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Abstract 

Objective 

We formulate population representativeness of randomized clinical trials (RCTs) as a 

machine learning (ML) fairness problem, derive new representation metrics, and deploy 

them in visualization tools which help users identify subpopulations that are 

underrepresented in RCT cohorts with respect to national, community-based or health 

system target populations.    

Materials and Methods  

We represent RCT cohort enrollment as random binary classification fairness problems, 

and then show how ML fairness metrics based on enrollment fraction can be efficiently 

calculated using easily computed rates of subpopulations in RCT cohorts and target 

populations. We propose standardized versions of these metrics and deploy them in an 

interactive tool to analyze three RCTs with respect to type-2 diabetes and hypertension 

target populations in the National Health and Nutrition Examination Survey (NHANES). 

Results 

We demonstrate how the proposed metrics and associated statistics enable users to 

rapidly examine representativeness of all subpopulations in the RCT defined by a set of 

categorical traits (e.g., sex, race, ethnicity, smoker status, and blood pressure) with 

respect to target populations.  

Discussion 

The normalized metrics provide an intuitive standardized scale for evaluating 

representation across subgroups, which may have vastly different enrollment fractions 

and rates in RCT study cohorts. The metrics are beneficial complements to other 
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approaches (e.g., enrollment fractions and GIST) used to identify generalizability and 

health equity of RCTs.  

Conclusion 

By quantifying the gaps between RCT and target populations, the proposed methods 

can support generalizability evaluation of existing RCT cohorts, enrollment target 

decisions for new RCTs, and monitoring of RCT recruitment, ultimately contributing to 

more equitable public health outcomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.23.21259272doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259272


BACKGROUND AND SIGNIFICANCE 

Inequitable representation and evaluation of diverse subgroups in randomized clinical 

trials (RCTs) and other clinical research may generate unfair and avoidable differences 

in population health outcomes1-4.  In an analysis of trials conducted by Pfizer between 

2011 and 2020, scientists found an urgent need for solutions to enhance diverse 

representation across all populations within clinical research5. Health inequity attracted 

great public attention during the COVID-19 pandemic6-8. For example, race and ethnicity 

are identified factors associated with risk for COVID-19 infection and mortality9-11. The 

adequate enrollment of participants with diverse race and ethnicity is required in clinical 

trials to ensure valid treatment effect conclusions and to support reliable generalizability 

of clinical trial results across subpopulations.   

 

A well-designed RCT is considered the most reliable way to estimate cause-effect 

relationships between treatments and outcomes12,13. The randomization process, which 

makes RCTs gold standards of treatment effectiveness, contains two random 

assignments, one from target population to trial cohort and the other from trial cohort to 

different experimental groups14,15. The first random assignment is critical to the 

applicability and generalizability of clinical findings16-18 but has received much less 

attention than the second one. Figure 1 demonstrates that if a latent patient trait guides 

the patient assignment into the study and affects the outcome, then the study 

generalizability to other reference populations may be limited from a causal inference 

perspective. 
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Population representativeness and previous works 

Given the target population (i.e., the broad group of people to which RCT results are 

intended to apply) of a study on any disease, metrics have been developed to 

determine if a subpopulation (i.e., a subset of the target population that share a single or 

multiple common traits and thus can be distinguished from the rest) is underrepresented 

in the study cohort.  Examples of traits include demographics, socioeconomic status, 

and clinical characteristics.   

 

Existing metrics and measures of population representativeness are generally of two 

types: (1) comparing rates of subgroups enrolled in a clinical trial versus those in the 

target population (i.e. enrollment fraction, EF); (2) comparing rates of eligible patients 

according to inclusion and exclusion criteria versus those in target patient populations 

(i.e. GIST 2.0).  

 

EF is a widely used measure of participation disparities in clinical trials. For a given 

disease, it is defined as the number of trial participants divided by the estimated US 

cases in each subgroup19,20. EF is usually a very small number by definition and 

requires the total number of target population for calculation, which makes potential 

underrepresentation and discriminations due to subgroup membership with respect to 

EF challenging to compare and calculate in a numerically stable way. We prove that our 

proposed metrics based on EF can be obtained through easily calculated and more 

intuitive rates. Researchers typically assess subgroup representativeness by comparing 

subgroup EFs with that of a reference subgroup (e.g., non-Hispanic White individuals) 
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that is traditionally advantaged. Our method calculates possible underrepresentation of 

all subgroups at the same time.  

