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Abstract

Background

For evaluating the quality of care provided by hospitals, special interest lies in the identification of

performance outliers. We study a setting where the decision to classify hospitals as performance outliers

or non-outliers is based on the observed result of a single binary quality indicator.

Methods

We propose to embed the classification of providers into a Bayesian decision theoretical framework which

enables the derivation of optimal decision rules with respect to the expected decision consequences. We

argue that these consequences depend upon for which pathway to quality improvement the profiling

of hospitals takes place. We propose paradigmatic utility functions for the two pathways external

reporting and change in care delivery and compare the resulting optimal decision rules with regard to

their threshold values, sensitivity and specificity. We further apply them to the area of hip replacement

surgeries by analyzing data from the mandatory German hospital profiling program. Based on five

quality indicators, we re-evaluate the performance of 1,277 hospitals which treated over 180,000 patients

for hip-replacement surgeries during 2017.

Results

Based on the utilities we assigned to the classification decisions, the decision rule for change in care

delivery classifies more high-volume providers as outliers compared to the decision rule for external

reporting, with consequences for both sensitivity and specificity. The re-evaluation of the five quality

indicators illustrates that classification decisions are highly dependent upon the underlying utilities.

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2021. ; https://doi.org/10.1101/2021.06.23.21259367doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:johannes.hengelbrock@iqtig.org
https://doi.org/10.1101/2021.06.23.21259367
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion

Analyzing the classification of hospitals as a decision theoretic problem and considering pathway-specific

consequences of decisions can help to derive an appropriate decision rule. Contrasting decision rules

with regard to their underlying assumptions about the utilities of classification consequences can be

helpful to make implicit assumptions transparent and justifiable.
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Introduction

The evaluation of the quality of care that patients receive from hospitals or other healthcare providers

has gained increasing public and political attention (1,2). Measurements of quality of care are used

for external reporting as well as for initiating change in care delivery (in the follwing referred to as

change) with the common aim of quality improvement (3)1. For these purposes, special interest lies

in the identification of performance outliers, either compared to a national average or a pre-specified

target (5,6). For estimating and classifying hospital performances based on observed results, various

frequentist and Bayesian statistical methods have been proposed and compared (5,7–10). However,

little attention has been paid to the question of how much statistical evidence is needed in order to

classify a hospital as performance outlier. Often, simply a pre-specified level of statistical significance

is used as classification threshold, usually without relation to the consequences of the classification

decision (9,11).

As an alternative, previous studies suggested to specify utility functions that quantify the potential

costs or utilities associated with classification decisions (12–14). These include a generalized version of

a 1-0 utility function for classification decisions (13) but also more complex ones that take into account

the consequences from different stakeholder perspectives (14). We extend this work by analyzing and

comparing the consequences of two different utility functions: a generalized 1-0 utility function for

external reporting and a utility function that depends upon the underlying quality of care as well as

the number of affected patients for change in care delivery. Using an exemplary quality indicator for a

proportion, we use funnel plots to illustrate how the optimal decision rule depends upon the choice of

a utility function and analyze the consequences for the sensitivity and specificity of the classification

decision in different scenarios and as a function of the number of treated patients. In order to illustrate

the practical consequences, we then apply both utility functions to data on hip replacement surgeries

that was collected for hospital profiling in Germany during 2017 and re-evaluate five indicators of
1External reporting is sometimes also referred to as accountability or selection and change as improvement (3,4)
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quality of the mandatory German hospital profiling program. These indicators cover over 180,000

treated patients in 1,277 hospitals. Finally, we discuss the insights such an formal decision theoretic

view can provide for the practical process of the evaluation of quality of care, as well as its limitations.

