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Highlights 

- When novel pathogens emerge, the immediate strategy is to repurpose drugs. 
- Good drugs delivered together in suboptimal combinations and doses can yield low or no 

efficacy, leading to misperception that the drugs are ineffective. 
- IDentif.AI 2.0 does not use in silico modeling or pre-existing data. 
- IDentif.AI 2.0 pairs optimization with prospectively acquired experimental data using a 

SARS-CoV-2/Vero E6 assay. 
- IDentif.AI 2.0 pinpoints EIDD-1931 as a foundation for optimized anti-SARS-CoV-2 

combination therapies.  
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Abstract  
 
Objectives: We aimed to harness IDentif.AI 2.0, a clinically actionable AI platform to rapidly 
pinpoint and prioritize optimal combination therapy regimens against COVID-19. 
Methods: A pool of starting candidate therapies was developed in collaboration with a community 
of infectious disease clinicians and included EIDD-1931 (metabolite of EIDD-2801), baricitinib, 
ebselen, selinexor, masitinib, nafamostat mesylate, telaprevir (VX-950), SN-38 (metabolite of 
irinotecan), imatinib mesylate, remdesivir, lopinavir, and ritonavir.  Following the initial drug pool 
assessment, a focused, 6-drug pool was interrogated at 3 dosing levels per drug representing nearly 
10,000 possible combination regimens. IDentif.AI 2.0 paired prospective, experimental validation 
of multi-drug efficacy on a live SARS-CoV-2 live (propagated, original strain and B.1.351 variant) 
and Vero E6 assay with a quadratic optimization workflow.  
Results: Within 3 weeks, IDentif.AI 2.0 realized a list of combination regimens, ranked by 
efficacy, for clinical go/no-go regimen recommendations. IDentif.AI 2.0 revealed EIDD-1931 to 
be a strong candidate upon which multiple drug combinations can be derived.  
Conclusions: IDentif.AI 2.0 rapidly revealed promising drug combinations for clinical translation. 
It pinpointed dose-dependent drug synergy behavior to play a role in trial design and realizing 
positive treatment outcomes. IDentif.AI 2.0 represents an actionable path towards rapidly 
optimizing combination therapy following pandemic emergence.  
 
Graphical Abstract 
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Digital Medicine, Artificial Intelligence, Combination Therapy, Optimization, COVID-19, SARS-
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Introduction 
COVID-19 drug development has largely focused on repurposing, either through single agent or 
combination therapy (Group, 2021, Group et al., 2021; Kalil et al., 2021; Mirabelli et al., 2020; 
Riva et al., 2020).	Clinical trial outcomes of the repurposed candidates were varied (Sheahan et 
al., 2020; Tekin et al., 2018; White et al., 2021). While many monotherapies did not mediate 
substantial clinical benefit, their use in properly designed drug combinations may lead to 
unforeseen efficacy. Addressing this point is challenging for traditional antiviral susceptibility 
assays. Therefore, developing new methods that leverage unpredictable drug interactions to 
resolve the complexity of drug selection and dose-dependent drug synergy is essential. In fact, 
drug and dose selection are so tightly connected that among a pool of candidate therapies, true 
optimization often yields combinations of unforeseen but clinically acceptable drugs and doses. 	
  
Unfortunately, simultaneous drug and dose optimization represents an insurmountable challenge. 
12 drugs assessed at 3 dosage levels results in over 500,000 possible combinations. Important 
strategies for synergy prediction and higher-order drug interaction analysis have been explored 
(Galindez et al., 2021; Mohapatra et al., 2020; Mongia et al., 2021; Tekin et al., 2018; Zimmer et 
al., 2016).		To address the challenge of ensuring clinical actionability of the combination design 
outcome, we developed the IDentif.AI platform, an AI-based workflow for rapid combination 
therapy development. The first permutation of IDentif.AI used neural networks to reveal that the 
biological response to therapy can be represented by a smooth surface. Subsequent studies resolved 
this surface, which can rapidly identify optimal combinations, using a second-order algebraic 
function, with its coefficients determined through a small number of prospective experiments 
(Abdulla et al., 2020; Al-Shyoukh et al., 2011; Blasiak et al., 2021; Clemens et al., 2019; Ho, 2020; 
Ho et al., 2020; Lee et al., 2017; Lim et al., 2020; Mohd Abdul Rashid et al., 2015; Rashid et al., 
2018; Silva et al., 2016; Wang et al., 2015; Wong et al., 2008). This correlation has subsequently 
been verified in prospective, human studies in infectious disease, cancer therapy, transplant 
medicine, and other indications (Tan BKJ et al., 2021; Blasiak et al., 2020; de Mel et al., 2020; 
Kee et al., 2019; Pantuck et al., 2018; Shen et al., 2020; Zarrinpar et al., 2016). IDentif.AI does 
not use pre-existing data for algorithm training, in silico modeling, or synergy prediction. Instead, 
it uses experimental assays to determine the drugs and doses that constitute globally optimized 
combination regimens. Our previous IDentif.AI studies pinpointed top-ranked combinations 
(based on inhibition efficacy) mediated by unforeseen drug interactions (Blasiak et al., 2021). 
Following this study, we developed IDentif.AI 2.0 to expand the resolution of drug and dose 
analysis to yield a broader spectrum of clinically actionable combinations. 
 