 

Complex but valuable representativeness metrics like GIST 1.0 and 2.021,22 calculate 

the generalizability of clinical studies by comparison of eligible populations with target 

populations based on electronic healthcare records and evaluate the restrictiveness of 

trial eligibility criteria. Our proposed metrics also compare rates between trial cohorts 

and target populations, but deal with multiple traits in the cohort differently. GIST 

calculates measures of each trait and then obtains a final score from the univariate trait 

measures. We instead calculate representation metrics for all possible subgroups 

created by the multiple traits and then focus on visualizations and statistical methods 

that enable users to effectively identify significantly underrepresented subgroups with 

respect to the target populations. By indicating the representativeness of all possible 

subgroups, our approach could eventually be combined with GIST-type approaches to 

help illuminate the “black box” of sample selection and trial generalizability in a single 

trial and across multiple trials.  

 

Machine learning fairness and previous works 

Machine Learning (ML) Fairness metrics have been developed to quantify and mitigate 

bias in ML and AI models23-25. To improve the performance of existing RCT 

representativeness measurements, we consider assignment to the RCT a random 

binary classification problem and develop standardized metrics for RCTs based on 

variations of ML fairness metrics by mapping to the context of RCTs. ML fairness 
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metrics quantify potential bias towards protected groups in trained ML classification 

model outcomes. Our metrics, instead of comparing positive and negative classes 

based on model outcomes, focus on the trial-subject data generation process within the 

RCT. Our novel insight is to regard subject assignment to an RCT as a classification 

function that is random and then create variants of ML fairness metrics. 

 

Our metrics capture how well the actual assignment of subjects to an RCT cohort 

matches with a truly random assignment. The statistical properties of the hypothetical 

random assignment from a target population can be estimated using community-based 

or nationally representative datasets of individual characteristics, such as the National 

Health and Nutrition Examination Survey (NHANES)26 or from electronic medical 

records (EMR).   

    

Consolidated Standards of Reporting Trials and previous works 

Our main goal is to eliminate or reduce inequitable representations in the subject 

enrollment stage by measuring and identifying equity gaps which persist across different 

subpopulations. Our method augments the Consolidated Standards of Reporting Trials 

(CONSORT)27,28 statement and its extension CONSORT-Equity29, which aims to avoid 

biased results from incomplete or nontransparent research reports that could mislead 

decision-making in healthcare. Our method supports incorporating representativeness 

evaluation before, during, and after any RCTs. Additionally, it can help Institutional 

Review Board (IRB) better evaluate the equity in trial-design stages and assist FDA 
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regulators to ensure a fair distribution of clinical benefits to both the study sample and 

the general population. 

 

Our proposed representativeness metrics are expected to identify subgroups that are 

insufficiently recruited into and represented in the clinical trial cohort using study 

summary data only, ensuring privacy, security, and confidentiality of health information. 

These metrics can then be used by clinicians, clinical researchers, and health policy 

advocates to assess potential gaps in the applicability of clinical trials in real-world 

settings. 

 

Our contributions 

The contributions discussed in this paper are: (1) Formulating the problem of 

representativeness evaluation in RCTs as a comparison between a truly random 

assignment function and the actual assignment observed in the clinical trial cohort; (2) 

Deriving new metrics for representativeness of RCT based on ML fairness metrics; (3) 

Utilizing proposed metrics to measure subject representation of RCT cohorts with 

respect to a target population; (4) Identifying needs, gaps, and barriers of equitable 

representation of various subgroups in RCTs; (5) Designing a tool (an R-Shiny App) to 

automatically evaluate trial representativeness through on-demand subject stratification 

and distribute reports containing visualizations and explanations for different users. 

 

METHODS AND MATERIALS 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.23.21259272doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259272


We establish a general mapping from RCT to ML Fairness and then derive metrics to 

evaluate the population representation of RCTs based on ML fairness measures30-36. 

We provide a visual representation of results with associated statistical tests to 

transparently communicate the quantitative results to diverse user groups.  

 

Table 1 provides a glossary of fairness and representativeness terms used throughout 

the manuscript. 