Methods

As starting point, we assume that a binary quality indicator is used to measure a certain aspect of the

quality of care provided by a hospital (or some other healthcare provider), for which data is collected and

analyzed. Typical examples include the adherence to specified processes (15,16) or outcome indicators

such as 30-day mortality after some procedure (17). Data is collected for a pre-specified time period

and the population of interest are all patients fulfilling certain inclusion criteria defined for the indicator

within the selected time period. In the following, Oj denotes the binary outcome of interest of patient

j, j = 1, . . . , J , at a specific hospital. In the case of an annual evaluation of the quality of care, for

instance, J is the number of patients which are considered as part of the quality indicator in the year of

interest. We assume that the outcome variables are independent and identically distributed Bernoulli

variables with outcome probability P(Oj = 1) = θ. This implies that individual patient characteristics

are assumed to have no relevant effect on the outcome of interest. Our framework can however be

extended to risk adjusted quality indicators with patient-specific event probabilities. In the following,

O denotes the sum of the outcome variables of interest, O =
J∑

j=1
Oj , that is the number of events of

interest at the specific hospital. By assumption, O|J, θ ∼ Bin(J, θ).

In the case of non-risk adjusted quality indicators, the evaluation of hospital performance is based on

the comparison of an estimate of the outcome probability θ with one or multiple pre-specified target

values, which are the same for all providers. In our work, we focus on the case of binary classification

based on a single pre-specified target value R, but the framework can easily be extended to multiple

categories. In the binary case, hospitals are often classified into performance outliers and non-outliers,

respectively (9). Furthermore, we assume that the target value R is the upper bound of a reference

range and that the goal is to identify hospitals with true underlying values of θ above the target as

performance outliers. We assume in the following that the target value R is a specified value known

before the start of the data collection (2). Alternatively, R can also be an estimated mean or some

quantile of the observed indicator results of several providers (5). Interest lies in the underlying value θ

(opposed to just the observed rate o/J with O = o), because we are interested in the inherent quality

processes at the hospital. This view corresponds to a so called analytic analysis framework in the spirit

of (18).

The classification decision dividing hospitals into performance outliers and non-outliers can be concep-

tually formulated as an influence diagram (19,20), in which nodes represent random variables, arrows
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indicate conditional dependencies of the joint probability distribution and thus the absence of arrows

indicates conditional independence. Figure 1 illustrates the case of a non-risk adjusted quality indicator

operationalized as a proportion:

Figure 1: Influence diagram for the classification of a single hospital

D(·) denotes the decision to classify a hospital into one of the two categories D ∈ {outlier, non-outlier},

and U represents the utility function. Note that the number of patients J and the latent parameter of

interest θ are assumed to be conditionally independent; this assumption can be relaxed, if necessary.

From Figure 1, it follows that the classification decision depends upon the parameter of interest θ, the

number of treated patients J , the observed number of outcomes of interest, the target value R as well

as the utility function.

In a Bayesian context, for all random variables without parent nodes in the graph, a prior distribution

has to be specified, reflecting all relevant prior knowledge. Since the decision D takes into account R

and J , we may assume that R and J are not random. Thus, formally, we use point mass priors for R

and J . Therefore, only a prior distribution for θ is really needed.

Given a treated number of patients J and an observed number of events of interest O = o, an optimal

decision rule for the classification of a single hospital can be derived by maximizing the expected utility

associated with the two classification decisions. This leads to a Bayes optimal decision rule (21):
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d∗(o, J,R, θ) = argmax
d∈D

E[U(d, J,R, θ)]

= argmax
d∈D

∫ 1

0
U(d, J,R, θ)f(θ|o, J) d θ.

Here, f(θ|o, J) denotes the density of the posterior distribution of θ given o, J and a prior distribution

of θ.

For the simultaneous classification of multiple providers i = 1, . . . , I, the Bayes optimal decision rule is

a vector of length I, denoted as d∗(). For multiple providers, we assume an additive utility function

I∑
i=1

U(di, oi, Ji, R, θi),

with the expected utility of each individual decision satisfying E[U(di, oi, Ji, R, θi)] ≥ 0. Additivity

of utilities is a simplifying assumption that does not necessarily hold in all decision contexts. In the

discussion, we refer to situations in which simple additivity may not suitable.

