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Abstract

Lack of regular physical or economic access to safe, nutritious and sufficient
food is a critical issue affecting millions of people world-wide. Estimating how
many and where these people are is of fundamental importance for govern-
ments and humanitarian organizations to take informed and timely decisions
on relevant policies and programmes. In this study, we propose a machine
learning approach to predict the prevalence of people with insufficient food
consumption and of people using crisis or above crisis food-based coping when
primary data is not available. Making use of a unique global data set, we show
that the proposed models can explain up to 78% of the variation in insufficient
food consumption and crisis or above food-based coping levels. We also show
that the proposed models can be used to nowcast the food security situation
in near-real time and propose a method to identify which variables are driving
the changes observed in predicted trends, which is key to make predictions
serviceable to decision makers.

Characterizing the socioeconomic status of populations and providing reliable and
up-to-date estimates of who the most vulnerable are, how many they are, where they
live and why they are vulnerable is essential for governments and humanitarian or-
ganizations to make informed and timely decisions on policies and programmes [1].
This data is traditionally collected through face-to-face surveys. However, these are
expensive, time-consuming, and in certain areas not possible to perform due to con-
flict, insecurity or remoteness. Therefore, during the last few years, researchers have
begun to investigate the potential of non-traditional data and new computational
methods to estimate vulnerabilities and socioeconomic characteristics when primary
data is not available. In these studies, mobile phone data [2], satellite imagery [3],
a combination of both [4, 5|, geolocated Wikipedia articles [6] or Tweets [7], and
social media advertising data [8], have been used in combination with state-of-the-
art machine learning methods to provide reliable estimates of poverty at different
spatial resolutions for several Sub-Saharan African countries as well as Southern and
Southeastern Asian ones.

The methods proposed in these studies provide a unique opportunity to monitor
poverty in near real-time on a global scale. In this work, we show that similar
noreefhOkh At sla hanGasalerased dwotadelenang bherenartstadmelin golod e yiarRR Hayice.
affecting populations world-wide: food insecurity. In 2019, the number of under-
nourished people was estimated to be almost 690 millions 9], with 135 millions in 55


https://doi.org/10.1101/2021.06.23.21259419
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.06.23.212594109; this version posted July 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

countries and territories reported to be acutely food insecure [10]. These numbers
have significantly increased as a consequence of the COVID-19 pandemic, with at
least 155 million people reported to be acutely food insecure in 2020, an increase of
around 20 millions from the previous year [11]. In order to address this global issue,
monitoring the situation and its evolution is key. Governments and international
organizations like the World Food Programme (WFP), the Food and Agriculture
Organization (FAO) and the World Bank perform food security assessments on a
regular basis through face-to-face surveys or, increasingly so, remote mobile phone
surveys (e.g. computer-assisted telephone interviews, CATI) and further support-
ing technologies such as interactive voice response and web surveys [1|. However,
as mentioned previously, there are limitations with these approaches given their
high costs in both monetary and human resources. In addition, food insecurity is
a more dynamic and unstable phenomenon than poverty, with a seasonal compo-
nent related to agricultural production calendars, and subject to swift changes when
external shocks hit, therefore requiring more frequent and rapid assessments.

Food insecurity is a multidimensional concept, spanning from food availability and
access to utilization and stability [12]. Multiple indicators have been developed to
characterize household food insecurity levels, each capturing different aspects. In
this study we focus on the Food Consumption Score (FCS) and the reduced Coping
Strategy Index (rCSI), the former capturing quantity and diversity of dietary intake
and the latter the consequences of constrained access to food, resulting in coping be-
haviors [13|. Aggregating a representative number of household-level measurements
of these indicators makes it possible to characterize the food security situation of a
geographical area during a specified time window through the prevalence of people
with insufficient food consumption and that of people using crisis or above crisis
food-based coping, respectively. In this study, we show that these two metrics can
be estimated from secondary data by means of machine learning algorithms, when
primary data is not available. This opens the door to food security near-real time
nowcasting on a global scale, allowing decision makers to make more timely and
informed decisions on policies and programmes oriented towards the fight against
hunger.