 

Table 1. Glossary 

Term Definition Example(s) 

Target population Entire group of people that RCT 

results are intended to be applied to. 

US population with 

hypertension 

Subgroup Subset of target population that 

share single or multiple common 

baseline attribute values and thus 

can be distinguished from the rest. 

Non-Hispanic Black 

female subjects; non-

Hispanic White male 

subjects 

Ideal rate Proportion of subjects in a subgroup 

in the target population. 

Proportion of female 

subjects among those 

with hypertension in US 

Observed rate The Proportion of subjects in a 

subgroup in the RCT. 

Proportion of female 

subjects in SPRINT 

study 
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Representativeness The similarity between an RCT 

sample and its target population 

distributions. 

 

Protected attribute Attributes that classify the population 

of a specific disease into groups that 

have parity in terms of health 

outcomes received. 

age, BMI, total 

cholesterol  

Representativeness 

metric 

Function of disease-specific 

observed and ideal rates of 

assignment of protected subgroups 

to the RCT. 

Log disparity 

 

 

RCT representativeness and ML fairness 

In an ML prediction model, given a feature vector 𝑥 of subject from distribution 𝒫, a 

binary classifier predicts if the subject is positive (𝑦′  =  1) or negative (𝑦′ = 0). The true 

outcome is 𝑦 ∈ {0,1}. Within RCTs, the feature vector 𝑥 is the protected attributes or 

subject traits; the binary classifier assigns subjects into the study cohort, where 𝑦′  =  1 

means a subject is recruited while 𝑦′  =  0 means not recruited or exclusion. 𝑦 is the true 

random assignment result of the subject into the study from the whole target population. 

 

For RCT representativeness evaluation, each available individual (i.e. a person who has 

the studied disease) is defined by 𝐼 = (𝑋, 𝑦) = ((𝑥, 𝑥′), 𝑦), where 𝑥 ∈ 𝑋 represents the 
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protected attributes, 𝑥′ ∈ 𝑋 represents the unprotected attributes, and 𝑦 ∈ {0,1} is the 

ideal assignment of the individual by a randomized clinical trial. An ideal RCT enrolls 

subjects i.i.d. from the target population 𝒫. The RCT recruitment strategy can be treated 

as a binary classifier 𝒟(𝑋)  =  𝑦′ ∈ {0,1}, denoting the real observed decision induced by 

𝒟 on an individual 𝑖. The subgroups are defined via a family of indicator functions 𝒢. For 

each 𝑔 ∈  𝒢, 𝑔(𝑥) = 1 means that an individual with protected attributes 𝑥 is in the 

subgroup. We utilize protected attributes of three types: demographic characteristics, 

risk factors and laboratory results. 

 

ML fairness metrics are concerned with guaranteeing similarity results across different 

subgroups37. We assume that the ideal RCT achieves statistical parity38, i.e. subgroups 

are independent of outcomes (𝑔(𝑥) ⊥ 𝑦 ). Then we create metrics based on ML fairness 

measures of statistical parity violations.  The proposed metrics also assume that the 

ideal assignment of a subject to the RCT and the observed assignment are independent 

(𝑦 ⊥ 𝑦′ ), and the sizes and the rates of an ideal RCT and the observed trial are the 

same (𝑃(𝑦 = 1) = 𝑃(𝑦′ = 1)).  

 

The ideal and observed rates of a subgroup are 𝑃(𝑔(𝑥) = 𝑠|𝑦 = 1) and 

𝑃(𝑔(𝑥) = 𝑠|𝑦′ = 1), respectively. The enrollment fraction of a subgroup is 

𝑃(𝑦′ = 1|𝑔(𝑥) = 𝑠).  We note by independence assumptions of ideal RCT,  

𝑃(𝑦′ = 1|𝑦 = 1, 𝑔(𝑥) = 𝑠) = 𝑃(𝑦′ = 1|𝑔(𝑥) = 𝑠).  

 

Log Disparity Metric for RCT 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.23.21259272doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259272


In ML fairness, the disparate impact measure is the ratio of positive rates of both 

unprotected and protected groups39: 

𝑃(𝑦′ = 1|𝑔(𝑥) = 1)

𝑃(𝑦′ = 1|𝑔(𝑥) = 0)
 

Disparate impact adopts the "80 percent rule" suggested by the US Equal Employment 

Opportunity Commission (EEOC)40 to decide when the result is unfair:  

𝑃(𝑦′ = 1|𝑔(𝑥) = 1)

𝑃(𝑦′ = 1|𝑔(𝑥) = 0)
≤ τ = 0.8. 

