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Abstract

Test-negative designs (TNDs) can be used to estimate vaccine effectiveness by comparing the rel-
ative rates of the target disease and symptomatically similar diseases among vaccinated and unvac-
cinated populations. However, the diagnostic tests used to identify the target disease typically suffer
from imperfect sensitivity and specificity, leading to biased vaccine effectiveness estimates. Here we
present a solution to this problem via a Bayesian statistical model which can either incorporate point
estimates of test sensitivity and specificity, or can jointly infer them directly from laboratory valida-
tion data. This approach enables uncertainties in the performance characteristics of the diagnostic
test to be correctly propagated to estimates, avoiding both bias and false precision in vaccine effec-
tiveness. By further incorporating individual covariates of study participants, and by allowing data
streams from multiple diagnostic test types to be rigorously combined, our approach provides a flex-
ible model for the analysis of TNDs with explicitly stated assumptions.

Introduction

Test-negative designs (TNDs) have become a common design to study vaccine effectiveness [1, 2]. In
TNDs, the study population consists of individuals who present to a medical clinic with symptoms re-
sembling those of the disease of interest. We call the disease of interest the "target disease" or "target
infection" depending on the endpoint of interest and we call symptomatically similar diseases "non-
target diseases". In TNDs, vaccine effectiveness is estimated by comparing the number of vaccinated
patients who test positive and negative for the target disease to the number of unvaccinated patients
who test positive and negative for the target disease.

Unfortunately, an imperfect diagnostic test may result in false positives (if specificity is imperfect) and
false negatives (if sensitivity is imperfect). In turn, these false positives or false negatives, alternatively
called outcome misclassifications, will lead to biased estimates of vaccine effectiveness unless statistical
corrections are made [3, 4, 5, 6, 7]. Thus, appropriate statistical consideration of imperfect diagnostic
tests, as well as potential confounders, is important for vaccine effective estimation and public health
decision making.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Aspects of this problem have been studied by others. For instance, Endo et al. [4] proposed a frequen-
tist bias-correction method for TNDs that accounts for imperfect sensitivity and specificity along with
potential confounders (e.g., age and sex). Their method assumes that the true sensitivity and specificity
of the diagnostic test are known, yet in practice, these values are not known exactly because they are,
themselves, estimated from data. In the context of SARS-CoV-2 seroprevalence studies, failure to incor-
porate such uncertainty in sensitivity and specificity has led to incorrect conclusions [8, 9]. More broadly,
small discrepancies between the assumed and actual sensitivity and specificity values can produce large
biases [10, 11].

Jackson et al. [6] compared a Bayesian approach and a frequentist approach for estimating vaccine effec-
tiveness in TNDs, but without consideration of imperfect test sensitivity and specificity. Imperfect tests
have been analyzed in Bayesian frameworks, however, in the context of case-control studies in pertus-
sis [12] and more general prevalence estimation [9, 13]. Thus, at present, more general Bayesian frame-
works for TND studies in the presence of imperfect diagnostic tests are lacking.

Here, we propose a Bayesian approach for estimating vaccine effectiveness in TNDs that corrects for an
imperfect diagnostic test and potential confounders. We show that correcting for imperfect sensitivity
and specificity is important for obtaining accurate estimates and that our method captures the true vac-
cine effectiveness across a wide range of TND contexts. We also show how our method can be used to
leverage the results of multiple parallel study sites, using the same or different diagnostic tests, to im-
prove vaccine effectiveness inference. We provide open-source code that can be used to retrospectively
analyze study data and prospectively plan studies.

Model and Methods

TND with known sensitivity and specificity

Study subjects in a test-negative design (TND) are patients arriving at a medical clinic with symptoms
suggestive of the target disease. After recruitment, those who test positive (+) for the target disease are
considered “test-positive cases” while those who test negative (-) are considered “test-negative con-
trols.” By further stratifying the cases and controls by whether each is vaccinated (v) or unvaccinated
(u), one can estimate vaccine effectiveness via the odds ratio for having the target disease between those
with and without the vaccine,

Nyt /Ny
nu+/ ny- ,

where each n counts individuals in the four possible vaccine and target disease status combinations.