Previous work has explored the use of secondary data to investigate specific as-
pects of food insecurity, such as agricultural production. Statistical crop models
and climate modeling have been used to make projections for 2030 of changes in
crop productions in 12 food-insecure regions due to climate change [14]. Mobile
phone records have been used to analyze monthly mobility in Senegal leading to
the discovery and characterization of seasonal mobility profiles related to economic
activities, agricultural calendars and precipitation [15]. Other studies have proposed
a characterization of the food security situation based on a variety of secondary in-
dicators, addressing its multidimensional aspect and providing annual national-level
estimates [16, 17|. Famine risk prediction through machine learning and stochas-
tic models has also been the subject of recent investigation. Okori and Obua used
household socioeconomic and agricultural production characteristics to train several
machine learning models to predict households’ food security status [18]. The limi-
tation of this approach is that up-to-date household level data is required not only
during model training but also when using the trained models to perform out-of-
sample predictions. More recently, the World Bank developed a suite of statistical
models to forecast transitions into critical states of food insecurity and famine risk
from secondary data [19, 20|. In this study, we focus on food security nowcasting,
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proposing a methodology that allows, for the first time, to estimate the current
prevalence of people with insufficient food consumption and of people using crisis or
above crisis food-based coping at sub-national level at any given time from secondary
data, when primary data is not available. Seminal work by Lentz and collabora-
tors addressed this challenge for the first time, obtaining satisfactory predictions
for food consumption, although limited to Malawi only [21]. Here, we make use
of a unique data set of sub-national level food consumption and food-based coping
data collected during the last 15 years across, respectively, 78 and 41 countries (see
Figure 1), allowing for the first time the development and validation of nowcasting
predictive models of food security indicators on a global scale.

Results

Predicting levels of insufficient food consumption and of crisis or above
food-based coping from previously measured levels and secondary data.

The main assumption of this study is that, when primary data is not available, levels
of insufficient food consumption and of crisis or above food-based coping can be esti-
mated from secondary information, specifically on the key drivers of food insecurity.
Experts identify three main causes for food insecurity: conflict, economic shocks,
and extreme weather events [10]. To build the proposed predictive models, we there-
fore collected historical data covering all three dimensions: data on conflict-related
fatalities, economic information (prices of staple food in local markets, headline and
food inflation, currency exchange rates, and GDP per capita) and data on rainfall
and vegetation, including anomalies with respect to historical averages. For each
available historical measurement of insufficient food consumption and of crisis or
above food-based coping for a given geographical area and time window, we as-
sociate as independent variables the corresponding conflict, economic and weather
situation for the same area in the previous three-month window. Moreover, we also
take into account as independent variables undernourishment and population den-
sity, as well as the target prevalence measured during the previous food security
assessment.

For each target variable, we fitted N, = 100 bootstrapped logistic regression models
using gradient boosted regression trees [23], employing a random 80% sample of
the historical data, as further detailed in the Methods. As reported in Table 1, the
proposed models are able to explain, on the remaining 20% out-of-sample data, 75%
of the variation in the prevalence of people with insufficient food consumption and
78% of the variation in the prevalence of people using crisis or above crisis food-
based coping, with a mean absolute error of, respectively, 0.08 and 0.06. Figure 2
(top plots) shows the predicted vs actual prevalence for each observation in the test
set. The former is calculated as the median of the predicted values obtained from
the N, bootstrapped models.

As one might expect, in both models the most predictive variable is the previously
measured prevalence (see Supplementary Figure 1). Therefore, the question arises
whether the independent variables built from secondary data bring significant ad-
ditional information into the models or whether most of their explanatory power
could be due to the previous assessment variable. To tackle this question, we com-
pare the results of the proposed models with those obtained from a naive approach
that simply uses the prevalence measured during the previous assessment as the
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Figure 1: Geographical distribution of insufficient food consumption and
crisis of above crisis food-based coping data. The two left panels summa-
rize the data collection and aggregation process: operators collect household-level
food consumption and coping strategies information through face-to-face or mobile
phone surveys, from which the Food Consumption Score (FCS) and the reduced
Coping Strategy Index (rCSI) are calculated for each household. By aggregating
this information across a representative number of surveys, the prevalence of people
with insufficient food consumption and the prevalence of people using crisis or above
crisis food-based coping in a given geographical area and time window is obtained.
The two right panels show the geographical distribution of the sub-national (first-
level administrative units) assessments collected by WFP, governments and other
organizations during the last 15 years in 78 and 41 countries, for food consumption
and food-based coping respectively. Each area is colored by the severity of the latest
measured prevalence as defined by WFP [22].


https://doi.org/10.1101/2021.06.23.21259419
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.06.23.212594109; this version posted July 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

| R* | MAE
Prevalence from previous assessment
. . . 0.75 0.08
Food consumption included as independent variable
p Prevalence from previous assessment 0.63 0.09

not included as independent variable
Naive model 0.39 0.12

Prevalence from previous assessment

. included as independent variable 0.78 0-06
Food-based coping :
Prevalence from previous assessment 0.73 0.07
not included as independent variable ' '
Naive model 0.42 0.10

Table 1: Model performance metrics. Coefficients of determination (R?) and
mean absolute errors (MAE) obtained on the test set for each of the four proposed
models and for the naive approach, which simply uses the prevalence measured
during the previous assessment as the predicted prevalence.

predicted prevalence. We find that this naive model can explain only 39% of the
variation in the prevalence of people with insufficient food consumption and 42%
of the variation in the prevalence of people using crisis or above crisis food-based
coping, demonstrating the fundamental importance played by secondary data to
capture the dynamic nature of food insecurity and to explain the current situation
when up-to-date primary data is not available.