The "80 percent rule" requires the selection rate of a subgroup to be at least 80% of the 

selection rate of the other subgroups. 

 

As shown in the following theorem, when applied to the RCT, disparate impact reduces 

to an intuitive quantity based on the enrollment odds of a protected group and in the 

target. 

 

Theorem 1:  RCT version of Disparate Impact Metric 

Based on the ideal RCT assumptions above, the disparate Impact metric is equivalent 

to the ratio of enrollment odds of subjects of the protected group in the observed cohort 

to the ratio of the odds of subjects in the ideal cohort: 

𝑃(𝑦′ = 1|𝑔(𝑥) = 1)

𝑃(𝑦′ = 1|𝑔(𝑥) = 0)
=

𝑜𝑑𝑑𝑠(𝑔(𝑥) = 1|𝑦′ = 1)

𝑜𝑑𝑑𝑠(𝑔(𝑥) = 1|𝑦 = 1)
=

𝑜𝑑𝑑𝑠(𝑔(𝑥) = 1|𝑦′ = 1)

𝑜𝑑𝑑𝑠(𝑔(𝑥) = 1)
 

See supplementary materials for proof. 

 

Since log odds provides advantages for ease of understanding, we propose the 

following metric for RCT.  
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Proposed Metric 1. The Log Disparity metric for measuring how representative of 

subgroup 𝑔(𝑥) = 1 in observed trial 𝑦′ as compared to ideal population 𝑦 is  

𝑙𝑜𝑔(odds(𝑔(𝑥) = 1|𝑦′ = 1)) − 𝑙𝑜𝑔(odds(𝑔(𝑥) = 1))    

 

In the log disparity metric, a value of 0 indicates perfect clinical equity. A value smaller 

than the lower threshold, −τ𝑙𝑜𝑤𝑒𝑟, implies a potential underrepresentation of a subgroup 

while a value greater than implies a potential overrepresentation. We further add an 

upper threshold, τ𝑢𝑝𝑝𝑒𝑟. A value less than −τ𝑢𝑝𝑝𝑒𝑟 implies highly underrepresentation; 

similarly, a value greater than τ𝑢𝑝𝑝𝑒𝑟 implies highly overrepresentation. Values between 

−τ𝑙𝑜𝑤𝑒𝑟 and τ𝑙𝑜𝑤𝑒𝑟 mean equitable representation.   

Our metric thresholds are selected based on guidance from literature23,41-43, but other 

optimal thresholds under different criteria are allowed as inputs. We use a significance 

level of 0.05, a lower threshold of -log (0.8), and an upper threshold of -log (0.6).  

 

 

Normalized Parity Metric  

The ML fairness Equal Opportunity44 metric which requires subgroups to have the same 

true positive rates can also be applied to RCTs.       

 

Theorem 2:  RCT version of Equal Opportunity Metric 

Let ideal RCT assumptions hold and 𝑔(𝑥) be binomial random variable, then the ML 

fairness Equal Opportunity metric has the following equivalent form: 
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𝑃(𝑦′ = 1|𝑔(𝑥) = 1, 𝑦 = 1) − 𝑃(𝑦′ = 1|𝑔(𝑥) = 0, 𝑦 = 1)

= 𝑃(𝑦′ = 1|𝑔(𝑥) = 1) − 𝑃(𝑦′ = 1|𝑔(𝑥) = 0)

=
𝑃(𝑔(𝑥) = 1|𝑦′ = 1) − 𝑃(𝑔(𝑥) = 1)

𝑣𝑎𝑟(𝑔(𝑥) = 1)
𝑃(𝑦 = 1) 

See supplementary materials for proof. The proportion of population in the trial, 

𝑃(𝑦 = 1),  is extremely small and not very meaningful, thus we propose a new metric. 

The Normalized Parity metric measures the difference in rates of protected group in the 

trial and in the population scaled by the variance of the protected group in the target 

population.  

