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Abstract

Background Malaria incidence in Brazil reversed its decreasing trend when cases from
recent years, as recent as 2015, exhibited an increase in the Brazilian Amazon basin, the area
with highest transmission of Plasmodium vivax and Plasmodium falciparum. In fact, an increase
of more than 20% in the years 2016 and 2017 revealed possible vulnerabilities in the national
malaria-control program.

Methods We studied factors that are potentially associated with this reversal, including
migration, economical activities, and deforestation, and weakening of investment in control
programs. We analyze past incidences of malaria cases due to Plasmodium vivax and Plasmodium
falciparum with a spatio-temporal Bayesian model using more than 5 million individual records
of malaria cases from January of 2003 to December of 2018 in the Brazilian Amazon to establish
the municipalities with unexpected increases in cases.

Results We observe an increase in imported cases from border countries in Roraima state
and found small effects due to deforestation and change of occupations. Also, an overall funding
reduction from 2013 to 2016 happened before an increase in malaria cases in five regions in
Amazon basin, markedly for P. vivax incidence and especially, in Pará and Roraima States.

Conclusion Urban developments, discontinued funding for control programs, migration
from border areas, deforestation activities, and different economic activities such as mining and
agriculture appear linked to the rebound on malaria incidence. These multifactorial drivers
show that malaria control programs require permanent attention towards elimination.

keywords: Plasmodium vivax, Plasmodium falciparum, Malaria rebound, Spatio-temporal Bayesian
model

Background

Control of malaria transmission depends on multifactorial aspects involving vector control, prophylactic
treatment, treatment of infected individuals. But these efforts require permanent attention and also control
of exogenous conditions. In the case of Brazil, the country reduced its malaria incidence due to both
Plasmodium vivax and Plasmodium falciparum until the year of 2015 but data from recent years exhibited
an increase in notified cases [1]. In fact, an increase of 25% between 2016 and 2017 revealed the vulnerability
of these efforts [2, 3].

Amazon basin has an area greater than many countries and a huge species diversity due to the Amazon
forest and preserved natural resources. These regions have accounted for 99.5% of cases in the last years
[4]. But urban developments, deforestation activities, and different economic activities such as mining pose
challenges to a large malaria control program.

Previous studies established a set of plausible factors, related to economic activities and investment
[5, 6, 7, 8] but none of them evaluated the unexpected increase of cases from 2016 to 2018 in the Amazon
region of Brazil. On the other hand, Amazon region presents divergences in malaria incidence between
municipalities and States [9], and some of the previous studies only focused on specific regions.
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Here, we analyzed incidence trends from 2003 to 2015 defining an expected trend using a statistical
model. This model permits us to have predictions of incidences expected in the following years if the
trend had stayed. We compare the observed incidence from 2016 to 2018 in all municipalities in Amazon
region to the expected values. We also add a Bayesian model to investigate possible relationships of this
increase among multiple factors. We identified unexpected incidences due to investment from the Brazilian
Ministry of Health, imported cases, deforestation in specific areas. Other aspects were also analyzed, such
as occupations of infected individuals.

Methods

Epidemiological data. We employed 5.972.715 individual records of malaria cases from January of 2003
to December of 2018 in the States of Amazonas (AM), Acre (AC), Pará (PA), Amapá (AP), Roraima (RR),
Rondônia (RO), Mato Grosso (MT), Maranhão (MA) and Tocantins (TO) (see study area in additional file
4). Each record included: notification date, infection data, notification type (active or passive), notification
location, occupation, infection location, examination result, periodic control. This data were provided by
The Brazilian Information System of Epidemiological Surveillance (SIVEP) where they mainly recorded
clinical-symptomatic cases.

The study included only notifications of cases by P. vivax and P. falciparum. Exclusion criteria were:
periodic-control records after treatment; asymptomatic cases (common in active notification); inconsistent
information in dates;

Here, we obtained 3.232.766 observations from 3.970.980 (81.41%) to P. vivax and 685.317 observations
from 885.115 (77.43%) to P. falciparum.

Population data. We also employed annual records of population and Brazilian map per municipalities
from the Brazilian Institute of Geography and Statistic (IBGE) webpage in xls and shp file-format.

Deforestation data. PRODES project of National Institute of Spatial Research provided the annual
deforestation in Km2 per municipality.