Predicting levels of insufficient food consumption and of crisis or above
food-based coping from secondary data only.

Having demonstrated the potential of the proposed approach when information on
both key drivers and previous values of the target indicator is available, as well as
the fundamental role played by the secondary data, we then tested to what extent
insufficient food consumption and crisis or above food-based coping levels can be
predicted when previously measured prevalence is not available.

We trained two additional models, using the same approach but removing the preva-
lence from the previous assessment from the set of independent variables, hence
using secondary data only. As reported in Table 1, in this case results show that
the proposed models are able to explain, on the test set, 63% of the variance in
the prevalence of people with insufficient food consumption and 73% of the variance
in the prevalence of people using crisis or above crisis food-based coping, with a
mean absolute error of 0.09 and 0.07, respectively. Figure 2 (bottom plots) shows
the predicted vs actual prevalence for each observation in the test set. As expected,
these latter models have lower explanatory power and slightly higher errors than the
former ones, however the reported metrics are still satisfactory. The advantage of
these models is that they allow to predict the food security situation also in areas
where no previous measurement is available, substantially expanding the application
horizon of the proposed approach.
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Figure 2: Predicted vs observed values. Each plot shows the predicted value
(obtained as the median of N, = 100 predictions, each generated from one of the
bootstrapped models) vs the actual value for each observation in the test set. The
blue line represents the best fit for the plotted points, whereas the gray line rep-
resents where the points would fall if all predicted values perfectly matched the
observed ones. The closer the two lines are, the better the model’s performance
is. The top plots refer to the models that include the prevalence from the previous
assessment as an independent variable, and the bottom plots refer to the models
that use secondary data only.
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Nowcasting levels of insufficient food consumption and of crisis or above
food-based coping in near real-time.

WFP is currently monitoring the food security situation in near-real time in a num-
ber of countries, collecting food consumption and food-based coping data through
daily remote phone surveys [1, 22|. The predictive models proposed in this study
aim at serving WEFP’s need to estimate the situation in additional countries where
primary near real-time data is not currently available, in order to provide human-
itarian stakeholders with regular and frequent up-to-date global overviews of the
food security situation and allow for timely decision making on resource allocation.

In order to test the effectiveness of the proposed models in capturing the current
situation, we compared insufficient food consumption and crisis or above food-based
coping trends measured by WFP’s near real-time monitoring systems between March
1% and April 30", 2021 with the corresponding prevalence predicted by the proposed
models, which were trained and tested on data collected before March 1%, 2021. For
areas where the prevalence from a previous assessment - performed prior to the
start of the near real-time monitoring system in the country - is available, we use
the models that include this information as an independent variable; for areas where
this is not available, we resort to the models that rely on secondary data only.

National-level results for insufficient food consumption are shown in Figure 3. The
red lines represent the target prevalence as measured by WFP’s near real-time mon-
itoring systems, the blue lines the predicted prevalence, and the green dashed lines
the prevalence from the previous assessments, where available. All prevalence lev-
els were first obtained at the spatial resolution of first-level administrative units
and then aggregated to obtain national trends. Sub-national trends are reported in
Supplementary Figures 2-16. We can observe that in most cases the prevalence mea-
sured by the near real-time monitoring systems falls within the prediction intervals
(or within a reasonable distance of less than 5%) for at least part of the trend. In
those cases where the actual data line is further from the prediction interval, we can
observe that the predicted trend is however significantly closer to the observed one
than the prevalence from the previous assessment (e.g. Benin and Malawi). In the
remaining case, where no previous assessment is available (i.e. Syria), the predicted
and observed trends both fall within the same severity level (> 40%) defined by
WFP [22]. Similar results can be observed for crisis or above food-based coping
in Figure 4 (see Supplementary Figures 17-31 for the corresponding sub-national
trends), with the exception of Niger.

Explaining predicted values and changes in predicted trends.

Machine learning approaches are often seen as black boxes that provide recommenda-
tions without the user being able to access the process and rationale that generated
them. This is not an acceptable practice when the model outputs are being gener-
ated in support of decision making. Therefore, in this context, proposing methods
to explain predicted results is as important as building the models themselves.