 

Proposed Metric 2. The Normalized Parity metric for measuring how representative of 

subgroup 𝑔(𝑥) = 1 in observed trial 𝑦′ as compared to ideal population 𝑦 

𝑃(𝑔(𝑥) = 1|𝑦′ = 1) − 𝑃(𝑔(𝑥) = 1)

𝑣𝑎𝑟(𝑔(𝑥) = 1)
 

The proposed Log Disparity and Normalized Parity metrics have several nice properties.  

1) They are easy to compute. The observed rates of each subgroup, 𝑃(𝑔(𝑥) = 1|𝑦′ = 1), 

are estimated from trial data. The ideal rates and variance, 𝑃(𝑔(𝑥)) and 𝑣𝑎𝑟(𝑔(𝑥)), are 

estimated for the desired target population 𝒫 using surveillance datasets such as 

NHANES or EMR. The required estimates are robust to missing data. Individual privacy 

can be protected since only summary statistics are required for the proposed metrics, 

avoiding the pitfalls of alternative metrics requiring per subject calculations45.  

2) Both metrics have a common interpretation for subgroups with very different background 

rates: 0 means that demographic parity holds, <0 means subgroup is underrepresented, 

and >0 means subgroup is overrepresented.  
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3) Statistical tests quantify the significance of observed disparities for each subgroup which 

take into account the RCT study size and estimation errors of the ideal assignment rate. 

We use a one-proportion two-tailed z-test to determine whether the observed rate is 

significantly deviated from the ideal population rate. We use Benjamini-Hochberg to 

correct for multiple comparisons across all subgroups.  If the difference between 

observed and ideal rates is not statistically significant, the subgroup is treated as 

representative; otherwise, we will use metrics to quantify the subgroup 

representativeness. Other statistical tests could be used. See supplement for details.   

 

RCT trial data 

We assess the proposed methodologies on three real-world RCTs: ACCORD46, 

ALLHAT47, and SPRINT48 in BioLINCC with the ideal subgroup assignment rate 

calculated from individuals with matched disease conditions in NHANES. According to 

participants' baseline characteristics typically summarized in Table 1s of clinical trial 

reports, we selected nine protected attributes. We categorize continuous variables 

based on the CDC-approved standards. Subject data obtained from RCTs are mapped 

to the existing NHANES categories. The protected attributes examined here are (a) 

demographic characteristics (gender, race/ethnicity, age, and education); (b) baseline 

risk factors (smoking status, body mass index (BMI), and systolic blood pressure 

(SBP)); (c) baseline laboratory test results (fasting glucose (FG) and total cholesterol 

(TC)).   

 

The observed rates of the subgroup are calculated from the RCT data 
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𝑃(𝑔(𝑥) = 1|𝑦′ = 1) =
number of RCT participants who satisfied 𝑔(𝑥) = 1

number of participants with target disease in RCT
 

For each study, we construct all possible subgroups that can be instantiated as 𝑔(𝑥).   

We define 29 univariate, 109 bivariate, and 306 multivariate subgroups based on nine 

protected attributes.  In general, any baseline subject attributes can be selected as 

protected attributes in our approach.  

 

 

Target population  

In our experiment, ideal rates from target populations (𝑃(𝑔(𝑥) = 1|𝑦 = 1)) are 

calculated from NHANES 2015-2016 using the R survey() package49 which accounts for 

potential bias from complex survey designs. The NHANES population selected varies 

based on study objectives and desired target population. To evaluate ACCORD46, we 

estimate ideal rates of subgroups of diabetic individuals in the US using subjects who 

report having diabetes in NHANES, and we use subjects who report having 

hypertension in NHANES as the target population to evaluate ALLHAT47 and SPRINT48. 

These criteria could be modified to consider study inclusion and exclusion criteria 

depending on the goals of analysis.  

 

Since users may have better target population data that match their studies, user-

provided target population datasets and multiple target files are allowed. For example, 

clinicians who focus on their local communities could use the community or health-

system population as the target to evaluate the equity of RCTs, whereas researchers 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.23.21259272doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259272


who work on a global disease, the target population may be better estimated from 

global population datasets. 

 

RESULTS 

To demonstrate the proposed metric, we created a visualization using different colors to 

represent different representativeness levels in RCTs. For compact presentation, we 

focus on the log disparity metric. Figure 2 illustrates how the log disparity function 

applies to relative common subgroups Female and Female Non-Hispanic Black in 

ACCORD. 