Investment in control programs. We obtained from Brazilian official press the records of funds des-
tined to malaria programs from the Brazilian Ministry of Health in the period from 2003 to 2018. A number
of 38 ordinances in the Brazilian official press describe the amount of funds and States or Municipalities as
destinations.

Bayesian models and incidence prediction

We performed a Bayesian model to represent malaria incidence of 808 municipalities in 192 months (from
January of 2003 to December of 2018). Spatial variation was labeled as i = 1, ..., 808 and temporal variation
was labeled as t = 1, ..., 192. yit is malaria incidence in municipality i at month t. We modeled yit as counts
in a Poisson distribution with mean λit (see equation 1).

yit ∼ Poisson(λit) (1)

λit = ρitεit with ρit as incidence rate and εit as offset; we used municipality population per 100.000
inhabitants as offset. Here, incidence rate is linear predictor in logarithmic scale (equation 2).

ηit = log(ρit) = α+ γk + φl + βi, (2)

with α as average incidence in all municipalities, γk as month effect (k = 1, ..., 12) according with Random
Walk Model of order two (RW2) [35], φl as year effect (k = 1, ..., 16) according with independent Gaussian
random effects (IID) and βi as municipality effect according with IID. We also implemented a second
representation adding an spatial and temporal effect (equation 3).

ηit = log(ρit) = α+ γk + φl + βi + νi + δt, (3)

adding νi as spatial random effect that consists of two terms according to Besag–York–Mollie (BYM) spec-
ification [36], δt as temporal random effect derived from the Bernardinelli et al. characterization [37].

We adopted the Integrated Nested Laplace Approximation (INLA) to model estimation [38, 39]. This
approach is a Bayesian method that provides computational efficiency through INLA package in R.

2

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2021. ; https://doi.org/10.1101/2021.06.24.21259361doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.24.21259361
http://creativecommons.org/licenses/by-nc-nd/4.0/


We have two models: a base model (model 1 equation 2) and base model plus spatial and temporal
effects (model 2 equation 3). These models were implemented through INLA per each State and then,
we evaluated both models using the deviance information criterion (DIC) that assess accuracy of Bayesian
models [40]. Model 2 obtained the least DIC for all states (see additional file 5), therefore, we chose this
model for predicting using INLA.

Prediction difference

We obtain the difference between real incidence and predicted incidence per month in each municipality.
Incidence data from January of 2003 to December of 2015 were employed for modelling and incidence from
January of 2016 to December of 2018 were employed for calculating prediction difference. To see impact
by year, we calculate an average difference of prediction per year (2016, 2017 and 2018). This produced an
estimated difference able to perform a general map by year but it implied an estimation discrepancy (e.g.
some municipalities in additional File 3).

Difference maps displayed the average difference of prediction in 2016, 2017 and 2018 for P. vivax and
P. falciparum incidence. We preformed these maps in R using lattice package [41].

We defined positive difference as the incidence above prediction, therefore, it represents an unexpected
increase of cases above past trends. We selected the most affected municipalities for analysing their positive
difference with some variables. Municipalities with a positive difference above 25 cases of P. vivax and
above 10 cases of P. falciparum were selected. Head maps displayed the selected municipalities and they
were implemented in R using ggplot2 library [42].

Model with deforestation and occupation categories

Incidence data in individual level also reported the occupation and place of infection (SIVEP data). We
counted the frequency of cases from 12 occupations categories per each State in the most affected municipal-
ities with positive difference; occupations categories are agriculture, livestock, housing, tourist, gold-mining,
vegetable extraction, hunting/fishing, road building, mining, traveler and other. On the other hand, we
counted the frequency of imported cases from border countries per each State in the most affected munici-
palities with positive difference.

We compared the annual incidence with annual deforestation and the proportion of cases by occupation
categories in the period from 2003 to 2018. We calculated the proportion of cases divided by five categories:
agricultural activities (agriculture and livestock), outdoor activities (vegetable extraction, hunting/fishing
and road building), mining (gold mining and mining), travelling and housing. we performed a Bayesian model
to represent malaria incidence of 808 municipalities in 16 years (from 2003 to 2018) adding a random effect
of deforestation and each occupation category. Spatial variation was labeled as i = 1, ..., 808 and temporal
variation was labeled as t = 1, ..., 16. yit is malaria incidence in municipality i at year t. We modeled yit as
counts in a Poisson distribution with mean λit (see equation 1). Equation 4 joins the structure of equation
3 adding the variable effect before 2016 and after 2015.