Here, we make use of SHAP values [24, 25| to explain how each prediction is ob-
tained. SHAP values make it possible to explain each predicted prevalence as a
value obtained starting from the average prevalence observed in the training set
(baseline) and then accounting for how much each independent variable contributes
to the final prediction by moving the prevalence towards lower or higher values.
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Figure 3: Comparison between near real-time monitoring of insufficient
food consumption and predicted trends. Each plot shows the prevalence of
people with insufficient food consumption between March 1% and April 30" 2021, as
measured through WFP’s near real-time monitoring systems (red lines) and as pre-
dicted by the proposed models (the blue lines represent the median of the N, = 100
bootstrapped models predictions and the light blue area around them the corre-
sponding 95% confidence interval). The dashed green lines represent the value mea-
sured during the previous assessments (performed prior to the start of the near
real-time monitoring system in the country), where available. The background col-
ors represent severity levels as defined by WFP (< 5%: very low, 5 — 10%: low,
10 — 20%: moderately low, 20 — 30%: moderately high, 30 — 40%: high, > 40%:
very high) [22].
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Figure 4: Comparison between near real-time monitoring of crisis or above
food-based coping and predicted trends. Each plot shows the prevalence of
people using crisis or above crisis food-based coping between March 1% and April
30 2021, as measured through WFP’s near real-time monitoring systems (red lines)
and as predicted by the proposed models (the blue lines represent the median of the
N, = 100 bootstrapped models predictions and the light blue area around them
the corresponding 95% confidence interval). The dashed green lines represent the
value measured during the previous assessments (performed prior to the start of the
near real-time monitoring system in the country), where available. The background
colors represent severity levels as defined by WFP (< 5%: very low, 5 — 10%: low,
10 — 20%: moderately low, 20 — 30%: moderately high, 30 — 40%: high, > 40%:
very high) [22].
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We first show how this method is able to demystify the predicted prevalence of people
with insufficient food consumption or of people using crisis or above crisis food-based
coping, explaining how the models predict values compatible with what has been
measured through WFP’s near real-time monitoring systems. In Figure 5 we show
an exemplification of this approach to explain both predicted indicators in the cases
of Mali on March 1%, 2021, using a waterfall plot approach [25]. Starting from the
bottom, each variable’s contribution is summed to the baseline E|[f(z)] to eventually
reach the predicted value f(z). Variables are ordered by importance (in terms of the
absolute value of their contribution), and colored by the sign of the contribution: red
if increasing and blue if decreasing, with respect to the baseline. In panel (a) we see
that the most important variables in determining the high prevalence of people with
insufficient food consumption (0.48) in Mali is the prevalence of undernourishment
(> 5%), together with the low GDP per capita (793.5 USD). Conversely, the lower
value of the prevalence measured during a previous assessment (0.20) drives the
predicted value down, similarly to what happens in panel (b) when considering the
prevalence of people using crisis or above crisis food-based coping.

Beyond using SHAP values to explain individual predictions, in this study we pro-
pose a novel method based on this framework to measure the relative importance
of each independent variable in explaining predicted changes in food consumption
and food-based coping between two dates. This is important for decision makers
to understand why the models, when deployed to produce near-real time trends,
show improvements or deterioration in the food security situation. This is done
by exploiting the differences in SHAP values between two dates and its mathe-
matical formulation is detailed in the Methods. In Figure 6 we show the proposed
method applied to two specific examples. On the left, we see how the predicted
food consumption situation in Lesotho slightly deteriorated between March 15¢ and
April 30", 2021. Our method is able to identify that the most important variable
in determining this change has been the anomaly in precipitation with respect to
the historical average in the same period. As shown in the bottom table, rainfall
anomaly went from 111% (above average, i.e. it rained more than usual) to 80%
(below average, i.e. it rained less) within the two month period under consideration.
Other variables also had a smaller impact in the change, for example an increase in
both food and headline inflation also caused a deterioration, while a decrease in the
price alert indicator (which measures changes in cereal prices) and a stabilization
of the currency exchange rate both caused a small improvement in the situation.
Let us note that variables which did not change their value during the time period
considered can however still change their SHAP importance, as this is relative to the
values of all variables at each point in time. On the right, we explain a deterioration
in the predicted prevalence of people using crisis of above crisis food-based coping in
the same time period in South Sudan. In this case, the main causes are a decrease
in the average rainfall and an increase in the price alert indicator. Sub-national
investigations reveal that the former is the main driver in areas like Western Bahr el
Ghazal or Western Equatoria, whereas the latter is responsible for changes in other
areas like Lakes and Jonglei, as one can see in Supplementary Figures 60-69.