 

As shown in Figure 2A, for women with type-2 diabetes, the ideal rate from NHANES is 

0.445 while the observed RCT rate is 0.386. The observed female-subject rate falls into 

the light orange region, which reveals the underrepresentation of female subjects. For 

Figure 2B, when the subgroup of interest is changed to non-Hispanic black female 

participants, the ideal rate decreases to 0.079 and the observed rate becomes 0.095. 

Now the interested subgroup falls into the teal region, which means that non-Hispanic 

black female participants are equitably represented in ACCORD. This indicates the 

influence of protected attribute race/ethnicity on the representativeness evaluation. By 

comparing Figure 2A and 2B, we can observe that metric functions change as the ideal 

rate changes.  

 

The representativeness of 29 univariate subgroups for three RCTs are shown in Table 2 

and 3. Dark red represents the subgroups absent from the RCT; light orange and 
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orange red indicate that subgroups are underrepresented or highly underrepresented in 

the RCT relative to the target population; light and dark blue specify the potentially 

overrepresented or highly overrepresented subgroups; teal shows the subgroup is 

either equitably represented or has no significant difference; grey indicates that no 

individuals with selected protected attributes exist in estimated target population; black 

indicates absent subgroup in both estimated target population and RCT. 

 

Table 2. Representativeness of subgroups defined by a single protected attribute using 

Log Disparity for three real-world RCTs. Subgroups are defined by demographic 

characteristics. Black cells labeled with “NA” indicate that a specific category/value was 

not measured in the RCT; teal cells with a star indicates that no statistically significant 

difference between subgroups from the RCT and target population. Ages are in years. 

Demographic 

Characteristics 

Representativeness 

ACCORD ALLHAT SPRINT 

Gender 

Female -0.25 -0.21 -0.68 

Male  0.25  0.21  0.68 

Age (Diabetes/Hypertension) 

18-44/18-39 -4.21 -Inf -Inf 

45-64/40-59   0.86 -0.87 -0.74 

64+/59+ -0.28  1.45  1.32 

Race/Ethnicity 

Non-Hispanic White 0.23 -0.73 -0.30 
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Non-Hispanic Black 0.32  1.04  0.96 

Non-Hispanic Asian NA -1.36 -1.63 

Hispanic -1.07   0.53 -0.16 

Other/Unknown  0.14 -1.58 -1.90 

Education 

Less than high school -0.46 0.95 -2.32 

High-school graduate  0.30 0.14 -0.48 

Some college/Technical 

school 

-0.06 -0.38  0.31 

College degree or higher  0.14 -1.83  0.69 

 

 

 

 

Table 3. Representativeness of subgroups defined by a single protected attribute using 

Log Disparity for three real-world RCTs. Subgroups are defined by clinical 

characteristics. Systolic blood pressure unit = mm Hg; Fasting glucose unit = mmol/L. 

Clinical Characteristics Representativeness 

ACCORD ALLHAT SPRINT 

Cigarette-smoking status 

Current smoker -0.91 -0.93 -1.49 

Not smoke  0.91  0.93  1.47 

Body-mass index group 
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Underweight -2.57 0.04 -1.03 

Normal weight -0.26 0.21 -0.56 

Overweight  0.06 0.37 -0.17 

Obese  0.05 -0.51 -0.79 

Systolic blood pressure  

<120 -0.94 -1.95 -Inf 

120-129 -0.29 -1.13 -Inf 

130-139  0.52 -0.19 0.87 

>=140  0.52  1.57 1.29 

Total cholesterol 

Normal -0.26 -1.07  0.04 

High  0.24  0.87 -0.19 

Fasting glucose  

<5.6 -0.56  0.42  1.17 

5.6-6.9 -0.85 -1.71 -0.66 

>=7  0.81  0.06 -2.17 

 

 

We evaluate our ideal estimates for ACCORD, ALLHAT, and SPRINT using prior 

literature. For example, an estimated probability of female patients among US 

hypertensive population in 201550, calculated through Bayes’ formula, is about 47%. 

Comparing to the summary statistics in published literature (i.e., about 47% subjects are 

women in ALLHAT and 36% subjects are women in SPRINT51-54), ALLHAT captures the 
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gender distribution among real-world hypertensive participants while SPRINT fails to 

enroll enough female participants.  