ηit = log(ρit) = α+ γk + φl + βi + νi + δt +

6∑
n=1

(ζ1,nxn,i + ζ2ωi + ζ3,nωixn,i) , (4)

xn,i represents the variable n at year i, ωi is a binary variable for representing the period from 2016 to 2018
(ω14, ω15, ω14 = 1 and ωi = 0 for i < 14), ζ1,n is the random effect of variable n in all period, ζ2 is the
random effect after 2015 and ζ3,n is the random effect of variable n after 2015. We considered Variables
with unexpected increase in their effect on incidence after 2015, variables with ζ3,n intervals greater than 0.

Exploratory analysis of investment in control programs

We compared annual malaria incidence with annual investment via descriptive analysis only, since this
information is on a timescale (year) different than the one (month) of the statistical model.
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Results

Model validation and expected incidence after 2015

Analysis from our statistical model permitted to generate samples that describe the time series of malaria
incidences due to P. vivax and P. falciparum across cities and states in the Brazilian Amazon basin. These
series can be compared to the actual incidence in all states from 2003 to 2015 for both P. vivax and P.
falciparum. Analysis is carried at municipality levels and presented the aggregate values at state level.
Bayesian model estimated increases and decrements in malaria incidence from 2016 to 2018 according to
state-past trends and the real incidence were above predictions in some states (Figure 1). This is the case of
P. vivax incidence in Amazonas (AM), Acre (AC), Pará (PA), Amapá (AP), Roraima (RR), and Rondônia
(RO) where real incidence surpassed predictions indicating that these States experimented an unexpected
growth of cases. This effect also occurred with P. falciparum incidence in AC, AP and RR with less severity
than P. vivax incidence.
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Figure 1: Comparison between model prediction and malaria incidence per state. Blue and black
lines represent real incidence and predicted incidence for P. vivax; Green and red lines represent
real incidence and predicted incidence for P. falciparum; Figures illustrate incidence and prediction
per month. Dotted line represents the moment (January of 2016) when model started to predict
incidence without incidence data.

A set of municipalities presented incidence above predictions -positive difference- where the northwest
region of Amazonas (AM), northwest region of Acre (AC), and the northwest region of Rondônia (RO)
obtained the highest positive differences for both P. vivax and P. falciparum incidence (Figure 4). Positive
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difference for P. vivax also involved more regions than P. falciparum and five regions contained municipalities
with positive difference above 50 monthly cases above prediction: northwest and center region of Amazonas
(AM) next to center and south region of Roraima (RR), northeast region of Pará (PA) with border area
next to Amapá (AP) (Marajó region), southeast of Pará (PA), northwest region of Acre (AC) and northwest
region of Rondônia (RO) (Madeira-Mamore region) next to the south of Amazonas (Purus region).

We found a general rise in the number of municipalities with a positive difference of P. vivax from 2016
to 2018 (see Figure 2). The northwest region of AM started with positive differences above 50 in 2016 and
then, positive difference extended to all municipalities in the north region, southwest and south-center of
AM , and most of municipalities in RR between 2017 and 2018. The northwest region of RO maintained a
similar pattern in 4 municipalities and the positive difference in AM extended next to this region in 2018.
The positive difference of northeast region in PA and AP extended from 10 municipalities in 2016 (8 in PA
and 2 in AP) to 17 municipalities in 2018 (13 in PA and 4 in AP). This also occurred in the southeast of
PA where positive difference extended from 2 municipalities in 2016 (2 in PA) to 4 municipalities in 2018
(3 in PA and 1 in AM). AC only maintained the positive difference in two municipalities (Mâncio Lima and
Cruzeiro do Sul).
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Figure 2: Municipalities with positive difference of prediction (average per each year) above 25 cases
for P. vivax. The states of Roraima (RR), Rondônia (RO), Pará (PA), Amapá (AP), Amazonas
(AM) and Acre (AC) contain these municipalities.

Positive difference in P. falciparum exhibited an increase in the northwest region of AM in São Gabriel
da Cachoeira, Santa Isabel do Rio Negro and Barcelos (see Figure 3). In general, AM showed an increase
in positive difference from 2016 to 2018 whereas AP exhibited a decrease in positive difference. RO and AC

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 27, 2021. ; https://doi.org/10.1101/2021.06.24.21259361doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.24.21259361
http://creativecommons.org/licenses/by-nc-nd/4.0/


maintained positive difference in Porto Velho (RO), Mâncio Lima (AC) and Cruzeiro do Sul (AC).
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Figure 3: Municipalities with positive monthly difference of prediction (average per each year) above
10 cases of P. falciparum. The states of Roraima (RR), Rondônia (RO), Amapá (AP), Amazonas
(AM) and Acre (AC) contain these municipalities.
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Figure 4: Monthly difference of prediction from 2016 to 2018 (average per each year). Red regions
represent municipalities with positive difference (incidence above prediction) and blue regions repre-
sent municipalities with negative difference (incidence below prediction). First row displays P. vivax
prediction difference and the second row displays P. falciparum prediction difference.