The Bayes optimal decision rule is then defined as

d∗(oi, Ji, R, θi) = argmax
d1,...,dI

I∑
i=1

E[U(di, oi, Ji, R, θi)].

Because each term in the summation is only a function of the expected utility for one single provider i,

this can be written as

d∗(oi, Ji, R, θi) =
[
argmax

d1∈D
E[U(d1, o1, J1, R, θ1)], . . . , argmax

dI∈D
E[U(dI , oI , JI , R, θI)]

]
.

In other words, the optimal decision rule is equal to the assemblance of all individually optimal decisions,

which is why we concentrate on the expected utility of a single provider hereafter.

Consequences of classification decisions

Besides the specification of a prior distribution for θ and the choice of a target value R, the specification

of a utility function is a central aspect for deriving an optimal decision rule. For the definition of

utilities associated with different decisions, a time period for which decision consequences are assumed

to have an effect needs to be defined. For our application to the two pathways, we assume that profiling

of hospitals is carried out on a yearly basis and therefore consider the consequences of the decision to

be effective only until the subsequent classification. Here and in the following, the term utility is used
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as a generic term for all positive effects of a decision compared to the effects of competing decisions,

including financial consequences, transparency, good quality (or improvement) of health care, and so

on.

According to the influence diagram (Fig. 1), the utility U may depend on the case load J , the parameter

θ, the reference value R and the decision D. It is convenient to represent U as a 2 x 2 matrix with

rows corresponding to the decision D and columns distinguishing whether θ lies below or above R.

θ ≤ R θ > R

Classification
Non-Outlier Ũ0,0(J, θ,R) Ũ0,1(J, θ,R)

Outlier Ũ1,0(J, θ,R) Ũ1,1(J, θ,R)

Therefore, the optimal decision, which optimizes the expected utility, is given by:

d(o, J,R) = I(E[Ũ(d = 0, J, θ, R)|o, J,R] < E[Ũ(d = 1, J, θ, R)|o, J,R]), (1)

where I(·) is a 0-1 indicator function, where the value 1 is interpreted as the decision outlier. Following

from that, it is mainly the difference Ũ(d = 1, J, θ, R) − Ũ(d = 0, J, θ, R) that is important for the

classification decision. In other words, when arguing about the optimal decision rule, we may normalize

the utility functions and assume that within each column of the above matrix, one of the two entries

is equal to zero. Usually, if the reference value R is well aligned with the classification problem, the

utility of a correct classification should be larger than the utility of a wrong classification.

Ũ0,0(J, θ,R) ≥ Ũ1,0(J, θ,R) and Ũ1,1(J, θ,R) ≥ Ũ0,1(J, θ,R).

Together with the normalization, we obtain a utility matrix of the following form:

θ ≤ R θ > R

Classification
Non-Outlier U0,0(J, θ,R) 0

Outlier 0 U1,1(J, θ,R)

where U0,0 and U1,1 should be positive, at least when θ is far away from R.

If U0,0 and U1,1 do not depend on θ, then it is possible to express the optimal decision rule (1) in terms
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of the posterior probability P(θ ≤ R|o, J):

d(o, J,R) = I(U0,0(J,R) · P(θ ≤ R|o, J) < U1,1(J,R) · P(θ > R|o, J))

= I
(

P(θ ≤ R|o, J) < U1,1(J,R)
U1,1(J,R) + U0,0(J,R)

)
.

(2)

Assigning specific values to the utilities associated with classifications decisions is difficult, because the

consequences are manifold and differ between the affected actors (such as patients, payers, hospitals

and others). However, every decision rule either explicitly or implicitly relies on a consideration of those

utilities and making those considerations explicit can lead to more transparent assessments. Below,

we give examples of how the functions U0,0, U1,1 can be chosen to model simple situations. For doing

so, we consider two different pathways to improve quality of care based on measurements: external

reporting and change. For both, we do not aim at deriving generally valid utility functions. Instead,

we illustrate how different assumptions on the functional dependencies of the utilities from θ and J

affect the choice of an optimal decision rule.