Discussion

In this study, we propose an approach that makes it possible, for the first time, to
predict the current sub-national food consumption and food-based coping situation
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Figure 5: Explaining a single prediction. Waterfall plots [25] show how SHAP
values are used to explain the predicted prevalence f(x) on March 15 2021 in Mali
(aggregating first-level administrative unit predictions) as the sum of a baseline
E[f(x)] and each variable’s contribution, highlighting in red positive contributions
and in blue negative ones. Prevalence and variable contributions are expressed as
percentages. Next to each variable’s name, its value averaged weighting by popu-
lation over all first-level administrative units in the country is shown. The boxes
contains the actual values measured through the near real-time monitoring system
for the same day. Panel (a) shows the prevalence of people with insufficient food
consumption and panel (b) of people using crisis or above crisis food-based coping.
The corresponding sub-national plots are reported in Supplementary Figures 32-49.
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Figure 6: Explaining changes in predicted trends between two dates. A
SHAP values based method was developed to explain why the models are predicting
changes in prevalence between two dates. On the left we show the predicted preva-
lence of people with insufficient food consumption in Lesotho between March 15
and April 30*®, 2021. On the right, the predicted prevalence of people using crisis or
above crisis food-based coping in South Sudan in the same time period. On the top
plots we can see the predicted trends in blue, with the light blue area around them
the corresponding 95% confidence interval. The middle plots show each indepen-
dent variable’s contribution to the change: positive contributions (deterioration) are
shown in red, negative contributions (improvements) in green, and variables which
did not change value between the two dates are shown in gray. Variables are ordered
by importance (in terms of absolute value of their contribution). All prevalence and
SHAP value differences are expressed as percentages. The tables in the bottom
report the values of the models’ independent variables at the two considered dates.
The corresponding sub-national plots are reported in Supplementary Figures 50-69.
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on a global scale from secondary data on the key drivers of food insecurity. We show
that when a previous measurement of the target indicator is available and included as
independent variable, the models, as expected, have a higher explanatory power and
lower errors than when relying on secondary information only. Importantly, we also
demonstrate that these models perform significantly better than a naive approach
that uses the prevalence measured during a previous assessment as the predicted
prevalence. Moreover, even the models that rely on secondary information only
show a satisfactory explanatory power. Having trained and validated the proposed
models on historical data, we then further show that they can be used to predict
the current prevalence of insufficient food consumption and of crisis or above food-
based coping, by comparing the data being collected in near real-time by WFP
during a recent two month period with the corresponding predicted levels. Finally,
we show that, despite the non-linear tree-based model structure, it is possible to
provide interpretable explanations of predicted figures and of what causes changes
over time, even if the models do not have an intrinsic dynamic component.

Despite the encouraging results, several limitations apply. First of all, the proposed
models are trained and validated combining together sub-national data from a num-
ber of different countries. Having such rich variety of data made it possible to build
a global model that can be used to estimate the food security situation in any area
in the world. However, this also means that the models learnt patterns in the data
that correspond to what is most commonly observed across the different countries,
limiting the discovery of less frequent patterns specific to local contexts. These
latter patterns would be more easily discovered by training separate models each
based on historical data from a specific country only. This would however require
the availability of large enough samples for each individual country, which is cur-
rently not available for a number of countries. Hence the reason for the proposed
approach. However, it should be noted that predictions generated by the proposed
models should be used with caution and further validated when relative to areas
and countries that are not represented in the historical data used to train and test
the models, as discussed in previous studies [26]. In this sense, one of the challenges
faced in the model development was the unequal availability of food consumption
and food-based coping data across different countries. In order to ensure as much
as possible a balanced geographical representation, we resorted to sampling and
only kept a subset of the available data for the most data-rich countries, while also
ensuring enough data was included to properly train the models.

In regard to the secondary information feeding the proposed models, in this study
we resort to data on the three main drivers of food insecurity. Undoubtedly, further
information could be included in order to enrich the models, such as data on dis-
placements, natural hazards, animal and crop diseases and epidemic outbreaks [10].
However, the limited availability of relevant data on a global scale and on a multi-
annual time frame restricts the possibilities of expansion to additional independent
variables. Given that the time frame covered by the historical data used to train
and test the models includes the COVID-19 pandemic, one might expect that we
would need to include this information in the models, for example in the form of
caseload or death incidence. This is however not the approach we adopted, since the
objective was to build a general model for food insecurity, not specific to the cur-
rent situation. Our assumption, which is confirmed by the high explanatory power
obtained even without taking COVID-19 explicitly into account, is that the effects
of this pandemic on the food security situation are already indirectly taken into

13


https://doi.org/10.1101/2021.06.23.21259419
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.06.23.212594109; this version posted July 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

account by some of the independent variables included in the models, namely those
accounting for staple food prices in local markets and macro-economic indicators.
Further investigation should however be the subject of future work.

Some challenges and limitations also apply to the secondary data that has been
incorporated in the models to build the independent variables. First, the different
data sources do not have the same time resolution and update frequency, which
range from annual estimates to daily measures, as further detailed in the Meth-
ods. This means that, when generating predictions on a regular basis to nowcast
the situation, most variables will not update daily and therefore in order to see
significant changes longer time intervals need to be considered. Secondly, spatial
resolution also varies across the different data sources. Whereas population density,
rainfall, vegetation and conflict-related fatalities data are available at the first level
administrative unit resolution, macro-economic indicators and prevalence of under-
nourishment are national figures, leading to all sub-national areas being assigned
the same value. This could be seen as a limitation but it also allows to provide
to each first-level administrative unit some national characterization, which would
otherwise be lost in a global model trained with sub-national level data only. Let
us consider, for example, two bordering areas belonging to two different countries,
such as Venezuela and Brazil. Given their geographical proximity, they might be
highly similar with respect to vegetation and precipitations, but, concurrently, they
would be highly different in terms of the economic situation, possibly resulting in
profound differences in the food security situation.