 

 

The color change across categories of an attribute highlights interesting trends in 

subject representation. Among three studies, only two attributes achieved equitable 

representation across all subgroups: gender in ALLHAT and TC in SPRINT.  From the 

tables, we observe that current smokers, young participants, non-Hispanic Asian 

subjects, subjects with SBP under 130 mm Hg or FG between 5.6-6.9 mmol/L are 

frequently underrepresented. This indicates that some subgroups in the target 

population are missing or inadequately represented in the RCTs. The decision-making 

on a subject, e.g. aged 40, based on the SPRINT study would require additional 

evidence beyond this study.  Also, participants with lower education levels tend to be 

more underrepresented in the SPRINT while participants with higher education levels 

tend to be more underrepresented in the ALLHAT. This points out that potential social 

determinant confounders may exist in the RCT.  We note, across all three studies, non-

Hispanic black participants are overrepresented, perhaps reflecting efforts to ensure 

minority participation or reflecting study locations. In both hypertension RCTs, Asian 

subjects may have been insufficiently enrolled. This underrepresentation may also 

reflect study choices or locations. These trends have to be validated by analysis on 

more RCTs. 
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For subgroups defined by multiple attributes, sunburst plots better visualize the change 

of subgroup representation by adding additional protected attributes, as shown in Figure 

3. For each type of protected attributes (i.e., demographic characteristics, risk factors, 

and lab results), separate sunburst charts are generated since their matched population 

from NHANES are different.  

 

Figure 3 demonstrates log disparity results for ACCORD on demographic 

characteristics, ALLHAT on risk factors, and SPRINT on lab results.  The interactive 

sunburst diagram enables users to investigate many subgroups simultaneously to 

identify missing or underrepresented subgroups in RCTs and NHANES. For example, 

young female subjects aged under 45 are missing entirely. As shown in Figure 3D, with 

an additional attribute FG, new subgroups such as participants with glucose>=7 mmol/L 

are highly underrepresented for both high and normal TC. This indicates the importance 

of multivariable subgroup analyses in representativeness.  Note that 

underrepresentativeness may be due to legitimate choices in the study inclusion and 

exclusion criteria. If desired by the user, absent subgroups in NHANES or any target 

populations can be estimated using smoothing techniques. 

 

The sunburst plots explicitly address diversity, equity, and inclusion of clinical studies 

with respect to the target population. For instance, Figure 3B identifies the missing 

evidence in subgroups including any female and non-Hispanic male subjects aged 

under 45. This lack of subject diversity may lead to similar results as shown for the 

effectiveness of Actemra on COVID-19 patients, in which the study results flipped after 
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including more marginalized participants. Furthermore, our visualization automatically 

checks if the inclusion and exclusion criteria are met. Based on the criteria of SPRINT, it 

successfully excluded subjects with SBP under 130 mm Hg but subjects with potential 

impaired glucose or diabetes still existed based on the lab results.  

 

 

DISCUSSION 

An advantage of the proposed metrics is they provide a standardized scale for judging 

trial representativeness for subgroups with vastly different expected rates in the trial; for 

example, the estimated ideal rate of participation in the type-2 diabetes trial estimated 

from NHANES for subgroups of female subjects, female subjects aged over 64, 

Hispanic female subjects aged over 64, and Hispanic female subjects aged over 64 with 

high school degree are 0.445, 0.172, 0.025, and 0.006 respectively. Evaluating 

differences between simple rates for many subpopulations would be more challenging.   

 

To facilitate visualizations of measured performance on clinical trials, we have 

incorporated a comprehensive set of fairness metrics into our prototype 

representativeness visualization tool using R shiny to enable researchers and clinicians 

to rapidly visualize and assess all potential misrepresentation in a given RCT for all 

possible subgroups. In our application, the number and order of the attributes for the 

sunburst can be changed by users; for example, instead of Figure 3B, users can 

visualize representativeness of subgroups for Age with further divisions by Gender and 

then Race/Ethnicity. With these metrics, users can rapidly determine 
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underrepresentation of subgroups which can serve as basis for determining any 

limitations of the RCT. The metrics and visualizations can potentially help support 

evaluation of representativeness of existing RCTs, design of new RCTs, and monitoring 

of recruitment in ongoing RCTs. The visualization may also help healthcare providers 

quickly understand the applicability of RCT results to a patient in a subgroup.    