Due to the strong dependence of drug selection and drug dosing on combination therapy 
optimization, IDentif.AI and IDentif.AI 2.0 utilized clinically relevant dosing levels as reference 
points for the design of their respective studies. Furthermore, their optimization capabilities have 
been foundational towards their strong alignment with clinical trial outcomes. In this study (Fig. 
1), a starting pool of candidate therapies that have been or are being evaluated in various COVID-
19 clinical settings was developed in consultation with the clinical community (Table 1, (Beigel 
et al., 2020; Goldman et al., 2020; Richardson et al., 2020). IDentif.AI 2.0 implementation on a 
propagated, original live SARS-CoV-2 strain was completed within 3 weeks. This workflow 
rapidly pinpointed EIDD-1931 in combination with remdesivir (RDV), EIDD-1931 in 
combination with baricitinib (BRT), and EIDD-1931 in combination with masitinib (MST) as 
promising regimens for further development. EIDD-1931/RDV resulted in the highest efficacy and 
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broad synergy across varying dosing levels. EIDD-1931 in combination with BRT or MST showed 
a stronger dose-dependence on drug synergy compared to EIDD/RDV. These results were 
reconfirmed against the SARS-CoV-2 B.1.351 (beta) variant. The results demonstrate the need for 
dose optimization studies should these regimens be advanced to clinical trials. The resulting highly 
ranked combinations also demonstrate that EIDD-1931 (and likely the EIDD-2801 prodrug) is a 
strong candidate upon which multiple drug combinations can be derived (Cox et al., 2020; Sheahan 
et al., 2020).  
 
IDentif.AI 2.0 did not rely on pre-existing datasets, synergy predictions, or in silico modeling to 
design these combinations. Instead, it harnessed experimental data from carefully designed drug-
dose permutations and prospectively executed studies to drive the optimization process to 
complement existing strategies in the fight against COVID-19 pandemic. These results 
demonstrate the potential actionability of IDentif.AI 2.0 as an effective go/no-go platform for 
prioritizing and advancing combination therapies towards further preclinical or clinical 
development, and clinical decision support system (CDSS).   
 
Materials and Methods  
Additional sections can be found in Supplemental Materials and Methods. 
 
Viral inhibition and cell cytotoxicity of drugs 
All experiments with the live SARS-CoV-2 (propagated, original strain and B.1.351variant) were 
performed in a BSL-3 laboratory. Each treatment was prepared in the culture media and pipetted 
into the wells of the white 96-well plate in triplicate. 2 x 104 Vero E6 cells were added into each 
well with and without SARS-CoV-2 (100 TCID50) to test viral CPE inhibition and cytotoxicity 
effects, respectively. The maximum DMSO concentration used in each experimental step and 
media only served as vehicle controls. Plates were incubated for 72 h before measuring the cell 
viability via Viral ToxGlo (Promega, G8941) per manufacturer’s instructions. Drug cytotoxicity 
and viral CPE inhibition were calculated, as described previously (Blasiak et al., 2021). In case no 
difference was detected between the vehicle and cell only controls, the results from these 
treatments in each plate were pooled together and served as plate-specific control used in the 
calculations. The calculations used in the validation experimental step used an average of pooled 
measurements from the control treatments from all plates. GraphPad Prism 9 software (GraphPad 
Software) was used to plot dose-response (D-R) curves and to derive absolute effective 
concentrations EC10, EC20 and EC50 of %Inhibition and absolute cytotoxic concentrations CC50 of 
%Cytotoxicity. 
 
%Cytotoxicity in the validation experimental step was calculated in THLE-2 human liver and 
AC16 human cardiomyocyte cell lines. The drugs were added to the wells after the cells were 
allowed to adhere to the surface for 24 h. The plates were incubated for 72 h before measuring the 
cell viability via CellTiter-GLO (Promega, G7570) per manufacturer’s instructions. %Cytotoxicity 
calculations in THLE-2 and AC16 were performed using an average of pooled measurements from 
the control treatments from all plates. 
 