External reporting In the pathway of external reporting, measurements of quality of care are

used to reveal and compare the performance of hospitals (4). In general, external reporting and the

classification of hospital performances can help to guide patient decision regarding their hospital choice

(22) or support decisions for financial rewards or punishment (3,16). For simplicity, we focus in the

following on external reporting with binary consequences such as accreditation of hospitals or selection

for a financial reward or punishment and thus assume that the utilities are independent from the

underlying quality of care of the hospital, θ. We allow the utilities to depend upon the number of future

patients J ′ because it is reasonable to assume that overall, decisions have a stronger effect when they

affect more future patients. As described above, we are only interested in the decision consequences

that have an effect until the subsequent hospital classification. Thus, J ′ refers to the number of treated

patients within the next year. For this unknown quantity, usually the current number J can serve as a

good estimate and will be used in the following.

Thus, one possible way to define the associated utility in the pathway of external reporting is displayed

in Table 1:
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θ ≤ R θ > R

Classification
Non-Outlier η · J 0

Outlier 0 µ · J

Table 1: Utility in the pathway of external reporting

with µ, η ≥ 0. As described above, U0,0 = η · J represents the utility of a correct non-outlier

classification relative to that of an incorrect outlier classification. Thus, utilities arising independently

of the classification decision (like the costs of collecting and analyzing data) are not included in U0,0.

According to (2), the optimal decision rule is given by

dreport(o, J,R, θ) = I
(
P (θ ≤ R|o, J) < µ

µ+ η

)
.

It is straightforward to show that the decision rule that we derive below is also optimal in the case in

which U0,0 and U1,1 depend on J in the same functional way, in the sense that the ratio U0,0/U1,1 is

independent of J . Therefore, we omit J as factor from Table 1 in the following.

Thus, the optimal decision rule weighs the probability of the healthcare provider being a performance

outlier against the relation of expected utilities µ/(µ + η), in the following referred to as α. If, for

instance, hospitals are classified as performance outliers if the probability of them being an outlier is less

than α = 5%, this corresponds to a utility ratio of correct outlier to correct non-outlier classifications

of 1 to 19 (13).

Change in care delivery In the pathway of change, classifications of hospitals usually intend to

target resources for improvement and change processes for those providers where they have the most

impact. Because the goal is to improve the quality of care of the hospitals under consideration, those

who benefit most from change are future patients treated by those hospitals. In order to quantify the

expected benefit, assumptions about the effects of change are necessary. These can either be made

based on the evaluation of earlier actions to improve the quality of healthcare or, if no prior information

is available, have to be based on a best guess. If no prior evidence is available, we suggest the following:

We assume that measures of change can align the parameter of interest θ to the target value R, resulting

in the improvement factor (θ −R)+ := max(0, θ −R). Thus, a correct outlier classification (compared

to the false classification as a non-outlier) is associated with a utility depending on the potential for

improvement through change, the number of patients that benefit from these improvements and some
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multiplication factor δ: δ · (θ −R)+ · J ′, with δ ≥ 0. Again, we use J as an approximation for J ′.

The utility of the classification as non-outlier (compared to as outlier), on the other hand, consists of

the resources that are saved given that no measures of change are implemented (denoted as ω). This

applies regardless of whether the classification was correct or incorrect.

Following from that, one reasonable way to quantify the utilities associated with the classification

decision for the pathway of change is displayed in Table 2, in which the utility of a correct outlier

classification includes the resources that are necessary for the implementation of the measures of change

(ρ):

θ ≤ R θ > R

Classification
Non-Outlier ρ 0

Outlier 0 δ · (θ −R)+ · J − ρ

Table 2: Utility in the pathway of change

with ρ, δ ≥ 0. Based on this, the optimal decision rule can be derived as:

dchange(o, J,R, θ) = I
(
ω <

∫ 1

0
δ · (θ −R)+ · J · f(θ, o, J) d θ

)
.

