5, like many other 

cadherins, is involved in the adherens junction that plays a role in cell architecture and Hippo pathway 

regulation. We identified a cluster of CDH5 mutations that are located in amino acids involved in 

CDH5/VE-cadherin’s interaction with p120, beta-catenin, and plakoglobin. These associations are 

crucial for the stability of the adherens junction, which if disrupted could facilitate nuclear localization of 

YAP and TAZ. All of the mutations we identified in CDH5 are missense, so further work is needed to 

understand the functional impact of these mutations, but the clustered nature of the mutations suggests 

that this region is being targeted in cHL. If the mutations identified here impact the stability of the 

cadherin-catenin complex, they may impact YAP or TAZ nuclear localization and in effect contribute to 

cell proliferation.    

 

MAPK signaling cascades were also found to be perturbed in the analysis, with 43% of the study cohort 

having a mutation in a gene annotated to the MAPK pathway. Mutations in MAPK3 and MAPK2, MAPK 

kinases as well as mutations in scaffold proteins and inhibitors of ERK1/2 were observed. While most 

of the evidence of MAPK kinase pathway involvement in cHL derives from cell line studies, limited 

evidence has corroborated this with primary cHL samples.71–74 Zheng et al. showed that the 

phosphorylated form of ERK1/2 is aberrantly active in cultured and primary HRS cells.74 They also 

show that when upstream MAPK kinases (i.e. MEK1/2) are inhibited, the phosphorylation of ERK is 
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inhibited thereby decreasing the proliferation of HRS cells. The results of the current study corroborate 

the importance of the MAPK kinase pathway in cHL.  

 

A single patient contributed over 70% of the overall somatic mutation burden in this cohort. Since 

hypermutated phenotypes are often a result of germline predisposition,21 we searched for a germline 

variant that may be responsible for this phenotype. Two mutations were identified, one SNV in NTHL1 

and a 58-base repeated sequence in MSH6. Inactivating mutations in MSH6, a DNA mismatch repair 

gene, are associated with Lynch Syndrome. The frameshift variant we identified in MSH6 is strikingly 

similar to other pathogenic variants known to cause Lynch Syndrome. This patient also has a personal 

history of precancerous colon polyps and multiple benign breast masses. Additionally, there is a family 

history that includes a sibling diagnosed with endometrial cancer. Unlike cHL, endometrial cancer has 

been strongly associated with Lynch Syndrome and variants in MSH6. Endometrial cancer has a 

prevalence of 3% in patients with Lynch syndrome and is the most frequently observed cancer in 

women harboring pathogenic MSH6 variants, with a 41% risk of developing endometrial cancer by age 

7075,76.  Although cHL is not a cancer that is generally associated with Lynch syndrome, Wienand et 

al.9 also identified two hypermutated cases in a cohort of cHL patients. Wienand et al.9 indicate that the 

hypermutator phenotypes they observed were associated with mutation signatures that are consistent 

with microsatellite instability (COSMIC signatures 6 and 15), which is similar to our result. They also 

report somatic alterations in MSH3, MSH2 and ARID1A, but do not report an analysis of germline 

variants. Our results suggest that hypermutation does occur in cHL patients, and this phenotype may 

be the result of germline cancer predisposition variants and could be important to guide therapy with 

immune checkpoint blockade.   

 

In summary, we have shown that ultra-deep sequencing can be used to identify somatic variants in rare 

malignant HRS cells. We have further described the role that aberrant somatic hypermutation plays in 
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cHL, and we have suggested a novel role of mutations in IL4R in the constitutive activation of STAT6.  

We also revealed that genes regulating Hippo signaling, the MAPK pathway, and the phosphoinositide 

signaling cascade may also play a role in cHL. We demonstrated the utility of ultra-deep sequencing in 

bulk cHL lymph node biopsies as an alternative to laborious cell isolation techniques. As sequencing 

costs continue to decrease, these methods have the potential to provide a platform to attempt larger 

cohort sequencing of primary cHL samples and open new avenues of research facilitating a practical 

approach to identify and correlate cHL mutations with clinical outcome. 
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Table 1.  