Having carefully taken into account the challenges and limitations highlighted above,
the proposed models have the potential to be used to provide unique information
to humanitarian decision makers when no primary data is available. Predictions
should certainly be handled with caution and never considered as ultimate truth.
When indicating some level of deterioration, they should serve as triggers for rapid
assessments and more in-depth analysis of the situation, rather than being used
to prompt immediate decision making. In this regard, the proposed methods give
decision makers more insights into how the model predicted a certain figure or
changes in the predicted trends, allowing for a deeper understanding of the situation.
Finally, it should be noted that, in order to ensure continued validity of the proposed
models, it is essential to perform regular re-trainings whenever a significant amount
of new primary data is collected and available. This will allow to improve the models
explanatory power thanks to the increased volume and variety of data the training is
performed on, as well as to eventually learn new emerging patterns, hence remaining
representative of the current situation.

Methods

Target indicators

The two target indicators of the proposed predictive models - the prevalence of
people with insufficient food consumption and the prevalence of people using crisis
or above crisis food-based coping - are calculated on the basis of two household-
level indicators: the Food Consumption Score (FCS) [27] and the reduced Coping
Strategy Index (rCSI) [28], respectively.

The FCS is calculated by asking each household how often, during the last 7 days,
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they have consumed items from the different food groups: main staples, pulses, veg-
etables, fruit, meat and fish, milk, sugar, oil and condiments. Each consumption
frequency is then weighted according to its relative nutritional importance to obtain
the FC'S = > w;z;, where w; is the weight of food group i and z; the frequency of its
consumption by the household, that is the number of days for which the food group
was consumed during the past 7 days. Once the food consumption score is calcu-
lated, each household is then assigned a food consumption group (poor, borderline
or acceptable) based on standard thresholds, which can however be adapted based
on specific consumption behaviours in the country of interest. Food group weights
and thresholds are detailed in [27]. The prevalence of people with insufficient food
consumption is then obtained as the prevalence of households in the sample with
poor or borderline food consumption [29].

To compute the rCSI, households are asked if and how often during the last 7
days they had to adopt the following coping behaviors: relying on less preferred or
less expensive food, borrowing food from relatives or friends, limiting portion sizes,
restricting adults’ consumption in order for small children to eat and reducing the
number of meals eaten in a day. Coping strategy frequencies are then weighted
according to their severity to obtain the rCSI, as detailed in [28]. The prevalence
of people using crisis or above crisis food-based coping is then obtained as the
prevalence of households in the sample with rCSI > 19 [29].

The available historical data for the two indicators is at the spatial resolution of
first-level administrative units and has been collected through both face-to-face and
mobile phone surveys, including those from WFP’s near real-time monitoring sys-
tems. The insufficient food consumption data spans units across 78 countries from
2006 to February 2021, and the crisis or above food-based coping data units across
41 countries from 2013 to February 2021, with more than 200,000 observations for
each indicator. This large volume of data is however not equally representative of
all covered geographical areas: countries where a WFP’s near real-time monitoring
system is in place are over-represented since these systems provide data on a daily
basis, whereas in the remaining countries data collection is performed only a few
times per year. Therefore, in order to avoid training the models on an unbalanced
data set, sampling is performed by randomly selecting, for each first-level adminis-
trative unit, one observation per month only. The final data set used to train and
test the models where the prevalence from previous assessment is not included as
independent variable is composed of 8737 observations for food consumption and
7031 for food-based coping. For the models where the prevalence from a previous
assessment is instead included, the size is further reduced because only observations
preceded by a previous one can be used, resulting in 6619 observations for food
consumption and 3499 for food-based coping. The breakdown by country of all of
the above mentioned numbers is reported in Supplementary Table 1.

Modeling approach

The statistical approach adopted in this study is logistic regression, as the proposed
models predict the probability of having a person with insufficient food consumption
or using crisis or above crisis food-based coping in a given area at a given time.
Gradient Boosted Decision Trees [30] were identified as the most suitable algorithm
to perform the regressions, given its high performance, flexibility, and its capacity
to handle complex and non-linear relationships. The XGboost implementation was
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used [23].

Four different models were developed: two for the prevalence of people with insuf-
ficient food consumption and two for the prevalence of people using crisis or above
crisis food-based coping. In each case, one includes the prevalence from a previous
assessment as independent variable and one does not.

For each model, a 20% random sample of the data was used as test set, while the re-
maining 80% was used for tuning the hyper-parameters via a 4-folds cross-validation,
and for training the models. The tuned hyper-parameters and the explored values
are listed in Supplementary Table 2. The chosen combination of hyper-parameters
is the one leading to the smallest difference between the average R? on the folds used
as training set and the average R? on the folds used as validation. We opted for this
criterion to favor models where the performance on the test is the most similar to
the performance on the training set, since large differences are often an indication
of overfitting. Once the hyper-parameters are selected, /N, = 100 models are fitted
on samples with replacement of the training set (i.e. bootstrapping) and the test set
is used to evaluate the model’s performance. For each observation in the test set,
N, predictions are generated (one per bootstrapped model), and the median value
is then used to calculate the model performance metrics, i.e. the coefficient of de-
termination R? and the mean absolute error (MAE). Supplementary Figures 70-73
show that convergence for both metrics is reached within 100 bootstraps.