Again, not the absolute utilities but only the relation of ω and δ, in the following referred to as ω = ρ/δ,

has to be defined in order to derive a utility-efficient decision rule. Here, ω can be interpreted as the

relation of utilities between those of saving resources by not implementing measures of change for one

hospital and those of its future patients benefiting from measures of change. In contrast to the pathway

of external reporting, the utilities of change are assumed to be directly dependent upon the outcome

probability θ. In this case, it is not possible to give a simple expression for dchange as a function of

posterior probabilities.

Comparison of different decision rules

In order to derive optimal decision rules dreport and dchange, the expected utilities associated with a

classification of a hospital as performance outlier have to be set into relation to those associated with

a classification as non-outlier. For the paradigmatic utility functions for the two pathways described

above, this is controlled by the two parameters α and ω, respectively. Given those and a fixed number

of treated patients J , critical values omin for the observed number of outcomes, o, can be calculated
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which lead to the classification as performance outlier:

omin(J,R,L) = argmin
0≤o≤J

{d(o, J,R, L) = 1}.

Hospitals with observed o ≥ omin are classified as performance outliers, where the concrete value of

omin is pathway-specific.

To illustrate the effects of the hospital volume (J) and the choice of a decision rule (dreport and dchange),

the critical values omin are displayed in a funnel plot (5). As an example, we use a exemplary quality

indicator with a target value (up to) R = 15%. Because we assume no prior knowledge about the

parameter, we use the non-informative Jeffrey’s prior as prior Beta(1/2, 1/2) distribution for θ.

In addition to the decision rules dreport and dchange, we analyze the decisions resulting from a naive

decision rule:

dnaive(O = o, J,R) = I
( o
J
> R

)
.

This naive rule has been traditionally used for classification decisions in Germany (23), which is why

we compare its results to that of the decision rules described above.

We compare the three decision rules with respect to their critical values omin as well as their sensitivity

and specificity in three scenarios: with underlying quality of care within (in control: θ = 10%), outside

(out of control: θ = 20%), and at the border of the reference area (borderline: θ = R = 15%). Sensitivity

is here defined as the probability of identifying outlying hospitals as performance outliers (and applies

thus only to the out-of-control scenario), and specificity as probability of identifying non-outliers as

non-outliers (and applies to the in-control and borderline scenario). For each scenario, sensitivity and

1− specificity are calculated for a varying number of patients treated by the hospital. Again, Jeffrey’s

prior is used.

We apply the above proposed decision rules to five quality indicators covering aspects of stationary

hip replacement surgeries in Germany in the year 2017. For all hospitals, providing relevant services

for these indicators, we calculate for each indicator the proportion of hospitals which are classified

as performance outliers given various values for ω and α and using Jeffrey’s prior for θ. Because in

Germany, dnaive is currently used as decision rule and all classifications of performance outliers are

subsequently validated in a qualitative step, we can compare the positive-predictive-value (PPV) of

the proposed decision rules for various values of ω and α with respect to this qualitative assessment.

The validation consists of a structured dialogue between the hospital and the responsible quality
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assurance agency and aims at determining whether the classification as outlier is really due to deficits

in the quality of care (1,2). PPV is calculated as the proportion of hospitals whose classification as

performance outlier is confirmed by the qualitative validation.

Results

Figure 2 shows the critical values omin depending on J for an indicator with R = 15% and for specific

values of ω and α:
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Figure 2: Funnelplot for a binary indicator with R = 15%

With increasing number of patients J , the critical value of all three decision rules approaches the target

area (grey area in Figure 2). For low-volume providers, dchange leads to more liberal decisions compared

to dreport, with dnaive yielding the lowest critical values. On the other hand, dchange converges more

quickly to R than dreport for higher values of J . This means that for the specific values α = 5% and

ω = 2, low-volume hospitals are more often classified as performance outliers based on dreport compared

to dchange, while the opposite is true for high-volume hospitals. The critical value of dnaive, in turn, is

the most conservative over almost all J .