 

Characteristic  Value (N = 31)  

Female sex 16 (52) 

Age, years, median (range) 36.5 (18 – 69) 

Histologic Subtype   

Nodular sclerosis 21 (68) 

Mixed cellularity 1 (3) 

Other  2 (6) 

Not specified 7 (23) 

Stage    

I 0 (0) 

II 14 (45) 

III 7 (23) 

IV 8 (26) 

Unknown 2 (6) 

Early Stage Prognostic Group   

Favorable 2 (7) 

Unfavorable 11 (35) 

Unknown 3 (10) 

Not applicable (Stage III/ IV) 15 (48) 

Bulky Disease   

No 21 (68) 

Yes  9 (29) 

Unknown 1 (3) 

EBV Status by EBER Stain   

No  21 (68) 

Yes  5 (16) 

Unknown  5 (16) 

Approximate total number of RS Cells* 
median (range) 1250 (22 – 6000) 
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Table 1. Patient Characteristics and Demographics 

Data are presented as No. (%) unless otherwise indicated. Histologic subtype other includes 

one patient where Hodgkin lymphoma (HL) and chronic lymphocytic leukemia were present 

(CLL; The CLL sample was excluded from all analyses) and a second patient that was 

designated as interfollicular. Histologic subtype not specified indicates that a cHL subtype was 

not provided. *indicates five samples with no information regarding the number of RS cells.   
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Data Availability 

The raw de-identified exome sequences described in this analysis will be deposited in the NCBI 

sequence read archive (SRA) via dbGaP under the accession phs001229. The amplicons used for the 

orthogonal validation experiment are included in the supplementary data files.   
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Figure 1. Deep Exome Coverage, Validation Rate, Final Variant Count and VAF per Sample

a) Average per base coverage for targeted regions across each tumor and normal sample. b) A 

targeted orthogonal sequencing strategy (HaloPlex; Agilent) was used to validate all variants that 

passed filtering strategies for all samples (except for the hypermutated sample, for which a subset 

of variants were selected for validation-Methods).  The percent of assayed variants that passed or 

failed are shown by sample as well as the number for which validation was not possible due to 

amplicon design failure. The overall validation rate by mutation count is also shown at the right. 

Note: One patient (HL-584) did not have any variants pass filtering and review, therefore 30/31 

patients were included in validation. c) Comparison of exome VAF and HaloPlex VAF is shown for 

samples with 2 or more variants. d) VAF and variant count for all variants across all samples used 

in all further analyses. Note: Variants from one patient failed validation (HL-157) and no further 

variants were called in de novo exercises. This patient was removed from all further analyses. 

Additionally, the patient who did not have variants to validate, gained 2 variants in the de novo 

exercise and was included in the final cohort (HL-584).

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.06.25.21258374doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.25.21258374


Figure 2

HL
−

09
8

HL
−

28
1

HL
−

60
9

HL
−

51
3

HL
−

25
0

HL
−

12
9

HL
−

37
1

HL
−

06
9

HL
−

10
8

HL
−

01
4

HL
−

28
2

HL
−

47
5

HL
−

46
9

HL
−

72
3

HL
−

25
8

HL
−

06
6

HL
−

15
1

HL
−

74
7

HL
−

34
5

HL
−

58
4

HL
−

73
6

HL
−

24
8

HL
−

20
8

HL
−

12
1

HL
−

34
1

HL
−

02
8

HL
−

06
4

HL
−

40
8

HL
−

43
6

HL
−

51
7

Stop Gained

Start Lost

Missense 

Splice Acceptor

Splice Donor

Inframe Insertion

Inframe Deletion

Frameshift

Mutation Type

Stage

Histology

IPS

Early Stage

Primary/Relapse

(n=30)
Clinical Data

Primary

Relapse

Primary/Relapse
Favorable

Unfavorable

Unknown

NA

Early Stage Designation 

0

1

2

3

4

5

International Prognostic Score (IPS)