Feature definition

The initial set of considered features is composed of variables related to food insecu-
rity and its main drivers: economic shocks, extreme weather events and conflict [10].

Food prices. To capture variations in cereal and tubers prices, we resort to the
Alert for Price Spikes (ALPS) indicator [31]. This metric is based on a trend analysis
of monthly price data: the idea is to compare the long-term seasonal trend of a
commodity’s price time series in a market with the last observed price in the same
market, providing an indication of the intensity of the difference between the current
market price and the historical trend. The higher the difference, the more severe
the alert. Price data and the corresponding ALPS calculations are publicly available
through WFP’s Economic Explorer platform [32]. If more than one market is present
within a geographical area, the average ALPS value is considered. If no market is
instead monitored in a given area, the national average is considered. From this data,
we build a set of three features by taking into account the minimum, maximum and
average ALPS value within a three month window. The length of the window was
selected as the shortest time period that minimizes the number of missing values
in the training and test set. A one month lag is applied to ensure data availability
when deploying the model in real-time.

Macro-economic indicators. The following four macro-economic features are
considered: most recent available annual GDP per capita in a four years time win-
dow, most recent available monthly headline and food inflation rates in a six months
time window (applying a one month lag), and percentage variation between the av-
erage value of the currency exchange rate during the last three months and the
average value during the previous three, to capture main changes in the situation.
The three month window was selected for consistency with the food price features
and the same applies to the following features too. Being all country-level indica-

16


https://doi.org/10.1101/2021.06.23.21259419
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2021.06.23.212594109; this version posted July 2, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

tors, the same national value is assigned to all first level administrative units within
a country. Data is obtained from Trading Economics, a website providing publicly
available economic and financial indicators, including historical data, for 196 coun-
tries [33]. For countries where unofficial currency exchange rate is collected by WFP,
these values are used instead of official ones [34], since they provide a more reliable
representation of the country economic situation.

Weather. An initial set of five weather features is built by taking: i) the average
rainfall and normalized difference vegetation index (NDVI) during a 12 month time
window, which allow to characterize each first-level administrative unit’s climate;
ii) rainfall and NDVI anomalies with respect to historical averages. For rainfall,
two anomalies have been defined by WEP: the ratio between the amount of rainfall
during the last one month or three months and the historical average of the amount
of rainfall in the same period of the year. For NDVI, a single anomaly is defined
based on the last 10 days, since vegetation already integrates the effects of previous
rainfall. All three anomalies are provided for each 10-day window of the year, and we
take their average during a three month window like for previous features, applying
a 10-day lag. Data is obtained from WEFP’s Seasonal Explorer platform [35], which
provides open rainfall and NDVI time series for a near-global set of administrative
units, computed, respectively, from CHIRPS [36] and MODIS [37] data.

Conflict. Conflict data is obtained from the Armed Conflict Location & Event
Data Project (ACLED), a publicly available repository of reported conflict events
and related fatalities across most areas of the world [38]. The date, latitude and
longitude of each event is reported, allowing to match it to the corresponding first-
level administrative unit. In order to capture deterioration or improvements in the
conflict situation, we define the conflict features as the difference between the num-
ber of reported fatalities during the last three months and the three months prior,
applying a 14-day lag. Only fatalities reported in events involving organized vio-
lence (i.e. “battles”, “violence against civilians”, and “explosions,/ remote violence”)
are considered [39], and a total of seven features is obtained by considering these
three categories separately and in combination.

Prevalence of undernourishment. The most recent available prevalence of un-
dernourishment in a 4 year time window is considered. This is a national yearly
indicator publicly available in FAOSTAT [40]. Being a country-level indicator, the
same national value is assigned to all first level administrative units within a country.

Population density. Yearly population density is also considered and obtained
from CIESIN raster files [41] by averaging all pixel values within each first-level
administrative unit. Estimates for years not covered by the data set are obtained
through linear interpolation.