VE=1- (D

To incorporate the fact that risk of disease can depend on patient characteristics (e.g., age and sex), an
alternative approach is use a logistic regression framework in which vaccination status is one covariate
among many. Letting p(x) be the probability that an individual has the target disease, letting x, € {0,1}
be an individual’s vaccination status, and letting x1, X2, ... X,;; be other individual covariates, the model
becomes

. (x)
logit[p(x)] = log(lf—p(x)) = Bo+Buxy+Prx1+ Paxo+ ...+ BmXm - )
In this formulation, ; E ;X()x) is the odds an individual with covariates x has the target disease and VE =

1 —exp(B,). The remaining § values reflect the impact of individual covariates on the likelihood that
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an individual has the target disease, thus controlling for these covariates in the estimation of vaccine
effectiveness.

The above estimates assume that the diagnostic test for the target disease is reliable. However, real di-
agnostic tests suffer imperfect sensitivity and specificity. To account for this possibility, we model the
outcome of the diagnostic test y for an individual with covariates x as the realization of a Bernoulli trial,

y ~ Bernoulli [se- p(x) + (1 —sp) - (1 — px))] , 3)

where potentially imperfect sensitivity (se) and specificity (sp) create the possibility that false negatives
or false positives may affect whether y correctly represents the target disease state.

The TND point estimate of Eq. (1) can be adjusted for the target disease diagnostic test’s sensitivity and
specificity, arriving at,
[ny+ —ny(1=sp)] [ny- — nu (1 —se)]

VEZI_ b
[y = nu(1=sp)] [ny— — ny (1 —se)]

4)

where n, = n,. + n,_ is the total number of unvaccinated individuals, and n, = n,+ + n,_ is the total
number of vaccinated individuals. Previous work by Endo et al. showed that Equations (1) and (4) can be
subtracted to quantify the substantial estimation bias that results if one fails to correct for the diagnostic
test [4].

Here we introduce a straightforward Bayesian model and logistic regression framework which simul-
taneously addresses the complications of (i) individual covariates, (ii) imperfect diagnostic tests, and
(iii) uncertainty in sensitivity and specificity themselves. In this model, we combine the key ingredients
above, by letting individual test outcomes {y} be given by Eq. (3), with p(x) given by Eq. (2), satisfying
requirements (i) and (ii). The next section addresses how our framework satisfies requirement (iii).

TND with uncertain sensitivity and specificity

We incorporate uncertainty about the values of sensitivity and specificity by choosing prior distributions
for both parameters. In the ideal case, these priors should be anchored directly in laboratory validation
data—performance on known positives and negatives—but may also be specified indirectly by analy-
sis of point estimates from the literature. When laboratory validation data are available, in the form of
Nneg known negative validation samples of which tn are correctly called true negatives, and Npos known
positive validation samples, of which tp are correctly called true positives, we model

tn ~ Binomial(Npeg, Sp)

tp ~ Binomial(Npos, se) . (5)

This approach, in which lab validation data directly inform both the estimates and uncertainties of the
diagnostic test, follows similar joint inference models from the seroprevalence literature [9, 14]. In this
study, we assume that, before seeing the test validation data, little is known about sensitivity and speci-
ficity. This assumption corresponds to using Uniform(0, 1) priors on sensitivity and specificity.

This Bayesian approach would be incomplete without specification of prior distributions on the remain-
ing parameters. In the absence of information on the relationship between covariates and odds of infec-
tion with the target disease, we use uninformative priors for 81, B2, ..., 8- Most importantly, for the prior
distribution over the vaccine effectiveness parameter 3,, we suggest either an uninformative prior or a
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prior informed by past vaccine effectiveness data, as in [6]. In this study, we used a Gamma(2,0.5) prior
for B,. This prior corresponds to assigning 95% probability to vaccine effectiveness being between 0.47
and 0.99 (before seeing the data). For 8y, we used a Normal(0, 1) prior. This prior assigns 95% probability
to the probability being between 0.12 and 0.88 that an unvaccinated individual with all other covariates
equal to zero has the target disease (before seeing the data).

Incorporating multiple diagnostic tests

A single TND study may rely on multiple diagnostic tests with potentially different sensitivities and speci-
ficities. For instance, both rapid diagnostic and PCR tests have been used to study influenza and SARS-
CoV-2, with test characteristics depending on both the manufacturer and the protocol. Our Bayesian
framework is easily extended to the analysis of such study designs and, similarly, permits meta-analyses
of multiple studies even if each study used different diagnostic tests.