Drug interaction analysis in the IDentif.AI experimental step 
IDentif.AI analysis correlated the 6-drug in vitro experimental data into a quadratic series to elicit 
optimized drug combinations and drug-drug interactions. The analysis was performed in 
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MATLAB R2020a (Mathworks, Inc.) (Blasiak et al., 2021). IDentif.AI analysis derived two 
quadratic series – %Inhibition, %Cytotoxicity – by including all experimental replicates as inputs 
and performing bidirectional elimination in which the P value from the F-statistic served as the 
removal criterion. Box-Cox transformation determined appropriate transformations to improve the 
residual distributions and the goodness of the fit represented by adjusted R2. Residual analysis was 
performed for each of the two IDentif.AI-derived series. Outlier analysis was performed based on 
the residual distribution.  
 
Drug interaction analyses in the validation experimental step 
Interaction surfaces were constructed using drug combinations selected via D-optimal 
experimental design (N = 9 treatments for EIDD-1931/RDV and EIDD-1931/BRT; N = 6 
treatments for EIDD-1931/MST; 3-4 replicates per treatment) performed in MATLAB R2020a 
(MathWorks, Inc). We assumed a quadratic model of the drug interactions. All replicates were 
included in the construction of the surfaces. 
 
GraphPad Prism 9 software (GraphPad Software) was used to plot D-R curves and derive EC50 of 
%Inhibition and CC50 of %Cytotoxicity of the validation set treatments (monotherapies and 
combinations). Drug combinations were tested at two fixed ratios: i) Level 2/Level 2 ratio for 
EIDD-1931/RDV, and Level 1/Level 2 ratio for EIDD-1931/BRT from IDentif.AI experimental 
set (OACD ratio); and ii) Cmax/Cmax ratio (Cmax ratio). %Cytotoxicity was evaluated in terms of its 
effects on the %Inhibition assay.  
 
Statistical analyses 
All in vitro experiments were performed in at least 3 biological replicates. %Inhibition and 
%Cytotoxicity are presented as mean ± propagated standard deviation (SD) (Supplementary 
Materials and Methods). The IDentif.AI-estimated coefficients were analyzed using sum of 
squares F-test and P-values for each individual coefficient obtained from stepwise regression. 
 
Results 
 
Starting drug pool and live virus/in vitro experimental model  
 
The 12 candidate drugs had hypothesized mechanisms of either inhibiting SARS-CoV-2 entry into 
the host cell– BRT, NFM, IMT– or inhibiting SARS-CoV-2 replication – EIDD-1931, EBS, SEL, 
MST, TPV, SN-38, RDV, LPV, RTV (Drayman et al., 2020; El Bairi et al., 2020; Haritha et al., 
2020; Kneller et al., 2020; Lovetrue, 2020; Sanders et al., 2020; Sheahan et al., 2020; Stebbing et 
al., 2020; Xiu et al., 2020).  
 
The antiviral drug effects in monotherapies and in combinations were tested by exposing Vero E6 
cells for 72 h to SARS-CoV-2 before measuring the %Inhibition of the virus-induced cytopathic 
effect (CPE) and the drug toxicity-induced CPE (%Cytotoxicity). The %Inhibition and 
%Cytotoxicity were derived in independent biological replicates based on different activity ranges, 
so their effect sizes are not directly comparable. The Z’-factor of 0.569 (N = 52 positive controls 
and 70 negative controls) indicated that across all three experimental steps, the separation between 
the negative and positive controls was sufficient to perform an ‘excellent’ assay (Zhang et al., 
1999). Assay quality details for each experimental step are included in the Supplementary Results. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 2, 2021. ; https://doi.org/10.1101/2021.06.23.21259321doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259321


 6 

 
Monotherapies were broadly not sufficiently efficacious in the actionable dosing range 
The first experimental step aimed to gauge the drugs’ antiviral activities when the drugs were 
administered as monotherapies. We exposed the Vero E6 cells with and without the live virus to 
an increasing concentration of each drug on its own, constructed D-R curves and calculated half 
maximal absolute effective concentration (EC50) – the drug concentration at which half of the viral-
induced CPE is inhibited. An analogical process was performed to understand at what 
concentration each drug became cytotoxic.  

Importantly, to ensure the clinical actionability of the findings, the concentration range tested for 
each drug was selected with consideration of their maximum plasma concentration (Cmax) achieved 
in the human body (Table 1) to capture the efficacy in a concentration range of interest - clinically 
actionable concentrations with potential human efficacy. A high Cmax/EC50 ratio indicates a drug’s 
capability to reach the concentrations in the human blood plasma that is sufficient to provide 
antiviral efficacy (Arshad et al., 2020). The specifics of the Cmax selection for each drug are 
presented in the Supplementary Results.  