Unknown Mixed Cellularity

Nodular Sclerosis

Histology

Unknown

II

III

IV

Stage

Unknown

0 10 20 30 40

% Mutant

AXDND1
CD83

SMAD3
OR13C2
RDH12
SCN9A
STRAP
ACTB
IGLC1
LIMD2
P2RY8

ADAMTS12
ALDH1L2
ATXN2L

CAMSAP1
CFAP65
EPPK1
ERICH3

FAM171A1
FAM83H
FMN2

GRIN2D
HMCN2
NEB

NPAP1
PML

SALL3
SIPA1L3

TG
TRIL

TRPS1
UBR4
UNC80
VPS13D
ZFHX4
ZNF608
ZNF729
BCL7A
BTG1
CDH5
EGR1
GNA13
HLA−C
IL4R

UBE2A
TP53

LAMA1
LMTK3
MUC5B
QRICH2
RYR1
B2M
ITPKB

CELSR1
PCDH7
STAT6
XPO1
IGLL5

TNFAIP3
SOCS1

G
en

e

SM
G

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.06.25.21258374doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.25.21258374


Figure 2. Recurrently Mutated Genes in Hodgkin Lymphoma

The frequency and type of mutations affecting genes mutated in 3 or more patients in our cohort are 

shown in each row (60 in total). Genes determined to be significantly mutated using MuSiC (FDR < 

0.05, minimum of convolution and likelihood ratio tests) are highlighted (SMG = Significantly Mutated 

Gene). Each column represents a patient in the cohort. The bar graph on the right summarizes the 

frequency of mutations for that gene across the entire cohort. For genes with multiple mutations in a 

single patient, only 1 mutation type is shown prioritizing the most severe mutation (listed in order in 

the legend). 
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Figure 3. Mutations in AID motifs at SOCS1

a) Schematic of SOCS1 gene structure. Middle track shows where SOCS1 SNVs are located. 

Zoomed-in tracks (top and bottom) show the location of WRC/GYW motifs and the mutations that 

lie within or outside motifs (W= A/T; R= A/G; Y= C/T). b) Distribution of counts of simulated 

mutations observed at SOCS1 that were in WRC motifs. The actual observed number of WRC 

SNVs (12/19) is shown using a green dashed line.
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Figure 4. JAK/STAT Signaling 

a) Diagram of components of the JAK/STAT signaling cascade. Identified SMGs are shown in red; 

genes mutated in at least one non-hypermutated sample are shown in yellow; genes mutated only in 

the hypermutated sample (HL-513) are shown in orange. The gene mutation frequency across the 

cohort is shown as a percent. b) The total number and type of mutation observed are shown. c) 

Zoomed-in view of the C-terminal region of IL4R, where the observed truncating mutations are located. 

Also shown is the proximity of identified mutations to an ITIM motif that may impact STAT6 activation.
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Figure 5. Regulating Hippo

a) Diagram of pathways that regulate Hippo signaling. Identified SMGs are shown in red; genes mutated 

in at least one non-hypermutated sample are shown in yellow; genes only mutated in the hypermutated 

sample (HL-513) are shown in orange. The gene mutation frequency across the cohort is shown as a 

percent. The pathways labeled in green indicate larger pathways not shown in this diagram. b) The total 

number and type of mutation observed are shown in the inset barchart. c) Lolliplot of CDH5; mutations 

identified in the current study are shown on the top and COSMIC mutations found in lymphoid tissue on 

the bottom. d) Lolliplot of mutations identified at GNA13; mutations identified in the current study are 

shown on the top and COSMIC mutations found in lymphoid tissue on the bottom
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Figure 6. Hypermutated Patient Germline Analysis 

a) Comparison of tri-nucleotide sequence contexts of COSMIC signature 6 and HL-513 suggesting a

high degree of similarity between the two.  b) Summary of the mismatch repair germline mutations

identified in HL-513. c) Lolliplot of Lynch Syndrome mutations from ClinVar and the HL-513 mutation

identified here. ClinVar mutations annotated as pathogenic and associated with Lynch Syndrome are

shown. The shaded oval highlights the duplication identified in HL-513. Note: mutations are plotted by

ProteinPaint according to (left-shifted) genomic coordinates but labeled with their HGVS expressions

(right-shifted) from ClinVar explaining the discrepancies in some amino acid positions displayed
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1 

Online Methods 

Patient sample acquisition, characteristics, and ethical considerations   

All patients provided written informed consent for the use of their samples in sequencing as part of the 

Washington University School of Medicine (WUSM) Lymphoma Banking Program. The WUSM 

Institutional Review Board (IRB) approved protocols include: IRB 201108251, 201104048, 201110187. 