 

Clinical trials are a key component of health equity. In the context of trial equity, 

underrepresentation or exclusions of disadvantaged participants may reduce their 

opportunities to live healthy lives. These metrics can also be applied to many types of 

clinical research and representativeness problems by appropriately adjusting the target 

population statistics based on the population of interest. Besides use with RCTs, these 

metrics can be easily modified to assess and visualize any disparities related to health 

including the distribution of medical care and different levels of living and working 

conditions for patients if the matching background information is available to obtain the 

ideal rate of each subgroup. Furthermore, our approach can be used as a frame of 

reference to guide the clinicians and policy-makers to make decisions with legitimate 

reasons and evidence. We offer user selections to dynamically control different 

conditions including subgroup characteristics, metric types, metric cutoffs, under which 

the users will make their own decisions.  

 

The technical challenges we encountered include determining how to appropriately treat 

continuous variables such as age and consider inclusion and exclusion criteria when 

mapping RCT cohorts and NHANES sample population. Currently, we discretize all 
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continuous variables, with alternative approaches left as future work.  It may be 

desirable to further refine the target populations to adjust for missing and 

underrepresented subgroups due to RCT inclusion and exclusion criteria. We plan to 

validate our metrics by applying them to more trials and compare results with other 

metrics such as GIST 2.0.  It can also be useful to create a method combining the 

proposed metrics with GIST to enable detailed subpopulation analyses of inclusion and 

exclusion criteria and analysis of multiple trials.  

 

CONCLUSION 

Quantifying representation is important for scientific rigor and to build true equity into 

research designs and methods. Health equity is not just a clinical issue; it is also a 

socioeconomic concern with broad consequences55-57. We developed metrics and 

methods to evaluate how equitably subgroups are represented in RCTs. Unlike most 

existing studies which focus on one protected attribute each time (e.g. race) for a single 

disease (e.g. type-2 diabetes), our proposed approach can analyze clinical trials 

designed for several diseases such as hypertension and type-2 diabetes, 

simultaneously and can additionally report representativeness of subgroups defined by 

multiple attributes including age and race/ethnicity. Our next steps are to utilize these 

metrics to monitor existing RCTs, help design new RCTs, and provide tools for 

disseminating findings to different user groups, such as patients, clinicians, data 

scientists, and policy-makers, who will bring the discoveries into play to advance health 

equity.   
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FIGURE LEGENDS 

Figure 1. The causal models of truly randomized clinical trials and biased randomized 

clinical trials. X represents the subject covariates; Y is the assignment of a subject to a 

trial; T indicates the treatment; and Z is the outcome. The black arrows represent causal 

dependencies between variables.  A. In the causal model for truly randomized clinical 

trials, no dependency should exist between X and Y. Thus, the observed probability of 

outcome Z given the treatment is a good estimate of whether the treatment causes the 

outcome.  B. In the causal model for biased randomized clinical trials, an arrow exists 

between X and Y', which indicates the dependence. Thus, invalid causal inferences may 

be estimated for treatment efficacy among some subpopulations and result in unfair and 

avoidable population health disparities.  

 

Figure 2. The shift of representativeness distribution of Log Disparity metric for different 

patient subgroups with type-2 diabetes in ACCORD. The green line corresponds to the 

ideal rate for the subgroup determined from NHANES. The brown line indicates the rate 

actually observed. A. Log Disparity as function of observed rate for female subgroup. B. 

Log Disparity as function of observed rate for female non-Hispanic black subgroup. 

 

Figure 3. Representativeness results measured by Log Disparity. A. Color code of 

representativeness levels. B. Representativeness of ACCORD RCT subgroups in 

sunburst plot with inner to outer rings defined by demographic characteristics gender, 

age, race/ethnicity, and education level respectively. C. Representativeness of ALLHAT 

RCT subgroups in sunburst plot with inner to outer rings defined by risk factors SBP, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.23.21259272doi: medRxiv preprint 

https://doi.org/10.1101/2021.06.23.21259272


BMI, and smoking status respectively.  D. Representativeness of SPRINT RCT 

subgroups in sunburst plot with inner to outer rings defined by lab results total 

cholesterol and fasting glucose respectively. 
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