The D-R curves (Fig. S1) revealed that the antiviral activities of the drugs were limited when they 
were administered as monotherapies (Table 1). RDV and EIDD-1931 were the only drugs that 
achieved EC50 < Cmax with Cmax /EC50 ratios of 2.92 and 11.46, respectively. RDV, RTV and LPV 
performance in monotherapy was comparable with that observed in the previous IDentif.AI study 
based on the same assay (Blasiak et al., 2021). 
 
IDentif.AI 2.0 drug combination optimization  
IDentif.AI was developed as a CDSS for real-world application under pandemic preparedness 
circumstances, where experimentation is often performed under shortened timelines. In addition, 
IDentif.AI can be executed in concert with high biosafety level laboratories and specified viral 
volumes processed per session. While the IDentif.AI 2.0 workflow substantially reduces the time 
and workload needed for combination design compared to traditional methods, natural biological 
and experimental variations resulted in an additional study team oversight process in the workflow 
of narrowing the drug pool based on promising interaction profiles observed from the initial 12-
drug experiment. This additional step selected RDV, EBS, MST, IMT, BRT and EIDD-1931 to be 
included in the focused, 6-drug IDentif.AI experimental set that enabled the team to complete the 
downstream optimization process alongside laboratory guidelines while also minimizing 
biological and experimental variation. As IDentif.AI 2.0 aims to serve as a CDSS in a real-life 
setting, its potential for scalable and widespread deployment is a key consideration. 	
 
In the focused, 6-drug IDentif.AI experimental step, Vero E6 cells with and without the live virus 
were exposed to the drug treatments in monotherapies and according to a 50-combination 
Orthogonal Array Composite Design (OACD) table (Table S1). The drugs in the treatments had 3 
concentration levels (Table 2). 10% Cmax for each drug was broadly considered as an achievable 
dose at the target tissue and served as the maximum concentration level. EIDD-1931 concentration 
was further restricted to EC20 to avoid overrepresentation of this drug in the experimental set and 
a potential saturation of the %Inhibition results (Table 2).  
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IDentif.AI 2.0 analysis used a quadratic equation to describe the 6-drug interaction space against 
the SARS-CoV-2 (adjusted R2 = 0.794; Table S2). Monotherapy results demonstrated that EIDD-
1931 was the most efficacious drug in the pool, even when given at EC20, with moderate antiviral 
effects. IDentif.AI 2.0 analysis of the drug-drug interaction detected an unforeseen interaction 
between EIDD-1931 and RDV, which was the most efficacious two-drug combination, and were 
predicted to achieve close to maximal %Inhibition in a synergistic interaction demonstrated by the 
convex shape of the EIDD-1931/RDV interaction surface (Fig. 2). In addition, IDentif.AI-derived 
coefficients pointed to an interaction between EIDD-1931 and BRT. The EIDD-1931/BRT 
interaction surface had a mildly concave shape across the tested BRT concentration range. BRT 
was predicted to have a mild antagonistic effect on the EIDD-1931- driven %Inhibition at its mid-
concentration (Fig. 2). Little to no cytotoxic effects have been detected in the IDentif.AI 
experimental step (Supplementary Results).  
 
Experimental validation of the IDentif.AI analysis 
In the IDentif.AI 2.0 validation step we exposed Vero E6 cells to live virus to construct interaction 
surfaces for EIDD-1931/RDV and EIDD-1931/BRT assuming a quadratic equation. With the 
focus on a two-drug interaction only, we recalibrated the size of the validated interaction space to 
range from 0% to 15% Cmax of EIDD-1931 to capture the clinically actionable range (<10% Cmax) 
and the adjacent space (Fig. 3).  
  
The EIDD-1931/RDV interaction surface had a convex shape pointing to the highest %Inhibition 
achieved when both drugs are at their highest concentrations, suggesting it is beneficial to provide 
these drugs in a combination. The flat shape of the EIDD-1931/BRT interaction surface indicated 
that the %Inhibition results driven by EIDD-1931 are not affected by the presence of BRT. Due to 
interesting multi-drug behavior observed from IDentif.AI 2.0 analysis, we further assessed the 
EIDD-1931/MST combination. Of note, IDentif.AI 2.0 analysis did not identify a significant 
interaction between EIDD-1931 and MST. After expanding the concentration range in the 
validation set to 15%Cmax of both EIDD-1931 and MST, the concave shape of the EIDD-
1931/MST interaction surface indicated that an increase in the concentrations of both drugs could 
mediate maximum %Inhibition. This phenomenon, however, had the strongest effect outside of 
the clinically actionable range, potentially explaining why the EIDD-1931/MST interaction was 
not detected in the IDentif.AI 2.0 step.  
 