Suppose se;j and sp; are the sensitivity and specificity of diagnostic test j, respectively. The test outcome
y; of an individual with covariates x who receives test j is modeled by

Vi ~Bern0ulli[sej~p(x)+(1—spj)'(1—p(x)) ) (6)

where p(x) is defined by logit [p(X)| = Bo + Bvxy + B1X1 +... + BmXy as in Eq. (2).

Here, by not indexing the § coefficients by the test j, we are assuming that the various tests are being
used to study either a single population or multiple populations with similar risk of disease. However, if
this is not the case, this model may be extended to a hierarchical model in which g coefficients (except
for 3, are indexed by the population from which the data were sampled.

Lastly, if lab validation data for sensitivity and specificity are available, such information may be incor-
porated separately into the model for each type of diagnostic test, via

tn; ~ Binomial(Nyeg, j, Sp j)

tp; ~ Binomial(Npos, j, s€;) , )

where, for test j, Npeg j is the number of negative validation samples of which tn; are correctly called
true positives and Npos,j is the number of positive validation samples of with tp; are correctly called true
positives.

Results

This section is split into two parts. The first part addresses estimating vaccine effectiveness when sen-
sitivity and specificity are imperfect but their values are exactly known. In the Bayesian framework, this
amounts to putting point priors on sensitivity and specificity. The second part addresses estimating
vaccine effectiveness when sensitivity and specificity are, themselves, estimated with uncertainty from
laboratory validation data. In the demonstrations that follow, we consider only one covariate but the
Bayesian logistic regression approach can incorporate additional covariates as needed.
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Figure 1: Corrected and uncorrected vaccine effectiveness point estimates, Bayesian posteriors, and
95% HDPIs. For simulated study data with true sensitivity = specificity = 0.8, the uncorrected estimates
assume (incorrectly) that sensitivity and specificity are equal to one. The corrected inferences assume
(correctly) that the sensitivity and specificity are 0.8. This figure illustrates the importance of adjusting
for imperfect sensitivity and specificity. The simulated data used to generate this figure consisted of a
vaccinated and unvaccinated group. The vaccinated group had consisted of 2060 test positive individuals
and 2962 test negative individuals. The unvaccinated group consisted of 2532 test positive individuals
and 2456 test negative individuals.

Imperfect but known sensitivity and specificity

First, in comparison to existing vaccine effectiveness estimators, we investigated whether our corrected
Bayesian vaccine effectiveness inferences are accurate across a range of TND scenarios. To do so, we
simulated study data with known parameter values and then tested our ability to recover the true vaccine
effectiveness from the generated data with a 95% credible interval (highest density posterior interval,
HDPI) quantifying uncertainty in the vaccine effectiveness estimate. Figure 1 shows an example of one
such simulation in which the corrected estimates accurately capture the true vaccine effectiveness. In
this example, uncorrected estimates, which assume perfect sensitivity and specificity, show substantial
downward bias, and the uncorrected 95% credible interval fails to capture the true vaccine effectiveness.

To more systematically evaluate the impact of test misclassification error and confirm our approach’s
ability to estimate vaccine effectiveness, we created 500 synthetic datasets with known true parameter
values. For each dataset, we inferred vaccine effectiveness using both the corrected and uncorrected
models. To generate the 500 sets of parameter values, we drew parameters independently from the fol-
lowing distributions:

prevalence ~ Uniform(0.1,0.9)
VE ~ Uniform(0.5,1)
se ~ Uniform(0.6,1)
sp ~ Uniform(0.6,1) . 8)

For all simulations, we assumed a study size of 5000 individual, each of whom was vaccinated with prob-
ability 0.5. Given each individual’s vaccination status x,, the individual’s test status was determined by a
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Figure 2: Corrected and uncorrected vaccine effectiveness point estimates and Bayesian highest den-
sity posterior intervals (HDPIs) across a variety of true parameter scenarios. Each of the 500 scenarios
is characterized by four parameters: VE, prevalence, se, and sp, all drawn according to Eq. (8). Scenar-
ios are analyzed through (A) corrected Bayesian point estimates, (B) corrected Bayesian 95% HDPIs, (C)
uncorrected Bayesian point estimates, and (D) uncorrected Bayesian 95% HDPIs. Scenarios are plotted
from high specificity (top) to low specificity (bottom), illustrating the relationship between uncertainty,
bias, and specificity.