All human research activities are guided by the ethical principles in “The Belmont Report: Ethical 

Principles and Guidelines for the Protection of Human Subjects Research of the National Commission 

for the Protection of Human Subjects of Biomedical and Behavioral Research”.  

 

For this project we included all fresh frozen excisional biopsies available in the bank from 2008-2015. 

Pathology review was performed on frozen lymph node samples to confirm the diagnosis of cHL (ED 

& YL). Nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL) was not included. Non-malignant 

samples were collected (skin punch biopsies) and were included for germline analysis. Frozen sections 

(tumor and skin) were cut and used for genomic DNA isolation. The majority of samples included in this 

study were untreated at the time of biopsy. In these cases, the sample included was the diagnostic 

excisional biopsy or core needle biopsy (27 untreated cases). There were also 4 relapses included. In 

two cases the second relapse biopsy was sequenced and for the remaining two cases, the first and 

fourth relapse biopsy was sequenced. Basic demographics and clinical features are described in Table 

1.  
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2 

DNA isolation, library preparation and sequencing  

DNA was isolated using a Gentra Puragene kit at the Washington University Tissue Procurement Core 

facility. Automated dual indexed libraries were constructed with 30-250ng of genomic DNA utilizing the 

KAPA HTP Library Kit (KAPA Biosystems) on the SciClone NGS instrument (Perkin Elmer) targeting 

250bp inserts. Three libraries were constructed per sample, each with a unique index.  Libraries from 

the same patient (3 from the normal and 3 from the tumor) were pooled prior to hybridization, yielding 

a 3µg library pool. Each library pool was hybridized with the xGen Exome Research Panel v1.0 reagent 

(IDT Technologies) which spans a 39 Mb target region (19,396 genes) of the human genome. The 

concentration of each captured library pool was accurately determined through qPCR (Kapa 

Biosystems) to produce cluster counts appropriate for the HiSeq X platform (Illumina). 2x151bp paired 

end sequence data were generated with a target of approximately 100Gb per sample and target mean 

coverage of approximately 1000x. 

Sequence alignment, variant calling and filtering 

Sequence analysis and data management was performed using the Genome Modeling System 

(GMS)1. Briefly, paired-end reads were aligned to human reference sequence GRCh38 using BWA-

MEM v0.7.10-r7892 via the Speedseq analysis platform (v0.10)3.  Duplicate marking was completed 

using samblaster v0.1.224 and alignments were sorted using sambamba v0.5.45. Somatic variants were 

called using SAMtools6, SomaticSniper7,  VarScan8, MuTect9, Strelka10, Pindel11, and GATK12.  

 

Following variant calling, all SNVs and INDELs were annotated using an in house annotation pipeline1. 

After variant annotation, all variants were filtered to remove common variants, sequencing errors, and 
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pipeline artifacts. We required all variants to have a minimum of 50x depth in both the tumor and normal 

samples. We excluded sites with the following characteristics: normal VAF >= 5%, tumor VAF <= 0.5% 

and sites with <= 5 variant supporting reads in the tumor. We filtered sites based on their predicted 

consequences. We removed sites from the 5’ and 3’ UTRs, intronic sites, synonymous variants, and 

sites annotated to non-coding transcripts. To remove artifacts and sequencing errors generated in this 

dataset by the pipelines we required all variants to be called in at least 2 of the 3 libraries for each 

sample. Further, within each library a variant was required to have at least 3 reads of support and a 

VAF >0.5%. As a further attempt to remove pipeline artifacts and sequencing errors, all variants were 

filtered against the 31 normal samples from this study. In this step, SNVs were removed if they had >4 

variant reads and >1% VAF in 2 or more normal samples and INDELs removed if they had >3 variant 

reads and >1% VAF in 3 or more normal samples. Variants were removed if their global minor allele 

frequency was >0.001 ExAC release 0.2.13  

 

Following all automated filters, experienced analysts reviewed all variants in IGV14 using standard 

operating procedures15 to identify sequencing errors, variant caller artifacts, false positives (e.g., 

germline variants) and other systematic anomalies.  