Given the previously demonstrated immunomodulatory activity of BRT and synergistic potential 
of MST, the EIDD-1931/BRT and EIDD-1931/MST combinations can potentially be evaluated 
further, where dose optimization studies may be essential to achieving optimal efficacy.   
 
Dose-response curves revealed additional information for the EIDD-1931 interactions with 
RDV and BRT 
Interaction surfaces were constructed with a small number of drug combination data points and 
therefore had a limited resolution. To validate IDentif.AI-determined EIDD-1931 interactions with 
RDV and BRT at a higher fidelity, in the same data set, we included drug treatments to generate 
D-R curves at the two different drug ratios: as used in the OACD table and dictated by Cmax. 
  
The D-R curves revealed additional information. We observed a slight shift in the D-R curves for 
both combinations: towards a lower and higher EIDD-1931’s absolute EC50 for EIDD-1931/RDV 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 2, 2021. ; https://doi.org/10.1101/2021.06.23.21259321doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259321


 8 

and EIDD-1931/BRT, respectively (Figs. 3D and E; Fig. S2). The mild antagonistic effect of BRT 
at the OACD ratio is consistent with the IDentif.AI 2.0 analysis. Overall, these results suggest 
small effect sizes of the tested interactions of EIDD-1931. Interestingly, at high concentrations, 
the D-R curve shapes revealed a potential boost in maximum %Inhibition achievable by EIDD-
1931 co-administered with RDV or BRT (Fig. 3D and E; Fig. S3). This phenomenon was not 
observed for EIDD-1931/BRT[OACD ratio] which instead was shown to induce a mildly antagonistic 
shift in EC50. The observation that the same drug combination at two different ratios can potentially 
exhibit the opposite interactions points out to the importance of optimizing drug doses at the same 
time as their combinations. Further experiments are required to confirm and better characterize 
these observations.  
 
The potentially synergistic efficacy interaction demonstrates that combining EIDD-1931 with 
either RDV or BRT can achieve a higher efficacy than each drug alone, which highlights the 
potential of EIDD-1931 serving as a backbone to combinational therapies against the SARS-CoV-
2. However, as the synergy was detected outside of the actionable interaction space, additional 
dosing strategies may need to be considered to optimize these interactions in a clinical setting. 
 
The efficacy of the pinpointed therapies against SARS-CoV-2 B.1.351 variant.  
We retested the efficacy of the pinpointed monotherapies and combination treatments against the 
SARS-CoV-2 B.1.351 variant. EIDD-1931 and RDV monotherapies demonstrated an increased 
antiviral activity as compared to the propagated, original strain (Fig. 4 and S4). Accordingly, the 
EIDD-1931 interaction surfaces demonstrated saturation regions at high concentrations of EIDD-
1931 and RDV (Fig. 4A). 
 
Cytotoxicity of EIDD-1931 in the interactions  
When %Cytotoxicity was tested in VeroE6, the EIDD-1931/RDV and EIDD-1931/BRT 
interaction surfaces (Fig. 5A and B; Fig. S5) had a convex shape while the EIDD-1931/MST (Fig. 
5C) had a concave shape indicating that %Cytotoxicity is a result of an interaction between EIDD-
1931 and the drugs. However, %Cytotoxicity was low and was not predicted to expand beyond 
23% for any of the drug combinations in the actionable range. 
 
To gauge the potential cytotoxicity that may be observed in clinical settings, we investigated 
cytotoxic effects of the EIDD-1931 drug combinations in cell lines of human origin: liver epithelial 
cells (THLE-2) and cardiomyocytes (AC16). The interaction surfaces had different shapes in 
different cell lines, highlighting the target-specific cytotoxic characteristics of the treatments. The 
regular shape of each interaction surface with uniformly high %Cytotoxicity tested at high EIDD-
1931 concentration independent of the presence of the other drugs indicate that cytotoxicity in 
THLE-2 was driven by EIDD-1931 and it was not significantly affected by its interactions with 
RDV, BRT and MST (Fig. 5D-F; Fig S5). In AC16 cells, MST did not increase EIDD-1931-driven 
cytotoxicity; BRT mildly alleviated it in a ratio-dependent fashion; and RDV demonstrated dose-
dependent cytotoxic synergy, with predicted 29% maximum %Cytotoxicity in the clinically 
actionable interaction space (Fig. 5G-I; Fig S5). 
 