This is also reflected in the sensitivity and specificity of all three decision rules displayed in Figure 3:
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in control:  θ = 10% borderline:  θ = 15% out of control:  θ = 20%
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Figure 3: Sensitivity and specificity as a function of the number of cases J

For the in-control-scenario, the probability of a false-positive classification are low for both dreport and

dchange, indicating a high specificity. For dnaive, however, the specificity is comparatively low for small

values of J . For the borderline-scenario, the decision rule dreport for the pathway of external reporting

has, on average, a probability of 5% for false-positive classifications, corresponding to a specificity of

95%. The decision rule for the pathway of change, dchange, has a higher specificity for low-volume

providers. With increasing number of patients, however, the probability of false-positive classifications

increases, due to the fact that the expected utility of false-negative classifications increase with J . This,

on the other hand, means that dchange has a high sensitivity for high-volume providers, which can be

seen in the out-of-control-scenario. There, the sensitivity of dreport also increases with higher numbers

of patients, but not as quickly as that of dchange. For low-volume providers, however, the probability

of false-negative classifications is again higher for dchange. For dnaive, the specificity is low if the true

parameters lies within the reference area, but the sensitivity is high even for small-volume providers

compared to both other decision rules if the true parameter lies outside of the reference area.

The above figures only show the consequences of single choices α = 5% and ω = 2 for the parameters,

but the results are qualitatively similar for other values. Consequences of alternative choices for the

parameters can be investigated via two Shiny apps (24).2 Also for different choices of α and ω, the

general conclusion holds that for the pathway of change, outlier classifications are more frequent for

high- compared to low-volume providers compared to the pathway of external reporting, with similar
2https://iqtig.shinyapps.io/funnel_plot/ and https://iqtig.shinyapps.io/sensitivity_specificity
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consequences for both sensitivity and specificity as presented above.

Application to hospital profiling in Germany

In total, 1,277 hospitals were profiled based on data from more than 180,000 treated patients in 2017 for

the five considered quality indicators for hip replacement surgeries (25). An overview over all indicators

is given in Table 3:

QI Quality indicator Reference area

1 Patient has no indication for elective hip replacement surgery ≤ 10%

2 Patient has no indication for hip revision surgery ≤ 14%

3 Length of stay prior to surgery for hip fracture is > 48h ≤ 15%

4 No measures for fall prevention taken ≤ 20%

5 Patient is not mobile on discharge ≤ 5%

Table 3: Quality indicators for hip replacement surgeries

Over all hospitals and indicators, 851 out of 5,270 hospital results were reported as being classified

as performance outliers based on the naive decision rule dnaive. In the qualitative validiation of those

outlier classifications, only 17% were subsequently confirmed as actual outliers.

For all hospitals and quality indicators, the number of hospitals that would have been classified as

outliers using dreport and dchange is displayed for various values of ω and α in Figure 4:
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Figure 4: Number of outlier classifications as functions of the parameters α and ω

For all considered values, the naive decision rule is the most conservative, yielding the highest number

of outlier classifications (851). For the two other decision rules, the number of outlier classifications

decreases with decreasing α and increasing ω, respectively. This is especially true for QI 3 (length of

stay prior to surgery), for which the number of outlier classifications is generally the highest among all

indicators. For all other indicators, the number of outlier classifications is lower but decreases similarly

with decreasing α and increasing ω, respectively.

Figure 5 displays the PPV, that is the proportion of outlier classifications that were confirmed as

outliers in the qualitative validation step:
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Figure 5: PPV as functions of the parameters α and ω

For both decision rules, the overall PPV is low for large values of α and low values of ω but increases to

up above 30% over all indicators and for both dreport and dchange. Indicator 3 (length of stay prior to

surgery) is the indicator for which the PPV increases the most, from about 25% for ω = 1 and α = .5

and up to and above 50% for ω = 5 and α = .01. For all other indicators, there is at most a weak

relationship between the PPV and the values of α and ω.