HaloPlex Validation 

Following variant calling, variant automated filtering and manual review, we designed a custom capture 

reagent using the HaloPlex HS Target Enrichment System (Agilent Technologies) to validate the 

somatic variants. We included 1,842 out of 4,692 SNVs and INDELs that passed manual review. The 

variants that were included on the HaloPlex panel were all passing sites from all samples except where 
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amplicons could not be designed (i.e. mitochondrial genes and repetitive regions), and a subset of sites 

from one sample (HL-513) with a very large number of variants. From this hypermutator, 834 out of 

3,684 sites were included on the HaloPlex panel. We additionally tiled across 30 genes selected from 

the most recurrent genes in the cohort and genes known to be recurrently mutated in Hodgkin 

lymphoma (Supplementary Table 5).16,17 The HaloPlex reagent was designed using the Agilent 

SureDesign platform (Supplementary File 1). All probes were designed with two indices, a unique 

molecular barcode (UMI) to allow for error-corrected sequencing, and a sample index to allow for 

sample multiplexing (sample index).  

 

HaloPlex libraries were created, sequenced, and processed using methods similar to previous 

reports,18,19 and the HaloPlex HS Target Enrichment System manufacturer protocol (Agilent 

Technologies, CA). Up to 500ng of genomic DNA was first digested using a mixture of restriction 

endonucleases in the HaloPlex kit. Library quality was assessed with the Agilent 2100 Bioanalyzer. 

Fragmented genomic DNA was then hybridized to the HaloPlex HS probe library. Hybridized genomic 

DNA fragments were ligated to close nicks in the probe-target DNA hybrids, captured with streptavidin, 

and amplified with PCR (22 cycles), creating read families, each with its own unique molecular barcode 

index. Library concentration was assessed with qPCR according to the manufacturer’s protocol (Kapa 

Biosystems). Both tumor and normal samples were interrogated in the HaloPlex validation experiment.  

 

Libraries were normalized, pooled, and sequenced on the HiSeq 4000. Eight samples were sequenced 

with 2 samples/lane and the remaining samples were sequenced with 3 samples/lane. HaloPlex 

sequence data was processed similar to the methods described previously.18 Barcoded FASTQ data 
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was demultiplexed and then reads were trimmed using Flexbar.20 Trimming was performed to remove 

systematic errors introduced to the end of reads by HaloPlex chemistry. Reads were then aligned with 

BWA MEM v0.7.10-r789.2 

 

All SNVs were evaluated using BarCrawler, a custom GATK-based tool.  

(https://github.com/abelhj/gatk/tree/master/public/external-example/src/main/java/org/abelhj). As 

described in Wong et al,18  background noise calculation was performed on a position-by-position basis 

for each identified SNV. At each site read counts were gathered from all other samples. A Fisher’s 

exact test, implemented in the R statistical environment, was used to compare the reference and variant 

read counts at a site to the number of reference and variant reads at that site in all other samples. The 

p-value for this test was retained. Multiple testing correction was then applied with the p.adjust function 

(base R; default parameters - “holm”21). Those variants with an adjusted p-value of less than 0.1 were 

retained. The same process was then repeated with subsequent background calculations excluding all 

variants retained in previous rounds until no new variants were identified.  

 

Following the final iteration of the background noise correction, SNVs with an adjusted p-value of 0.05 

were carried forward. Several other parameters were considered to validate a SNV. SNVs were 

required to have an error corrected depth >= 100 reads in the tumor and the normal, and an adjusted 

p-value >0.05 in the normal. In some instances the normal sample did not have sufficient HaloPlex data 

to evaluate whether or not a site was present in the normal. In these cases we designated the site as 

a ‘tumor-only’ validated site if sufficient tumor depth (100x) was reached and a tumor p-value <= 0.05 

was observed. Finally, as stated above only 834 of the 3,684 sites from the hypermutated patient were 
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included on the HaloPlex reagent. We determined that only 12 of the 834 interrogated sites failed 

validation. Because this sample had a validation rate ~99% and few failing sites upon which a custom 

validation model could be trained, we simply considered the additional 2,850 SNVs from this patient as 

high confidence sites and were included in all subsequent analyses.   

 

Indels were assessed using “consensus bams” - alignments created based on error corrected HaloPlex 

data. Consensus reads were generated from demuxed sequencing data via a wdl workflow that uses 

WalkerTRConsensus_wk5   

(https://github.com/abelhj/gatk/blob/master/public/external-example/target/external-example-1.0-

SNAPSHOT.jar).  