Bernoulli trial with probability
px)-se+(1-px)-(1-sp),

where logit[p(x)] = Bo+ B, x, is the probability an individual with covariates x has the target disease from
Eq. (2).

Across the 500 simulations, 97.6% (488/500) of the corrected 95% HDPIs captured the true vaccine effec-
tiveness. The mean absolute error of the corrected point estimates was 0.036 (Fig. 2A,B). On the other
hand, only 4.8% (24/500) of the uncorrected 95% HDPIs captured the true vaccine effectiveness and the
mean absolute error of the uncorrected point estimates was 0.257 (Fig. 2C,D). The uncorrected estimates
systematically underestimated vaccine effectiveness aligning with analytical predictions [4].

Imperfect tests have two further effects on inference. First, as test performance worsens, the bias of un-
corrected estimates increases, revealed by plotting uncorrected estimates in order by specificity (Fig. 2C,D).
Second, as test performance worsens, uncertainty of all estimates increases, as quantified by HDPI widths
(Fig. 2B,D).
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Figure 3: Vaccine effectiveness inferences can be improved by combining data from different diag-
nostic tests. For two (simulated) studies of 5000 individuals, one of which used a diagnostic test with
se = 0.7 and sp = 0.95 and the other used a diagnostic test with se = 0.5 and sp = 0.90, the vaccine effec-
tiveness posteriors are shown. Inferring vaccine effectiveness in a Bayesian framework that incorporates
both studies is better than inferring vaccine effectiveness from either of the two studies separately.

Combining data from different diagnostic tests

To illustrate how evidence from multiple tests may be integrated into a single joint vaccine effectiveness
estimate, we used the same simulation framework used to create Fig. 1 to simulate data from two dif-
ferent diagnostic tests, (i) se = 0.7 and sp = 0.95, and (ii) se = 0.5 and sp = 0.9, representing hypothetical
laboratory and a rapid diagnostic tests, respectively. To generate data, 8y was set to logit(0.5) and 8, was
set to log(0.5).

After generating data for the two datasets and performing inference on the two datasets separately and
then jointly, we found that the vaccine effectiveness inference from our joint Bayesian model is more
accurate (as measured by the distance between the true vaccine effectiveness and the posterior mean or
median) and has less uncertainty (as measured by HDPI widths) than from either data source individu-
ally (Fig. 3). While this analysis shows how data from two different diagnostic tests can be combined to
produce improved estimates over either data source on its own, the model could be extended to include
additional tests as appropriate.

Imperfect and uncertain sensitivity and specificity

Sensitivity and specificity are typically estimated from limited validation data [9, 13, 14] and, thus, they
carry uncertainty. Failure to account for this uncertainty may lead to erroneous inferences and conclu-
sions [8, 9]. In this section, we examine how our Bayesian framework propagates uncertainty in sensitiv-
ity and specificity into vaccine effectiveness inferences.

First, we examined how increasing laboratory validation efforts leads to decreasing uncertainty in sen-
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Figure 4: Increasing the amount of data used to validate sensitivity and specificity improves infer-
ences. The posteriors for different number of tests used to validate sensitivity and specificity are shown.
Here, num tests = Npos = Npeg. We show the posteriors for se (A), sp (B), and VE (C). As the number of
tests used to validate sensitivity and specificity increases, the posteriors tighten around the true param-
eter values.

sitivity and specificity, in turn affecting vaccine effectiveness inferences. If sensitivity is estimated via tp
true positive results in Npos tests of known positive individuals and specificity is estimated via tn true
negative results in Npeg tests of known negative individuals, then the model is

tn ~ Binomial(Npos, s€)
tp ~ Binomial(/Npeg, Sp)

px) = logit‘1 [,60 + Buxy+ Prx1+ Poxx ...+ ﬁmxm]
y ~Bernoulli [se- p(x) + (1 —sp) - (1 - pXx))] . 9)

We assigned uniform priors to sensitivity and specificity, equivalent to assuming that all values are equally
plausible before seeing the validation data.