Descriptive comparison between variables and prediction difference

Incidence of P. vivax and P. falciparum exhibited a decrease in all states from 2005 and 2018, except for
Roraima exhibiting a peak of P. vivax incidence in 2018. This suggests a beneficial effect of investment
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in malaria control programs. Ministry of Health expanded important contributions from 2011 to 2013 in
the most affected states, such as Amazonas, Acre, Pará, Amapá, Roraima and Rondônia that maintained
a decrease in malaria incidence on subsequent years. Nevertheless, P. vivax incidence went back to an
increasing trend in all states starting in 2017, after a diminished investment from October of 2013 to
November of 2016. Such rebound effect on P. vivax incidence was more dramatic in Pará (PA) and Roraima;
and also a rebound effect on the P. falciparum incidence present in Amazonas, Acre, Amapá, Roraima and
Rondônia, although with less severity.
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Figure 5: Annual incidence vs annual investment in malaria programmes per state from Ministry
of Health. Gray bars represent investment in million of Reais and blue and green lines represent P.
vivax and P. falciparum incidence per year in thousand of cases.

We also evaluated the impact of imported cases from other countries and occupations in the municipalities
that obtained more positive difference of prediction (see Figures 2 and 3). Imported cases only had a relevant
impact on P. vivax incidence in Roraima (RR) because imported cases were more common from 2017 to 2018
than previous years (see Figure 6); other states did not count an appreciable amount of imported cases. On
the other hand, category “other occupations” was the most frequent category (see additional Files 1 and 2).
Nevertheless, AM, AC, and PA (only P. vivax in PA), reported most of cases as agriculture from categorized
occupations for both species. AM and RO also reported an appreciable amount of cases as housing in P.
vivax cases after 2015. RR had an increase of P. vivax cases reported as gold-mining after 2015.

We found that the factor of deforestation on incidence only grew up in Roraima (RR) for P. vivax after
2015 because of the credibility interval (see table 1). On the other hand, we found a decrease in random
effect of deforestation on P. vivax incidence in Amazonas (AM) and P. vivax incidence in Pará (PA). Thus,
deforestation only might explain an unexpected increase in P. vivax incidence in Roraima (RR) after 2015
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Figure 6: Imported cases in Roraima. Imported cases of P. vivax in Uiramutã, Rorainópolis,
Pacaraima, Caracarã, Canta, Boa Vista and Alto Alegre in Roraima

and the effect of deforestation on incidence remained similar in the rest of States after 2015 in comparison
to previous years.

Table 1 also illustrates the occupations with positive variation in random effect on incidence after 2015
where agricultural, outdoor, mining, and traveling activities might explain the unexpected increase of malaria
cases in some states. Agricultural activities might explain the unexpected increase in P. falciparum incidence
in Rondônia (RO), Roraima (RR), Amazonas (AM), and P. vivax incidence in Pará (PA) after 2015. Outdoor
activities (hunting/fishing, vegetable extraction, and road building) might explain the unexpected increase
in malaria incidence in Amazonas (AM), either P. vivax and P. falciparum incidence, and P. vivax incidence
in Pará (PA) after 2015. Mining and traveling activities also might explain the unexpected increase in P.
vivax incidence in Pará (PA).

Discussion

The recent trends in malaria incidence from these clinical cases registered in SIVEP-malaria exhibit an
increase starting from 2015. The proposed spatio-temporal model has an interaction variable that shows
multiple factors interfering with recent trends.