Briefly, reads were trimmed of adapter sequences via cutadapt (-m 30 -u 3) and aligned with BWA-

MEM. WalterTRConsensus_wk5 was then applied (-dcov 1000000 -maxNM5 -mmq 10) to generate 

consensus reads. Read families with less than 3 individual reads with the same UMI were removed 

and not used to create consensus reads. All INDELs were manually inspected using IGV15 and bam-

readcount (genome/bam-readcount: count DNA sequence reads in BAM files) was used to assess the 

number of variant supporting reads and the VAF for the variant. For INDELs we required: a consensus 

bam tumor and normal depth > 5 consensus reads;  > 1 consensus tumor read of support; < 20 

consensus normal bam reads of support; consensus tumor VAF > 0.01%; a consensus normal VAF < 

5%. Similar to the SNVs, if the normal consensus bam could not be evaluated, we required sufficient 

tumor bam depth (5 consensus reads), 1 variant read of support in the tumor and a tumor VAF > 0.01%.  

De novo variant calling  
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Using the consensus bams described above we attempted to call variants within the entire HaloPlex 

analysis space. To accomplish de novo variant calling we created a custom low VAF variant calling 

pipeline by modifying an existing GMS1 variant calling workflow. Briefly, all post processing filters were 

removed, leaving only the filtering that occurs at the variant caller level using the default settings 

(https://github.com/fgomez02/analysis-

workflows/blob/9c9e6a6a48eb321804ce772a2c2c12b4f2f32529/definitions/pipelines/detect_variants.

cwl).  

 

After variants were called, all de novo variants were filtered for basic variant quality. Variants with less 

than 5 consensus reads in the tumor and normal were removed. Sites were required to have a normal 

VAF < 5%, and a tumor VAF > 0.5%. We also required < 5 variant supporting reads (consensus reads) 

in the normal and  >=  2 variant supporting reads in the tumor. All de novo variants were annotated 

using the Ensembl Variant Effect Predictor (VEP) tool (Ensembl v93). Then, we filtered these variants 

by consequence using similar consequence filters described for the exome filtering pipeline. All variants 

that were previously known to us were removed. We also intersected all remaining variants with the 

HaloPlex analysis space using bedtools,22 keeping only variants in regions where probes were 

designed. Following automated filters all remaining variants were manually reviewed in IGV14,15. During 

manual review the consensus tumor and normal bam files were loaded, as well as the exome tumor 

and bam file. Variants were passed if support was seen in the tumor consensus bam as well as the 

tumor exome bam file. Because we called and annotated new variants in the de novo variant calling 

exercise, we updated the consequence annotations of all exome variants using Ensembl Variant Effect 

Predictor (VEP) tool (Ensembl v93) for all sites that passed validation so that all sites would be 
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annotated consistently. Additionally, it should be noted that 7 variants in TCIRGI, CEP290, SMAD3, 

CEP131, COMP, LMTK3, and DOCK3, that originally failed the orthogonal validation were called again 

in the de novo variant calling exercise. After manual review of all available data these sites were 

rescued and included in the final analyses.  

Hotspot variant read counting  

To interrogate our data for known hotspots in cHL, we used bam-readcount 

(https://github.com/genome/bam-readcount) on 10 known variants (6 variants in STAT6, 3 variants in 

XPO1 and 1 variant in NFKBIE - Supplementary Table 1) in all consensus tumor and normal bams. 

Sites were required to have a tumor VAF >= 0.5%, normal VAF < 5%, a tumor var count > 5 reads, and 

a normal var count <= 2 reads.  We also required a total of 5 reads in the tumor and normal. Additionally, 

similar to the consensus de novo variant calling, all variants that passed the automated filters were 

manually reviewed.  All variants at hotspot locations previously unknown to us, that passed all filters, 

were included.  

Variant Analyses 

Significantly mutated gene analysis  

We identified significantly mutated genes (SMGs) using MuSiC.23  The region of interest was restricted 

to the coding space covered by the exome reagent. Additionally, two bases were added to the beginning 

and end of each exon to account for splice sites. All default parameters were used. Significance was 
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determined by comparing the minimum FDR value from the convolution and likelihood ratio tests to our 

predetermined threshold - 0.05.   