We explored how using a validation study to estimate sensitivity and specificity affects vaccine effective-
ness inference by using the model in Eq. (9) to simulate data. For simulations, we set N = 5000, se = 0.7,
sp = 0.95, By = logit(0.5), and §, = 1og(0.5) and we varied the amount of data used to estimate sensitiv-
ity and specificity, Npeg and Npes, ranging from 0 validation samples to 1000 valudation samples. After
simulating data, we then used the Bayesian model in Eq. (9) to infer the parameters that generated the
data. Since the model in Eq. (9) jointly models sensitivity, specificity, and vaccine effectiveness (through
B), the Bayesian posterior allows us to estimate sensitivity and specificity in addition to vaccine effec-
tiveness.

As the amount of data used to estimate sensitivity and specificity increases (i.e., Npos and Npeg increase),
uncertainty in their values decreases accordingly (Fig. 4A,B), thereby improving vaccine effectiveness
inference (Fig. 4C). As expected, increasing the amount of data used to estimate sensitivity and specificity
causes the posteriors for sensitivity and specificity to tighten substantially around their true values, while
the posterior for vaccine effectiveness tightens modestly, reflecting combined uncertainties from both
validation and field data.

Previous work has shown that vaccine effectiveness estimates are more affected by poor sensitivity in
some scenarios and poor specificity in others [3, 4], thereby informing test and test cutoff selection.
We investigated a related question by asking whether vaccine effectiveness estimates are more affected
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by low precision in sensitivity vs specificity estimates. To investigate the potential trade-off between
precision in sensitivity versus specificity, we fixed the total number of diagnostics tests used to validate
sensitivity and specificity (i.e., we fixed Npeg + Npos), and varied the proportion of the total that went
toward validating specificity as opposed to sensitivity.

We simulated test validation and vaccine effectiveness TND data via Eq. (9) with fixed Npeg + Npos =
400. We assumed Uniform(0, 1) priors on se and sp. For each set of true parameters (i.e., the relative
prevalence of the target disease, the probability that an individual is vaccinated, vaccine effectiveness,
sensitivity, and specificity), we varied the proportion of the total number of validation tests that went to
estimating specificity. And, for each proportion, we performed 50 simulations and averaged the vaccine
effectiveness 95% HDPIs (Fig. 5A) and the bias of the vaccine effectiveness posterior mean (Fig. 5B).

To estimate vaccine effectiveness with minimal uncertainty and bias, we found that the relative impor-
tance of precision in sensitivity versus specificity depends on the scenario (e.g., the target disease’s rel-
ative prevalence) (Fig. 5). In low relative prevalence scenarios in which there are few true positives, it is
generally more beneficial to precisely estimate specificity. In high relative prevalence scenarios in which
there are few true negatives, it is generally more beneficial to precisely estimate sensitivity (Fig. 5). More
broadly, this experiment illustrates how one may investigate the effect of both the values of sensitivity
and specificity and the precision in their values on vaccine effectiveness inference.

Finally, validation data contain information about sensitivity and specificity and, thus, having validation
data updates the uninformative Uniform(0, 1) priors on sensitivity and specificity. However, the TND
data also reflects information about sensitivity and specificity. As a consequence, even if all the validation
tests are allotted to validating sensitivity, the posterior on specificity will not be Uniform(0, 1) but will
reflect the limited inferences about specificity that can be drawn from TND data (Fig. S2).

Discussion

This study introduced and demonstrated a Bayesian approach to vaccine effectiveness estimation via a
test-negative design, adjusted for imperfect test sensitivity and specificity as well as individual covari-
ates. Our approach avoids the pitfalls of bias, by adjusting for sensitivity and specificity, and of false
precision, by incorporating the uncertainty associated with sensitivity and specificity themselves. Based
on this framework, we showed how data from both the field site and validation labs may be used to
produce joint posterior estimates of vaccine effectiveness, sensitivity, and specificity. This allowed us to
demonstrate how vaccine effectiveness estimates may be made more precise simply by better validat-
ing the performance characteristics of diagnostic tests. We further showed how our Bayesian model can
be used to estimate vaccine effectiveness from multiple data streams at once, each based on a different
diagnostic test.