Spatial difference of prediction illustrates regions clusters that concentrated the municipalities with
incidence above predictions -unexpected increase in incidence-: northwest and center region of Amazonas
(AM) and Roraima (RR), northeast region of Pará (PA) and south of Amapá (AP), southeast of Pará (PA),
northwest region of Acre (AC) and northwest region of Rondônia (RO) and south of Amazonas (AM). P.
vivax incidence above predictions was present in all cluster while P. falciparum one was only present in
northwest and center region of Amazonas (AM) and Roraima (RR), northwest region of Acre (AC) and
northwest region of Rondônia (RO) and south of Amazonas. Carlos et. al found the highest annual parasite
index in these regions in the period from 2015 to 2016 and they also found that imported cases between
regions and neighbor countries played a role in malaria transmission [24]. Lana et. al also found some
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Table 1: Effects of variables after 2015 (ζ3,n). The mean represents the perceptual increase or
decrease on incidence with the increase per variable. Mean in occupations (agricultural, outdoor,
mining and traveling) represents the increase in incidence per the increase in 1% of cases reported
in each category.

State Variable Species Mean (95% CI) Unit
RR Deforestation P. vivax 3.24% (0.30 - 6.26) km2

RR Agricultural P. falciparum 4.53% (2.904 - 6.13) 1%
AM Deforestation P. vivax -0.53% (-0.12 - -0.08) km2

AM Outdoor P. vivax 6.21% (0.40 - 12.36) 1%
AM Agricultural P. falciparum 3.03% (0.26 - 5.88) 1%
AM Outdoor P. falciparum 25.63% (13.15 - 39.51) 1%
RO Agricultural P. falciparum 3.21% (0.44 - 6.06) 1%
PA Deforestation P. falciparum -0.60% (-1.02 - -0.17) km2

PA Agricultural P. vivax 2.60% (1.32 - 3.90) 1%
PA Mining P. vivax 2.36% (0.72 - 4.01) 1%
PA Outdoor P. vivax 9.49% (6.33 - 12.75) 1%
PA Travelling P. vivax 7.30% (1.92 - 12.95) 1%

clusters in those regions that have provoked the majority of malaria cases in Amazon basin from 2004
to 2018 [43]. Our results revealed the impact of imported cases in Roraima as well Carlos et. al found
but we differed in the contribution of imported cases from Perú because we did not find a relation to the
unexpected increase on cases in Amazonas and Acre. Imported cases from Venezuelan were the only that
impacted malaria transmission in Brazil from neighbor countries. This occurred in the first region in Roraima
and the socioeconomic situation in Venezuela might be the principal cause as previous works found [25].
Despite imported cases in Roraima, autochthonous cases represented the principal contributor of cases in
Brazil suggesting that local conditions had more impact in the unexpected increase of cases in the majority
of clusters.

In fact, socioeconomic situation in Venezuela caused an increase in foreigners seeking for medical attention
because the incidence of infectious diseases were higher in Venezuelan population than Brazilian population
[26]. Socioeconomic situation in Venezuela also caused an increase in foreigners seeking for job opportunities
in gold-mining areas that have presented high risk of malaria transmission [25, 27]. Our results also revealed
an increase in cases reported as gold-mining in Roraima from 2015 complementing the difficult situation in
Roraima that also accounted an increase in deforestation effect on the incidence of P. vivax incidence and
an increase in agricultural activities effect on P. falciparum incidence.

Brazilian-Amazon basin has a set of environmental, social and economic conditions that might cause
unexpected increase in malaria incidence. First, human activities in the Amazon region have induced
deforestation that drives in malaria transmission but a recent study also showed a negative feedback where
malaria burden reduces forest clearing [28]. Actually, malaria incidence and deforestation has a controversial
relation because human development and environmental conditions promote other dynamics increasing or
decreasing of malaria burden [29]. Our results showed that deforestation effect had a significant effect on
P. vivax incidence in Roraima from 2015 to 2018, but not allowing to refute this effect in the unexpected
increase of cases in other areas of the Amazon basin.

Second, economic activities as agriculture, mining, tourist, vegetal-products extraction and fishing have
boosted malaria in amazon basin. Agrilculture and mining have produced more cases than other economical
activities in the central Amazon and the south and west Hiléia settlement (northwest of Brazil) in the 21th

century [5]. Our results indicated that agriculture were the most reported category in malaria cases in the
States of Amazonas and Pará, and agricultural activities also increased their effect in P. falciparum incidence
in Rondônia, Roraima and Amazonas and their effect in P. vivax incidence in Pará. Outdoor activities such
as hunting, fishing, vegetable extraction and road building and mining also increased their effect in Pará
showing a set of possible drivers of malaria resurgence in this State. The state of Pará has had a constant
flow of human migration due to mining, agriculture and infrastructure projects that increase the risk of
malaria in this state [30] and this state has shortcomings in health access [31].
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We did not find a clear driver of malaria increase in Acre but previous studies found that fish farming
in the last decade has provided environmental advantages to Anopheles mosquitoes construction in Acre.
Priority should be given in health attention [6, 32] and Acre also has experienced an increase in economical
activities in periphery zones boosting malaria transmission [8]. In general, our results showed the divergence
in possible drivers of malaria rebound because Amazon basin has a epidemiological differences between
regions as Canelas et al. found [9].