 

Pathway analysis  

To identify pathways that are impacted by our somatic mutations we first downloaded the C2 curated 

gene set collection from MSigDB24,25.  This gene set includes canonical pathways from several online 

databases including BioCarta, KEGG, and Reactome. This gene set also includes genes from the 

biomedical literature that have been shown to be related to important biological and clinical states (e.g. 

cancer metastasis or drug resistance). We also included a list of 1,600 known human transcription 

factors26, a list of known regions of off target AID activity in DLBCL and FL,27,28 and selected 

WikiPathways29 (e.g. Hippo regulating pathways). Note that the MAPK signaling pathway was defined 

as the genes included in the KEGG MAPK signaling pathway with the addition of the following genes: 

PCDH730, TRAF731, ARAF, DAB2IP, SHC3, IRS2, KSR2, and KSR132. We identified the pathways from 

these gene sets that were impacted by our most recurrently mutated genes by searching for genes 

mutated in 3 or more patients. When a recurrently mutated gene was mapped to more than one 

pathway, manual inspection was used to retain the pathway(s) most likely to be relevant to cHL. 

Following the creation of our “pathways of interest” data set, we further annotated all genes mutated in 

all patients to these pathways.  

 

Activation Induced Deaminase Analysis 

In the genes we identified as potential targets of aberrant AID activity in the pathway analysis described 

above 27,28 (Supplementary Table 4) we tested whether these loci contain somatic mutations (SNVs) 
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that are likely to be the product of aberrant AID activity. SNVs were considered products of off target 

AID activity if they met the following criteria: the SNV must have a C (or G) as the reference allele, be 

within 2 Kb of transcript start sites (TSS), and be within the WRC/GYW AID sequence motif. To identify 

whether a mutation is within an AID sequence motif we used custom software (Fasta-Region-

Inspector(FRI): https://github.com/Matthew-Mosior/Fasta-Region-Inspector).    

 

To assess the significance of the number of AID target mutations we identified, we used additional 

custom software (Fasta-Region-Randomizer: https://github.com/Matthew-Mosior/Fasta-Region-

Randomizer) to create 100,000 simulated datasets that contain the same number of SNVs observed 

within each target gene. In these simulations, the genomic space that was considered included all 

exons of each gene (i.e. the exonic space included in the exome capture). We then determined the 

observed number of putative AID mutations in each simulated dataset using FRI. To assess whether 

the overall number of off-target AID mutations is significantly different from random expectations we 

calculated how many times our total number of actual AID mutations (or greater) was observed in the 

simulated data.  

 

Mutation signature analysis  

Mutation signatures were assigned using the deconstructSigs R package.33 The reference signatures 

evaluated were the 30 COSMIC v2 signatures of mutational processes in human cancers 

(http://cancer.sanger.ac.uk/cosmic/signatures). Samples that contained >= 50 SVNs were included in 

this analysis.  
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Germline Analysis  

Sequencing data from the hypermutated patient was interrogated for germline variants within genes 

that are involved in mismatch repair and base excision repair (Supplementary Table 2). Sequence data 

was aligned using the same methods previously described for the WashU post harmonization alignment 

and data processing pipeline.34  Briefly, reads were aligned using BWA MEM v0.7.15-r11402, MC (mate 

CIGAR) and MQ (mate mapping quality) tags were added using samblaster v0.1.244, alignments were 

sorted using sambamba5, and duplicates were marked using Picard 

(http://broadinstitute.github.io/picard/). Variants were called using the GATK Haplotype caller (v3.5.0) 

and the GATK Genotype Caller v3.4-0-gf196186.35  

 

Following variant identification, variants were annotated using VEP (Ensembl v93).  To create a high 

quality variant list, variants were required to have a depth of coverage ≧20 reads, ≧ 5 variant supporting 

reads, and a VAF ≧ 2.5%. Additionally, to remove variants unlikely to impact gene function we removed 

variants annotated as located in the 5’ or 3’ UTR, synonymous, non-coding, downstream, nonsense 

mediated decay variants, and variants located in gene regions that have been annotated as regulatory 

regions. We also applied a gnomad (v2.1)36 population allele frequency where we removed variants 

with a MAX_AF > 0.1% filter. Following all filters the remaining variants were further examined through 

manual review14.  
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