Discussion 
 
IDentif.AI 2.0 actionability 
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This work has demonstrated IDentif.AI 2.0’s potential as a clinically actionable platform to rapidly 
prioritize drug combinations for further consideration based on high efficacy, and de-prioritize 
combinations that may be avoided due to lack of efficacy as optimized to a specific SARS-CoV-2 
variant. A key technical attribute of IDentif.AI 2.0 is that its combination design workflow is 
inherently based on optimization via drug and dosing data that are clinically relevant.   
 
Our study pinpoints EIDD-1931 to be a promising therapeutic for COVID-19, both as a 
monotherapy and as the backbone drug for combination therapies. EIDD-1931 is hypothesized to 
inhibit viral replication by inducing lethal mutagenesis in coronaviruses (Sheahan et al., 2020). 
EIDD-2801 (EIDD-1931’s prodrug) has been shown to inhibit SARS-CoV-2 in primary human 
airway epithelial cell cultures and in multiple animal models (Cox et al., 2021; Rosenke et al., 
2021; Sheahan et al., 2020; Wahl et al., 2021) and is currently being evaluated in a Phase 3 
trial (NCT04575597). Its ability to be administered orally supports its potential as a rapidly 
deployable therapy (Merck & Co., 2021). Additionally, our toxicity results for EIDD-1931 are in 
line with other studies that have shown that EIDD-2801 may be well-tolerated (Painter et al., 2021; 
Khoo SH et al., 2021). The resulting efficacy of the IDentif.AI 2.0 validation combinations 
indicates that they too may be suitable for further preclinical and/or clinical evaluation with careful 
dosing adjustment strategy to maximize synergistic efficacy at minimal toxicity.  
 
Limitations of the study 
It is important to note that this study was conducted in an in vitro live virus model, and the 
subsequent preclinical and clinical dose optimization and evaluation will be needed.  This study 
evaluated a pre-specified drug pool, and further studies with additional drug candidates are 
warranted. Developing a set of drug selection criteria such as drug class, administration route, 
prior evidence of interaction with other drugs, clinical relevance and accessibility may streamline 
the development of the drug pool. While the current study did not examine the immunomodulatory 
effects of the anti-inflammatories (SN-38, BRT), future work using applicable assays towards 
combination therapy development with immunomodulators is warranted as IDentif.AI 2.0 can be 
implemented in virtually all assays, provided quantifiable efficacy and toxicity readouts are 
available. Including immunomodulation will potentially create viable therapeutic options for 
severe patients as shown by recent clinical progress (Group et al., 2021).  
  
The IDentif.AI 2.0 workflow has some technical limitations, nonetheless, it is developed for rapid 
optimization and clinical actionability, and complementary strategies can be integrated to address 
them. First, the IDentif.AI interaction space interrogation assumes a quadratic relationship with 
the efficacy/cytotoxicity responses. The optimized combinations presented here are largely limited 
to two-drug combinations, rapidly identifying the most significant drugs and its partners from a 
large drug combination search set. Further development of more complex combinatorial therapy 
strategies, such as four- or five-drug combinations would likely require some reconciliation of 
higher-order interactions, similar to previous studies (Tekin et al., 2018). Second, only limited 
dosage ratios were tested. Nevertheless, the current results suggest that further preclinical and 
clinical dosing optimization may reveal the full potential of the pinpointed combination therapies 
in term of their synergistic potency (i.e., beneficial dose reduction) and 
synergistic efficacy interactions (i.e., beneficial increase in maximum efficacy) (Meyer et al., 
2019). Additional correlation studies with clinical trial outcomes, when available, will also further 
determine the applicability of IDentif.AI 2.0 towards go/no-go decisions on combination regimens 
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pinpointed by IDentif.AI 2.0. The IDentif.AI 2.0 process in its current form has resulted in 
promising outcomes, further development of IDentif.AI 2.0 and its potential integration with other 
methodologies may further enhance its clinical relevance.    
 
IDentif.AI 2.0 for clinical decision making 
Clinical decision making in response to the COVID-19 pandemic has been dynamically adapting 
to new information (Martinez-Sanz et al., 2020; Metlay and Armstrong, 2021). With new evidence 
emerging, Infectious Diseases Society of America (IDSA) COVID-19 treatment guidelines 
provides updated recommendations for certain monotherapies and combinations depending on 
severity and setting (Bhimraj A, 2021). Dose optimization has been increasingly recognised as a 
key therapy optimization element for maximizing public health benefits from the therapeutic 
solutions of limited supply (Strohbehn et al., 2021). Therefore, it will be important to pinpoint 
combination regimens that are clinically actionable, both in composition and dosing parameters 
based on available recommendations. The IDentif.AI 2.0 platform reported here could provide key 
insights and address gaps regarding how to optimally combine the therapies. 
 