Previous value of the target indicator. Finally, the previously measured preva-
lence of people with insufficient food consumption and of people using crisis or above
crisis food-based coping are also considered, when available. For first-level adminis-
trative units where WFP’s near real-time monitoring is in place, only data collected
prior to the start of the near real-time monitoring is used to build this feature. This
choice was made because the proposed models are meant to be used in practice in
situations where no near real-time monitoring is in place, and hence the last avail-
able value would be from a face-to-face or mobile phone assessment conducted in a
specific and limited time window in the past.
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Feature selection

Having defined an initial set of features, a selection process was then performed to
single out the final sets of independent variables that maximize models’ performance.
First, we carried out a backward feature elimination process for each of the 4 models.
We first trained them with the initial set of features, then removed the one with
the lowest importance. Feature importance is defined as the gain across all the tree
splits in which a certain feature is used [23|. At each step we then re-performed
the training and eliminated the least important feature. This process is repeated
N; = 500 times, each time using different 80%/20% random samples to train and
test the model. The number of iterations was chosen to ensure the convergence of
model performance metrics on the test set, as shown in Supplementary Figures 74-
77. This first elimination process results in a ranking of the features from most
to least relevant, by summing up, for each, its model importance values across all
steps and iterations. Following this ranking, a forward selection process is then
performed. The model is first trained with the most important feature only and
then, at each step, one feature is added following the ranking, and the model is
re-trained. Each step is performed N; = 500 times using different random samples
to train and test the model. Finally, for each step the average values of the model
performance metrics on the test set across the NN; iterations are computed and the
final set of features is chosen as the one maximizing the R? and minimizing the MAE
(see Supplementary Figures 78-81). The final list of features used as independent
variables in each model are reported in Supplementary Table 3.

SHAP values

SHAP (SHapley Additive exPlanations) [24] is a framework recently proposed to in-
terpret predictions made by often complex black box machine learning algorithms.
SHAP unifies other methods (Lime, DeeplLift, etc.), and for tree-based models it
allows to write a prediction as the sum of a baseline value and each feature’s con-
tribution [25]:

y= @) =60+ 3 i(o) 0

SHAP values for tree-based models like XGboost have been shown to improve on
other local tree explanations, like visualizing the decision tree, not feasible for tree
ensembles, or model-agnostic local explanations, computationally expensive if ex-
plaining large data sets [25]. Moreover, SHAP local explanations can be used as
building blocks for global explanations, as shown in Supplementary Figure 1, where
we take the mean absolute value of SHAP values across all data points to build a
global feature importance ranking. In this study, we use the python open-source
implementation of the TreeSHAP algorithm [42].

Explaining the single prediction

SHAP values represent each feature’s contribution towards the model prediction,
and their absolute value can therefore be interpreted as each feature’s importance.
This method improves on widely used global feature importance methods like split-
based or gain-based measures, as it allows to compute prediction-specific feature
importance. As detailed in previous sections, each of our four models actually con-
sists of N, = 100 different models fitted on different samples (with replacement) of
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the training data, of which we report the median prediction and confidence inter-
val. To determine the importance of a feature we then take each feature’s median
SHAP value across the N, bootstrapped models. Convergence checks are reported
in Supplementary Figures 82-83.

In this study, predictions are originally obtained at the spatial resolution of first-
level administrative units, but they can then be aggregated to display results at the
national level too. To determine features importance at the country level, we average
the SHAP values across all first-level administrative units in a country, by weighting
each value according to the unit’s population. This can be easily interpreted: a
SHAP value corresponds to the change in prevalence, with respect to the baseline,
due to one feature. By performing a population-based weighted average we are
computing the change in number of people due to that feature. This operation then
sums the number of people across all units, and divides it by the country population
to return the change in national prevalence. The same operation is also performed
on the model baseline. Note that this also allows us to combine predictions coming
from areas with and without a previous value of the target variable, even if the
underlying models use slightly different sets of features.

Explaining trend changes

This method allows us to compute the feature importance ranking for a given area
in a given day, explaining which features were the most important and how they
contributed to the final prediction. However, predictions for the same area can
produce a trend in time, which in turn can show changes in prevalence due to
changes in the input variables. We extend the SHAP framework to explain which
features are responsible in determining changes in predicted trends.

Let us take two predictions y'* and y*? corresponding to the same area but two
different dates. Following Eq. 1, we can write the trend change y2 — y*' in terms of
the change x; in SHAP values relative to each of the M features:

yt2 o ytl _ Z (gbz(xﬂ) . ¢Z(It1>> _ in(:rtl?x&) <2>

The features with largest associated SHAP value change are the ones that deter-
mined the trend change. Moreover, the sign of the change x; also tells us whether
that feature has caused an increase or decrease in the prevalence, that is a deterio-
ration or improvement in the food security situation.

Note that Eq. 2 is exact when considering a single model for a single first-level
administrative area, but is only an approximation when considering median SHAP
values, as previously mentioned. It is also important to note that this method can
give apparently misleading indications due to nonlinear interactions between fea-
tures. For instance, a feature that does not change value between the two dates can
be the one with the largest SHAP value change (i.e. determining the trend change).
This happens because other features change value, thus changing its relative im-
portance in the two predictions. One could overcome this limitation by computing
SHAP interaction values [25], but the computation is not feasible when dealing with
our sample size, i.e. 400 models (100 bootstrapped iterations per model) and daily
computations. Moreover, this would imply dealing with an order of 50 (number of
features squared, divided by 2) different interactions, which would greatly undermine
our effort to produce explainable predictions for decision makers.
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