Overall, even with conservative decision rules that assume much lower utility for false-positive compared

to false-negative classifications, the PPV is relatively low across all hospitals and quality indicators.

Only the PPV of a single indicators shows a strong relationship between the PPV and increasing or

decreasing values of ω and α, respectively.

Discussion

The classification of hospitals on the basis of measurements of process or outcome indicators is a

decision under uncertainty, because the observed data only allows probabilistic statements about the

true parameter of interest. Bayesian decision theory provides a framework to derive decision rules that

are optimal with respect to the expected utility associated with each decision. Because the utilities are

a crucial part of the decision rule, they should be reflected upon and incorporated into the decision

rule wherever possible in order to make decisions transparent and justifiable. Funnel plots prove to be

an intuitive way to communicate the resulting decision boundaries. In practice, however, arriving at a

single utility function can be difficult, especially because consequences for different parties (such as
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patients, hospitals, sponsors, investigators, policy makers) have to be considered and weighted against

each other. In these cases, it can be useful to define a set of fixed decision rules (based on values such

as α ∈ {0.01, 0.05, 0.1, 0.2, 0.4} and some integer values of ω, respectively) and, by doing so, to contrast

different underlying utilities in order to arrive at a rule that suits best to the decision problem at hand

among a set of options.

For the simultaneous classification of multiple hospitals, we assumed an additive utility function. In

practice, the assumption of simple additivity may not always be a appropriate. For instance, the quality

and effects of measures of change can be dependent upon the total number of outlier classifications

due to limited resources. In this case, the utility of an outlier classifications directly depends upon

the overall number of outlier classifications, which should be incorporated into the utility function.

Furthermore, we ignored that the decision rule itself can have an effect on the quality of care provided by

hospitals. If, for instance, small-volume hospitals below a certain number of treated cases irrespectively

of their performance are never classified as outliers, the absence of quality assurance at these hospitals

could lead to a decline in the quality of care. In this case, it can be reasonable to modify the decision

rule in order to avoid undesired effects or use additional instruments.

The application of the presented framework to the German setting of hospital profiling in the area

of hip replacement surgeries illustrated that the chosen utility function has a high impact on the

number of outlier classifications: the lower the utility of correct non-outlier in relation to correct

outlier classifications are assumed to be, the more providers are classified as performance outliers. One

consequence of a low utility for correct non-outlier in relation to correct outlier classifications (resulting

in large values for α and small values for ω, respectively) is a lower PPV of the classification decision.

However, the relationship between PPV and values of α and ω was pronounced only for one of the five

quality indicator and weak or non-existent for all others. This is surprising, because one could assume

that more liberal threshold values should lead to a higher PPV among those still classified as outliers.

One reason for the weak relationship between PPV and values of α and ω could be that the validation

of results classified as outliers is a relatively informal process with plenty of heterogeneity and, hence,

cannot serve as a gold standard for the classification of true outliers (23). Also, it is possible that the

indicators’ inclusion criteria are not accurate enough to exclude cases from the indicators which are

explained by special circumstances. Our suggested explicit addressing of uncertainty as part of the

decision underlines that the weak relationship between the PPV and α and ω could be reason to review

the validity of the indicators or the qualitative validation process.

Profiling of hospitals needs to be based upon state-of-the-art statistical methodology. Our work offers a

flexible framework, which can can easily be extended to other types of quality indicators, including

risk-adjusted indicators, the aggregation of several indicators or a sequential decision making context.
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Conclusion

The classification of hospitals on the basis of measurements of process or outcome indicators is a decision

under uncertainty and can be analyzed using a decision-theoretic framework. This allows the contrasting

of different decision rules regarding their underlying assumptions and consequences. Funnelplots and the

analysis of sensitivity and specificity of decision rules are useful ways to examine their characteristics and

consequences, also with regard to undesired side effects. This way, the effectiveness and transparency

of decision making in the context of hospital profiling can be improved.
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