The platform that can rapidly identify treatments for prioritized testing will also be beneficial in 
the emergence of new viral variants, which potentially affects vaccination and therapeutic 
efficacies, and also for the treatment of patients that could not be vaccinated, including those who 
remain ill with evidence of sustained viral replication. Additionally, IDentif.AI can be tailored to 
generate combinations that address supply chain considerations and local regulations to make the 
most out of what is available in the geographical and economic feasibility context for a pandemic 
readiness programme that is inclusive of low-and middle-income countries (LMICs).  
 
Conclusions 
This work reports the application of IDentif.AI 2.0 towards the rapid optimization and 
prioritization of combination therapy regimens against COVID-19. The IDentif.AI 2.0 
optimization process pinpointed EIDD-1931/baricitinib, EIDD-1931/masitinib, and EIDD-
1931/remdesivir as regimens that may be suitable for further evaluation and development. 
IDentif.AI 2.0 did not rely on pre-existing datasets, synergy predictions, or in silico modeling to 
design these combinations. Instead, it harnessed data from carefully designed drug-dose 
permutations and prospectively executed studies to drive the optimization process to complement 
existing strategies in the fight against COVID-19 pandemic. The promising findings from this 
work support the expansion of IDentif.AI 2.0 towards a broad range of applications in addressing 
antimicrobial resistance as well as optimized intervention using antiviral, antibiotic, and antifungal 
therapies.  
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Tables 
 
Table 1. Drug anti-SARS-CoV-2 efficacy and cytotoxicity when administered in monotherapy as 
compared to Cmax obtained from the literature and regulatory documents. Absolute EC50 and CC50 
were obtained from the D-R curves for each drug individually constructed based on a CPE viral 
assay with Vero E6 cells. EC curves were plotted after excluding %Inhibition values 
corresponding to drug concentrations resulting in %Cytotoxicity above 25%. Baricitinib (BRT), 
ebselen (EBS), selinexor (SEL), masitinib (MST), nafamostat mesylate (NFM), telaprevir (VX-
950) (TPV), imatinib mesylate (IMT), remdesivir (RDV), lopinavir (LPV), and ritonavir (RTV). 
 

Drug EC50 
(µM) 

 CC50 
(µM) 

Cmax 
COVID-19 clinical trial  Conc. 

(µM)  Reference  

EIDD-1931 0.929 >10 11.457 Painter et al., 2021 
NCT04575597, NCT04405570, 
NCT04405739, NCT04746183 

BRT >10 >10 0.140 FDA, 2018a NCT04421027, NCT04832880, 
NCT04401579, NCT04891133 

EBS 8.448 >10 0.00136 Kil et al., 2017 NCT04484025, NCT04483973 

SEL a 4.123 1.218 FDA, 2018b NCT04349098  

MST 4.119 6.705 0.529 EMA, 2017 NCT04622865  

NFM >10 >10 0.241 KEGG, 2019 NCT04352400, NCT04473053, 
NCT04390594, NCT04483960 

TPV a 59.560 5.163 FDA, 2011 – 

SN-38 a 4.784 0.143 FDA, 2002 – 

IMT 6.601 27.250 2.723 Nikolova et al., 2004 NCT04394416, NCT04346147 

RDV 1.267 86.910 3.699 FDA, 2020 
NCT04596839, NCT04292730,  
NCT04292899, NCT04315948 

LPV a 24.210 19.561 EMA, 2011 NCT04381936, NCT04315948, 
NCT04276688, NCT04252885 RTV a 79.140 20.390 EMA, 2005 

a) EC50 was not achieved within the acceptable cytotoxicity level (below 25%) 
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Table 2. Clinically actionable drug concentrations for the IDentif.AI 2.0 drug combination 
optimization. Concentration Level 0 indicated lack of the drug, concentration Level 1 and Level 
2 were selected based on 5% and 10% Cmax for RDV, EBS, MST, IMT, BRT. Concentration 
Level 1 and Level 2 were selected based on absolute EC10 and absolute EC20 for EIDD-1931. 
Remdesivir (RDV), ebselen (EBS), masitinib (MST), imatinib mesylate (IMT), baricitinib 
(BRT). 