We found that general funding for the malaria control programs reduced from 2013 to 2016 and this
might explain the unexpected increase in malaria cases in Brazil from 2016 to 2018. This occurred to P.
vivax and P. falciparum incidence in all the States where an incidence increase happened. Nevertheless, this
effect were more striking in P. vivax incidence than P. falciparum one, specially, in Pará and Roraima. This
revealed that investment withdrawal affected P. vivax control more than P. falciparum control. P. vivax has
challenged malaria control programs by difficulties in detection, malaria relapses and earlier transmission
[10]. Although P. falciparum incidence did not experience similar increases as P. vivax, cities in Northwest of
Amazonas, Mâncio Lima, Cruzeiro do Sul and Porto Velho presented unexpected increases in P. falciparum
incidence representing a risk to raise malaria mortality. Weakening in investment had an effect in malaria
cases producing a deterioration in health situation as Rondônia exhibited in 1980 [21]. Amazon Basin
Malaria Control Project from 1988 to 1986 demonstrated avoiding nearly two million expected-cases and
231.000 expected-deaths in Brazil in spite of low cost-effectiveness of the program [22, 21, 23].

Funding withdrawal for malaria programs poses many limitations to malaria control programs in Latin
America, Africa and Asia, even in Brazil. Deterioration in control programs as indoor residual spraying
(IRS) entailed a growing incidence in Brazil from 1971 to 1989 [11, 12]. Deterioration in IRS also affected
Colombia, Costa Rica, Ecuador, Haiti, Mexico, Panama, Peru and Sri Lanka generating malaria resurgence
[7]. Programs in Thailand, India, Kenya, Nigeria, Sudan, Mauritius and Madagascar experimented the
resurgence after cutting funds [13, 14, 15, 16, 17, 18]. Our results showed that P. vivax incidence increased
in 53 municipalities and for P. falciparum incidence in 17 municipalities increased over the three years after
diminishing investments. For instance, Pará exhibited a clear resurgence after the investment reduction.
This failure of maintaining resources to achieve elimination avoiding malaria resurgence implies higher cost
in control efforts [19]. Ferreira and Castro advised the necessity of guaranteeing resources for malaria control
and elimination to maintain the results to 2015 and avoid resurgence in Brazil [20].

Our analysis with investment funds has a set of limitations. First, the current study only took into the
account the resources reported in ordinances from Health Ministry and local health departments in States also
provide sources for malaria control that we did not account. Reports from World Health Organization (WHO)
suggest other governmental ways to finance malaria in Brazil from 2013 to 2016 [2]. Nevertheless, WHO
also notified a reduction in treated cases from 2015 to 2017. Secondly, ordinances defined the expenditure
to support public-service of health, epidemiological surveillance, equipment, raw materials, laboratories,
emergency care, and general funds but they do not provide information about the specific use of resources
and spending periods. This avoids to establish the specific causes in terms of malaria control programs
and cost-effectiveness analysis should be fundamental as World Bank did, for the program from 1989 to
1996, as well other countries have done [22, 33]. Third, results compared investment per states without
discriminate municipalities of unexpected increases to establish investment priorities; this also happened
because Health Ministry has done the majority of resource allocation. Elimination indicators can support
investment priorities because only few municipalities concentrate the 80% of incidence and a large number
of municipalities in Amazon basin has achieved malaria elimination [34].

Conclusion

investment reduction from Health Ministry in all States occurred from 2013 to 2016 and this might explain
the unexpected increase in malaria cases. This alerts the necessity to maintain sources in malaria control
and elimination programs in Brazil. Investment withdrawal can drive in malaria resurgence from the well
know risks in the Amazon basin from agricultural activities, migrations, economical activities in periphery
zones, mining activities, deforestation and climatic conditions. Maintain resources also provides the support
to respond in emergencies like the migratory turmoil in border regions.
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da malária na Amazônia brasileira com abordagem espacial da variação da incidência da doença em 2016.
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