One important finding is that imperfect sensitivity and specificity lead to increased uncertainty of vac-
cine effectiveness estimates, even when vaccine effectiveness estimates are corrected and unbiased (Fig. 2).
Thus, while several preceding studies have shown that estimates can be made unbiased by adjusting for
sensitivity and specificity [5, 3, 4], here we further showed that test performance affects vaccine effec-
tiveness uncertainty even after bias adjustment, leading us to conclude that there is independent value
in high-performance diagnostic testing, even if signals may be statistically debiased a posteriori.

Uncertainty is also affected by sample size, both for the number of individuals recruited into the study
as well as the number of negative and positive controls used to validate test performance. Our approach
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Figure 5: Determining the best allocation of a fixed number of validation tests. The horizontal axis
corresponds to the proportion of 400 diagnostic tests that were allocated to validating specificity. For
each proportion, sensitivity and specificity validation studies were simulated along with a vaccine effec-
tiveness (VE) study of 5000 individuals. Independent uniform priors on the interval [0, 1] were used on
test sensitivity and specificity before seeing the validation data. We fixed vaccine effectiveness and the
probability a study participant is vaccinated at 0.75 and 0.5, respectively. The true relative prevalence
of the target disease (prevalence), sensitivity (se), and specificity (sp) were varied to generate the curves
shown. For each curve and each proportion of validation tests used to validate specificity, we conducted
50 simulations. Over these 50 simulations, we computed the average vaccine effectiveness 95% HDPI (A)
and posterior mean bias (B). The curves show how one can allocate validation tests to maximally benefit
vaccine effectiveness inference (i.e., to produce 95% HDPIs of minimal width and bias).

and accompanying software allow one to explore various choices for these sample sizes, linking them to
uncertainty of vaccine effectiveness inferences measured via the width of the vaccine effectiveness pos-
terior credible interval. This, in turn, allows for decisions as to whether or not a larger study or additional
test validation efforts are likely to be worth the additional effort (Fig. 4).

As with any statistical model, frequentist or Bayesian, our model makes assumptions which should be
highlighted. One assumption is that there is no misclassification of vaccination status (i.e. exposure mis-
classification). This assumption has been relaxed in some applications others [5, 10, 15, 16, 17, 18]. We
also assumed that sensitivity and specificity are independent, yet some assays featuring cutoff parame-
ters necessarily incur a sensitivity-specificity tradeoff, which may require additional care [15, 16].

With increasing emphasis being placed on reproducibility and open data practices, our work highlights
the importance of reporting the raw outcomes of validation tests, not just point estimates. These values
have meaningful impacts on not only the uncertainty of estimates [14], but study conclusions as well [9].
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Supplementary Material
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Figure S1: Vaccine effectiveness (VE) highest posterior density interval (HDPI) widths as a function
of increasing parameter values. For the same simulated scenarios used to generate Fig. 2, we plot the
corrected and uncorrected HDPI widths (corrected in purple, uncorrected in pink) as functions of the
four simulation parameters: (A) sensitivity, (B) specificity (as in Fig. 2), (C) vaccine effectiveness, and
(D) prevalence which is, more specifically, the relative prevalence of the target disease. The uncorrected
HDPIs generally have narrower HDPIs as they assume sensitivity and specificity are perfect (i.e., they
assume se = sp = 1) which leads to erroneously confident (i.e., narrow) credible intervals. As specificity
nears one, the HDPI widths become narrow reflecting the importance of high specificity in estimating
vaccine effectiveness. Interestingly, as a function of prevalence, the vaccine effectiveness HDPI is nar-
rowest when the target disease is approximately equally as prevalent as the non-target diseases, i.e., when
prevalence = 0.5 (Fig. S1D).
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Figure S2: Vaccine effectiveness (VE), sensitivity (se), and specificity (sp) posteriors. Here we show
vaccine effectiveness (A), sensitivity (se), and specificity (sp) posteriors for four randomly selected simu-
lations of the 50 simulations used to produce Fig. 5 with true parameter values: relative prevalence= 0.2,
se = 0.85, sp = 0.98, and the proportion of the 400 validation tests used to validate specificity= 0.99. Al-
though the vast majority of the validation tests were used to validate specificity, the vaccine effectiveness
TND data contains information about sensitivity that our Bayesian inference framework uses to update
the Uniform(0, 1) prior.
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