Drug Level 0 (µM) Level 1 (µM) Level 2 (µM) 

RDV 0 0.185 0.370 
EBS 0 0.000068 0.000136 
MST 0 0.026 0.053 
IMT 0 0.136 0.272 
BRT 0 0.007 0.014 

EIDD-1931 0 0.315 0.458 
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Figures  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. IDentif.AI workflow and actionable outcome. A) IDentif.AI workflow for optimizing 
drug combinations. Clinical applicability considerations are integrated into IDentif.AI workflow 

to pre-emptively best position the optimized combinations for a clinical translation. B) The 
outcome of the IDentif.AI workflow is a list of ranked combinations for prioritizing drug 

combinations for go/no-go decisions. 
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Fig. 2. IDentif.AI interaction analysis. The analysis indicates that EIDD-

1931 interacts differently with remdesivir and baricitinib. EIDD-
1931/remdesivir interaction surface had a convex shape indicating a 
synergistic interaction, while  EIDD-1931/baricitinib had a concave 

interaction surface had a concave shape indicating a dose-dependent, mildly 
antagonistic interaction. L0, L1, L2 correspond to concentration Level 0, 

Level 1 and Level 2. 
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Fig. 3. Validation of EIDD-1931 drug interactions affecting %Inhibition. (A-C) Surface plots of 

EIDD-1931 interactions with remdesivir (RDV), baricitinib (BRT) and masitinib (MST) in the 
validation interaction space, clinically actionable interaction space (black, solid line border) and the 
interaction space from the IDentif.AI 2.0 analysis (black, dotted line border). The latter two are also 
shown as 2-dimenisional maps. All experiments were performed with N = 3 to 4 replicates, which 
were independently included in the surface construction. Black, round markers indicate an average 
%Inhibition of the replicates for each treatment. Adjusted R2 (Adj R2) indicates goodness of the fit 

for each interaction surface. (D-E) Dose-response curves (D-R curves) of EIDD-1931 in 
monotherapy and in a combination with RDV and BRT at two concentration ratios: the ratio tested 
in the IDentif.AI 2.0 experimental set (OACD ratio) and the ratio dictated by the Cmax values of the 
drugs (Cmax ratio). Half maximal absolute effective concentration (EC50) was derived from the D-R 
curves. The vertical line marks the 10% Cmax of EIDD-1931. Please note that the EIDD-1931-only 
EC50 values (Green) were provided in both subfigures D  and E to enable direct comparisons with 
both combinations (EIDD-1931/RDV and EIDD-1931/BRT). The entire assay was completed in 1 

experiment, realizing all data points in a single global study and enabling comprehensive derivation 
of combinations and direct comparisons between monotherapies and combinations.  Error bars 

represent propagated SD (N = 3 to 4 replicates). Of note, this propagated SD did not arise from the 
replicates’ spread, but from plate-to-plate variation (SD of the controls).  
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Fig. 4. Validation of EIDD-1931 drug interactions affecting %Inhibition in SARS-Cov-2 
B.1.351 variant. (A-C) Surface plots of EIDD-1931 interactions with remdesivir (RDV), 

baricitinib (BRT) and masitinib (MST) in the validation interaction space, clinically actionable 
interaction space (black, solid line border) and the interaction space from the IDentif.AI 2.0 

analysis (black, dotted line border). The latter two are also shown as 2-dimenisional maps. All 
experiments were performed with N = 3 replicates, which were independently included in the 

surface construction. Black, round markers indicate an average %Inhibition of the replicates for 
each treatment. Adjusted R2 (Adj R2) indicates goodness of the fit for each interaction surface. 

(D) %Inhibition against the propagated, original (black font label, block bar filling) and B.1.351 
variants (blue font label, patterned bar filling) of 10% Cmax EIDD-1931 in monotherapy and in a 
combination with RDV and BRT at two concentration ratios: the ratio tested in the IDentif.AI 
2.0 experimental set (OACD ratio) and the ratio dictated by the Cmax values of the drugs (Cmax 

ratio). The entire assay was completed in 1 experiment, realizing all data points in a single global 
study and enabling comprehensive derivation of combinations and direct comparisons between 

monotherapies and combinations.  Black markers indicate individual data points. Error bars 
represent propagated SD. Of note, this propagated SD did not arise from the replicates’ spread, 
but from plate-to-plate variation (SD of the controls). No statistically significant difference was 

detected with Kruskal-Wallis test when followed by Dunn’s post hoc test. 
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Fig. 5.  Validation of EIDD-1931 drug interactions affecting %Cytotoxicity. (A-I) 
Surface plots of EIDD-1931 interactions with remdesivir (RDV), baricitinib (BRT) and 

masitinib (MST), in the validation interaction space, clinically actionable interaction space 
(black, solid line border) and the interaction space from the IDentif.AI analysis (black, dotted 
line border), based on the experimentation in Vero E6 cells (A-C), THLE-2 (D-F) and AC16 

(G-I). (A-I) All experiments were performed with N = 3 to 4 replicates, which were 
independently included in the surface construction. Black, round markers indicate an average 
%Cytotoxicity of the replicates for each data point. Adjusted R2 (Adj R2) indicates goodness 

of the fit for each interaction surface. 
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